Boronic Acid Based Modular Fluorescent Saccharide Sensors

  • John S. Fossey
  • Tony D. James
Part of the Reviews in Fluorescence book series (RFLU, volume 2007)


The ability to monitor analytes within physiological, environmental and industrial scenarios is of prime importance. Since recognition events occur on a molecular level, gathering and processing this information pose a fundamental challenge. Therefore, robust chemical molecular sensors with the capacity to detect chosen molecules selectively and signal this presence continue to attract considerable attention. Real-time monitoring of saccharides is of particular interest, in aqueous systems such as d-glucose in blood. The covalent coupling interaction between boronic acids and saccharides has been exploited with some success to monitor the presence of such saccharides.


Boronic acid Fluorescent Sensor Saccharide Glucose 


  1. 1.
    G. R. Desiraju, Chemistry Beyond the Molecule, Nature, 412, 397–400, 2001.CrossRefPubMedGoogle Scholar
  2. 2.
    B. G. Malmström, Nobel Lectures in Chemistry (1991–1995), World Scientific: Singapore, 1997.Google Scholar
  3. 3.
    A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches, Chemical Reviews, 97, 1515–1566, 1997.CrossRefPubMedGoogle Scholar
  4. 4.
    A. W. Czarnik, Fluorescent Chemosensors for Ion and Molecule Recognition, American Chemical Society Books: Washington DC, 1993.CrossRefGoogle Scholar
  5. 5.
    R. Jelinek and S. Kolusheva, Carbohydrate Biosensors, Chemical Reviews, 104, 5987–6015, 2004.CrossRefPubMedGoogle Scholar
  6. 6.
    T. D. James, P. Linnane and S. Shinkai, Fluorescent Saccharide Receptors: A Sweet Solution to the Design, Assembly and Evaluation of Boronic Acid Derived Pet Sensors, Chemical Communications, 281–288, 1996.Google Scholar
  7. 7.
    T. D. James, K. R. A. S. Sandanayake and S. Shinkai, Saccharide Sensing with Molecular Receptors Based on Boronic Acid, Angewandte Chemie-International Edition in English, 35, 1911–1922, 1996.Google Scholar
  8. 8.
    M. Granda-Valdes, R. Badia, G. Pina-Luis and M. E. Diaz-Garcia, Photoinduced Electron Transfer Systems and Their Analytical Application in Chemical Sensing, Quimica Analitica (Barcelona), 19, 38–53, 2000.Google Scholar
  9. 9.
    W. Wang, X. Gao and B. Wang, Boronic Acid-Based Sensors, Current Organic Chemistry, 6, 1285–1317, 2002.CrossRefGoogle Scholar
  10. 10.
    T. D. James and S. Shinkai, Artificial Receptors as Chemosensors for Carbohydrates, Topics in Current Chemistry, 218, 159–200, 2002.CrossRefGoogle Scholar
  11. 11.
    S. Striegler, Selective Carbohydrate Recognition by Synthetic Receptors in Aqueous Solution, Current Organic Chemistry, 7, 81–102, 2003.CrossRefGoogle Scholar
  12. 12.
    H. Cao and M. D. Heagy, Fluorescent Chemosensors for Carbohydrates: A Decade’s Worth of Bright Spies for Saccharides in Review, Journal of Fluorescence, 14, 569–584, 2004.CrossRefPubMedGoogle Scholar
  13. 13.
    H. Fang, G. Kaur and B. Wang, Progress in Boronic Acid-Based Fluorescent Glucose Sensors, Journal of Fluorescence, 14, 481–489, 2004.CrossRefPubMedGoogle Scholar
  14. 14.
    E. A. Moschou, B. V. Sharma, S. K. Deo and S. Daunert, Fluorescence Glucose Detection: Advances toward the Ideal in vivo Biosensor, Journal of Fluorescence, 14, 535–547, 2004.CrossRefPubMedGoogle Scholar
  15. 15.
    S. Shinkai and M. Takeuchi, Molecular Design of Synthetic Receptors with Dynamic, Imprinting, and Allosteric Functions, Biosensors & Bioelectronics, 20, 1250–1259, 2004.CrossRefGoogle Scholar
  16. 16.
    M. D. Phillips and T. D. James, Boronic Acid Based Modular Fluorescent Sensors for Glucose, Journal of Fluorescence, 14, 549–559, 2004.CrossRefPubMedGoogle Scholar
  17. 17.
    S. Shinkai and M. Takeuchi, Molecular Design of Synthetic Receptors with Dynamic, Imprinting, and Allosteric Functions, Bulletin of the Chemical Society of Japan, 78, 40–51, 2005.CrossRefGoogle Scholar
  18. 18.
    J. Yan, H. Fang and B. Wang, Boronolectins and Fluorescent Boronolectins: An Examination of the Detailed Chemistry Issues Important for the Design, Medicinal Research Reviews, 25, 490–520, 2005.CrossRefPubMedGoogle Scholar
  19. 19.
    A. P. Davis and T. D. James, In Functional Synthetic Receptors; Schrader, T., Hamilton, A., Eds.; Wiley-VCH: Weinheim, 2005, 45–109.Google Scholar
  20. 20.
    T. D. James, In Boronic Acids; Hall, D. G., Ed.; Wiley-VCH: Weinheim, 2005, 441–480.Google Scholar
  21. 21.
    T. D. James and S. Shinkai, In Topics in Fluorescence Spectroscopy; Geddes, C. D., Lakowicz., J. R., Eds.; Springer: New York, 2005; Vol. 10, 41–67.Google Scholar
  22. 22.
    T. D. James, M. D. Phillips and S. Shinkai, Boronic Acids in Saccharide Recognition, RSC: Cambridge, 2006.Google Scholar
  23. 23.
    T. D. James, Saccharide-Selective Boronic Acid Based Photoinduced Electron Transfer (PET) Fluorescent Sensors, Topics in Current Chemistry, 277, 107–152, 2007.CrossRefGoogle Scholar
  24. 24.
    A. P. Davis and R. S. Wareham, Carbohydrate Recognition through Noncovalent Interactions: A Challenge for Biomimetic and Supramolecular Chemistry, Angewandte Chemie-International Edition, 38, 2978–2996, 1999.CrossRefGoogle Scholar
  25. 25.
    E. Klein, M. P. Crump and A. P. Davis, Carbohydrate Recognition in Water by a Tricyclic Polyamide Receptor, Angewandte Chemie-International Edition, 44, 298–302, 2005.CrossRefGoogle Scholar
  26. 26.
    Y. Ferrand, M. P. Crump and A. P. Davis, A Synthetic Lectin Analog for Biomimetic Disaccharide Recognition, Science (Washington, DC, United States), 318, 619–622, 2007.CrossRefGoogle Scholar
  27. 27.
    A. M. Kelly, Y. Perez-Fuertes, S. Arimori, S. D. Bull and T. D. James, Simple Protocol for NMR Analysis of the Enantiomeric Purity of Diols, Organic Letters, 8, 1971–1974, 2006.CrossRefPubMedGoogle Scholar
  28. 28.
    Y. Perez-Fuertes, A. M. Kelly, A. L. Johnson, S. Arimori, S. D. Bull and T. D. James, Simple Protocol for NMR Analysis of the Enantiomeric Purity of Primary Amines, Organic Letters, 8, 609–612, 2006.CrossRefPubMedGoogle Scholar
  29. 29.
    A. M. Kelly, S. D. Bull and T. D. James, Simple Chiral Derivatisation Protocols for NMR Analysis of the Enantiopurity of 1,2-Diphenylethane-1,2-Diamine and N-Boccyclohexane-1,2-Diamine, Tetrahedron-Asymmetry, 19, 489–494, 2008.CrossRefGoogle Scholar
  30. 30.
    A. M. Kelly, Y. Pérez-Fuertes, J. S. Fossey, S. L. Yeste, S. D. Bull and T. D. James, Simple Protocols for NMR Analysis of the Enantiomeric Purity of Chiral Diols, Nature Protocols, 3, 215–219, 2008.CrossRefPubMedGoogle Scholar
  31. 31.
    Y. Pérez-Fuertes, A. M. Kelly, J. S. Fossey, M. E. Powell, S. D. Bull and T. D. James, Simple Protocols for NMR Analysis of the Enantiomeric Purity of Chiral Primary Amines, Nature Protocols, 3, 210–214, 2008.CrossRefPubMedGoogle Scholar
  32. 32.
    T. R. Jackson, J. S. Springall, D. Rogalle, N. Masumoto, H. C. Li, F. D’Hooge, S. P. Perera, A. T. A. Jenkins, T. D. James, J. S. Fossey and J. M. H. van den Elsen, Boronate Affinity Saccharide Electrophoresis (BASE): A Novel Saccharide Analysis Tool, Electrophoresis, 29, 4185–4191, 2008.Google Scholar
  33. 33.
    K. Kataoka, T. D. James and Y. Kubo, Ion Pair-Driven Heterodimeric Capsule Based on Boronate Esterification: Construction and the Dynamic Behavior, Journal of the American Chemical Society, 129, 15126–15127, 2007.CrossRefPubMedGoogle Scholar
  34. 34.
    N. Fujita, S. Shinkai and T. D. James, Boronic Acids in Molecular Self-Assembly, Chemistry - An Asian Journal, 3, 1076–1091, 2008.Google Scholar
  35. 35.
    R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire and K. R. A. S. Sandanayake, Molecular Fluorescent Signaling with Fluor Spacer Receptor Systems – Approaches to Sensing and Switching Devices via Supramolecular Photophysics, Chemical Society Reviews, 21, 187–195, 1992.CrossRefGoogle Scholar
  36. 36.
    M. Böhmer and J. Enderlein, Fluorescence Spectroscopy of Single Molecules under Ambient Conditions: Methodology and Technology, ChemPhysChem, 4, 793–808, 2003.CrossRefPubMedGoogle Scholar
  37. 37.
    W. E. Moerner and D. P. Fromm, Methods of Single-Molecule Fluorescence Spectroscopy and Microscopy, Review of Scientific Instruments, 74, 3597–3619, 2003.CrossRefGoogle Scholar
  38. 38.
    W. P. Ambrose, P. M. Goodwin, J. H. Jett, A. van Orden, J. H. Werner and R. A. Keller, Single Molecule Fluorescence Spectroscopy at Ambient Temperature, Chemical Reviews, 99, 2929–2956, 1999.CrossRefPubMedGoogle Scholar
  39. 39.
    M. Sauer, Single-Molecule-Sensitive Fluorescent Sensors Based on Photoinduced Intramolecular Charge Transfer, Angewandte Chemie-International Edition, 42, 1790–1793, 2003.CrossRefGoogle Scholar
  40. 40.
    J. R. Epstein and D. R. Walt, Fluorescence-Based Fibre Optic Arrays: A Universal Platform for Sensing, Chemical Society Reviews, 32, 203–214, 2003.CrossRefPubMedGoogle Scholar
  41. 41.
    M. Fehr, S. Lalonde, D. W. Ehrhardt and W. B. Frommer, Live Imaging of Glucose Homeostasis in Nuclei of Cos-7 Cells, Journal of Fluorescence, 14, 603–609, 2004.CrossRefPubMedGoogle Scholar
  42. 42.
    A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson and M. Nieuwenhuizen, Fluorescent Switches with High Selectivity Towards Sodium Ions: Correlation of Ion-Induced Conformation Switching with Fluorescence Function, Chemical Communications, 1967–1968, 1996.Google Scholar
  43. 43.
    H. R. He, M. A. Mortellaro, M. J. P. Leiner, S. T. Young, R. J. Fraatz and J. K. Tusa, A Fluorescent Chemosensor for Sodium Based on Photoinduced Electron Transfer, Analytical Chemistry, 75, 549–555, 2003.CrossRefPubMedGoogle Scholar
  44. 44.
    A. J. Tudos, G. A. J. Besselink and R. B. M. Schasfoort, Trends in Miniaturized Total Analysis Systems for Point-of-Care Testing in Clinical Chemistry, Lab on a Chip, 1, 83–95, 2001CrossRefPubMedGoogle Scholar
  45. 45.
    H. Schlebusch, I. Paffenholz, R. Zerback and R. Leinberger, Analytical Performance of a Portable Critical Care Blood Gas Analyzer, Clinica Chimica Acta, 307, 107–112, 2001.CrossRefGoogle Scholar
  46. 46.
    R. Badugu, J. R. Lakowicz and C. D. Geddes, Boronic Acid Fluorescent Sensors for Monosaccharide Signaling Based on the 6-Methoxyquinolinium Heterocyclic Nucleus: Progress toward Noninvasive and Continuous Glucose Monitoring, Bioorganic and Medicinal Chemistry, 13, 113–119, 2004.CrossRefGoogle Scholar
  47. 47.
    J. Yoon and A. W. Czarnik, Fluorescent Chemosensors of Carbohydrates – A Means of Chemically Communicating the Binding of Polyols in Water Based on Chelation-Enhanced Quenching, Journal Of the American Chemical Society, 114, 5874–5875, 1992.CrossRefGoogle Scholar
  48. 48.
    T. D. James, K. Sandanayake and S. Shinkai, A Glucose-Selective Molecular Fluorescence Sensor, Angewandte Chemie-International Edition In English, 33, 2207–2209, 1994.CrossRefGoogle Scholar
  49. 49.
    T. D. James, K. R. A. S. Sandanayake and S. Shinkai, Chiral Discrimination of Monosaccharides Using a Fluorescent Molecular Sensor, Nature, 374, 345–347, 1995.CrossRefGoogle Scholar
  50. 50.
    L. Zhu, S. H. Shabbir, M. Gray, V. M. Lynch, S. Sorey and E. V. Anslyn, A Structural Investigation of the N-B Interaction in an o-(N,N-Dialkylaminomethyl)Arylboronate System, Journal of the American Chemical Society, 128, 1222–1232, 2006.CrossRefPubMedGoogle Scholar
  51. 51.
    L. I. Bosch, T. M. Fyles and T. D. James, Binary and Ternary Phenylboronic Acid Complexes with Saccharides and Lewis Bases, Tetrahedron, 60, 11175–11190, 2004.CrossRefGoogle Scholar
  52. 52.
    G. Wulff, Selective Binding to Polymers via Covalent Bonds – the Construction of Chiral Cavities as Specific Receptor-Sites, Pure and Applied Chemistry, 54, 2093–2102, 1982.CrossRefGoogle Scholar
  53. 53.
    T. D. James, K. R. A. S. Sandanayake and S. Shinkai, Novel Photoinduced Electron-Transfer Sensor for Saccharides Based on the Interaction of Boronic Acid and Amine, Journal of the Chemical Society, Chemical Communications, 477–478, 1994.Google Scholar
  54. 54.
    T. D. James, K. R. A. S. Sandanayake, R. Iguchi and S. Shinkai, Novel Saccharide-Photoinduced Electron-Transfer Sensors Based on the Interaction of Boronic Acid and Amine, Journal of the American Chemical Society, 117, 8982–8987, 1995.CrossRefGoogle Scholar
  55. 55.
    J. P. Lorand and J. O. Edwards, Polyol Complexes and Structure of the Benzeneboronate Ion, Journal of Organic Chemistry, 24, 769–774, 1959.CrossRefGoogle Scholar
  56. 56.
    S. Arimori, M. L. Bell, C. S. Oh, K. A. Frimat and T. D. James, Modular Fluorescence Sensors for Saccharides, Chemical Communications (Cambridge, United Kingdom), 1836–1837, 2001.Google Scholar
  57. 57.
    S. Arimori, M. L. Bell, C. S. Oh, K. A. Frimat and T. D. James, Modular Fluorescence Sensors for Saccharides, Journal of the Chemical Society, Perkin Transactions 1, 803–808, 2002.CrossRefGoogle Scholar
  58. 58.
    D. D. Perrin and B. Dempsey, Buffers for Ph and Metal Ion Control, Chapman & Hall: London, 1974.Google Scholar
  59. 59.
    M. P. Nicholls and P. K. C. Paul, Structures of Carbohydrate-Boronic Acid Complexes Determined by Nmr and Molecular Modeling in Aqueous Alkaline Media, Organic and Biomolecular Chemistry, 2, 1434–1441, 2004.CrossRefPubMedGoogle Scholar
  60. 60.
    C. R. Cooper and T. D. James, Selective Fluorescence Signalling of Saccharides in Their Furanose Form, Chemistry Letters, 883–884, 1998.Google Scholar
  61. 61.
    D. G. Hall, Editor, Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine, Wiley: New York, 2005.Google Scholar
  62. 62.
    D. Stones, S. Manku, X. Lu and D. G. Hall, Modular Solid-Phase Synthetic Approach to Optimize Structural and Electronic Properties of Oligo-Boronic Acid Receptors and Sensors for the Aqueous Recognition of Oligosaccharides, Chemistry – A European Journal, 10, 92–100, 2004.CrossRefGoogle Scholar
  63. 63.
    W. Yang, H. Fan, X. Gao, S. Gao, V. V. R. Karnati, W. Ni, W. B. Hooks, J. Carson, B. Weston and B. Wang, The First Fluorescent Diboronic Acid Sensor Specific for Hepatocellular Carcinoma Cells Expressing Sialyl Lewis X, Chemistry and Biology, 11, 439–448, 2004.CrossRefPubMedGoogle Scholar
  64. 64.
    W. Yang, S. Gao, X. Gao, V. V. R. Karnati, W. Ni, B. Wang, W. B. Hooks, J. Carson and B. Weston, Diboronic Acids as Fluorescent Probes for Cells Expressing Sialyl Lewis X, Bioorganic and Medicinal Chemistry Letters, 12, 2175–2177, 2002.CrossRefPubMedGoogle Scholar
  65. 65.
    V. V. Karnati, X. Gao, S. Gao, W. Yang, W. Ni, S. Sankar and B. Wang, A Glucose-Selective Fluorescence Sensor Based on Boronic Acid-Diol Recognition, Bioorganic and Medicinal Chemistry Letters, 12, 3373–3377, 2002.CrossRefPubMedGoogle Scholar
  66. 66.
    G. Kaur, H. Fang, X. Gao, H. Li and B. Wang, Substituent Effect on Anthracene-Based Bisboronic Acid Glucose Sensors, Tetrahedron, 62, 2583–2589, 2006.CrossRefGoogle Scholar
  67. 67.
    J. N. Camara, J. T. Suri, F. E. Cappuccio, R. A. Wessling and B. Singaram, Boronic Acid Substituted Viologen Based Optical Sugar Sensors: Modulated Quenching with Viologen as a Method for Monosaccharide Detection, Tetrahedron Letters, 43, 1139–1141, 2002.CrossRefGoogle Scholar
  68. 68.
    J. T. Suri, D. B. Cordes, F. E. Cappuccio, R. A. Wessling and B. Singaram, Monosaccharide Detection with 4,7-Phenanthrolinium Salts: Charge-Induced Fluorescence Sensing, Langmuir, 19, 5145–5152, 2003.CrossRefGoogle Scholar
  69. 69.
    J. T. Suri, D. B. Cordes, F. E. Cappuccio, R. A. Wessling and B. Singaram, Continuous Glucose Sensing with a Fluorescent Thin-Film Hydrogel, Angewandte Chemie-International Edition, 42, 5857–5859, 2003.CrossRefGoogle Scholar
  70. 70.
    F. E. Cappuccio, J. T. Suri, D. B. Cordes, R. A. Wessling and B. Singaram, Evaluation of Pyranine Derivatives in Boronic Acid Based Saccharide Sensing: Significance of Charge Interaction Between Dye and Quencher in Solution and Hydrogel, Journal of Fluorescence, 14, 521–533, 2004.CrossRefPubMedGoogle Scholar
  71. 71.
    D. B. Cordes, S. Gamsey, Z. Sharrett, A. Miller, P. Thoniyot, R. A. Wessling and B. Singaram, The Interaction of Boronic Acid-Substituted Viologens with Pyranine: The Effects of Quencher Charge on Fluorescence Quenching and Glucose Response, Langmuir, 21, 6540–6547, 2005.CrossRefPubMedGoogle Scholar
  72. 72.
    D. B. Cordes, A. Miller, S. Gamsey, Z. Sharrett, P. Thoniyot, R. Wessling and B. Singaram, Optical Glucose Detection across the Visible Spectrum Using Anionic Fluorescent Dyes and a Viologen Quencher in a Two-Component Saccharide Sensing System, Organic and Biomolecular Chemistry, 3, 1708–1713, 2005.CrossRefPubMedGoogle Scholar
  73. 73.
    D. B. Cordes, S. Gamsey and B. Singaram, Fluorescent Quantum Dots with Boronic Acid Substituted Viologens to Sense Glucose in Aqueous Solution, Angewandte Chemie-International Edition, 45, 3829–3832, 2006.CrossRefGoogle Scholar
  74. 74.
    S. Gamsey, N. A. Baxter, Z. Sharrett, D. B. Cordes, M. M. Olmstead, R. A. Wessling and B. Singaram, The Effect of Boronic Acid-Positioning in an Optical Glucose-Sensing Ensemble, Tetrahedron, 62, 6321–6331, 2006.CrossRefGoogle Scholar
  75. 75.
    S. Gamsey, J. T. Suri, R. A. Wessling and B. Singaram, Continuous Glucose Detection Using Boronic Acid-Substituted Viologens in Fluorescent Hydrogels: Linker Effects and Extension to Fiber Optics, Langmuir, 22, 9067–9074, 2006.CrossRefPubMedGoogle Scholar
  76. 76.
    P. Thoniyot, F. E. Cappuccio, S. Gamsey, D. B. Cordes, R. A. Wessling and B. Singaram, Continuous Glucose Sensing with Fluorescent Thin-Film Hydrogels. 2. Fiber Optic Sensor Fabrication and in Vitro Testing, Diabetes Technology and Therapeutics, 8, 279–287, 2006.CrossRefPubMedGoogle Scholar
  77. 77.
    D. B. Cordes, A. Miller, S. Gamsey and B. Singaram, Simultaneous Use of Multiple Fluorescent Reporter Dyes for Glucose Sensing in Aqueous Solution, Analytical and Bioanalytical Chemistry, 387, 2767–2773, 2007.CrossRefPubMedGoogle Scholar
  78. 78.
    S. Gamsey, A. Miller, M. M. Olmstead, C. M. Beavers, L. C. Hirayama, S. Pradhan, R. A. Wessling and B. Singaram, Boronic Acid-Based Bipyridinium Salts as Tunable Receptors for Monosaccharides and a-Hydroxycarboxylates, Journal of the American Chemical Society, 129, 1278–1286, 2007.CrossRefPubMedGoogle Scholar
  79. 79.
    Z. Sharrett, S. Gamsey, J. Fat, D. Cunningham-Bryant, R. A. Wessling and B. Singaram, The Effect of Boronic Acid Acidity on Performance of Viologen-Based Boronic Acids in a Two-Component Optical Glucose-Sensing System, Tetrahedron Letters, 48, 5125–5129, 2007.CrossRefGoogle Scholar
  80. 80.
    Z. Sharrett, S. Gamsey, P. Levine, D. Cunningham-Bryant, B. Vilozny, A. Schiller, R. A. Wessling and B. Singaram, Boronic Acid-Appended Bis-Viologens as a New Family of Viologen Quenchers for Glucose Sensing, Tetrahedron Letters, 49, 300–304, 2008.CrossRefGoogle Scholar
  81. 81.
    D. K. Scrafton, J. E. Taylor, M. F. Mahon, J. S. Fossey and T. D. James, “Click-Fluors": Modular Fluorescent Saccharide Sensors Based on a 1,2,3-Triazole Ring, Journal of Organic Chemistry, 73, 2871–2874, 2008.CrossRefPubMedGoogle Scholar
  82. 82.
    L. Zhu and E. V. Anslyn, Signal Amplification by Allosteric Catalysis, Angewandte Chemie-International Edition, 45, 1190–1196, 2006.CrossRefGoogle Scholar
  83. 83.
    M. G. Finn, H. C. Kolb, V. V. Fokin and K. B. Sharpless, Click Chemistry – Definition and Aims, Progress in Chemistry, 20, 1–4, 2008.Google Scholar
  84. 84.
    H. C. Kolb, M. G. Finn and K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angewandte Chemie-International Edition, 40, 2004–2021, 2001.CrossRefGoogle Scholar
  85. 85.
    D. Luvino, C. Amalric, M. Smietana and J.-J. Vasseur, Sequential Seyferth-Gilbert/Cuaac Reactions: Application to the One-Pot Synthesis of Triazoles from Aldehydes, Synlett, 3037–3041, 2007.Google Scholar
  86. 86.
    S.-L. Zheng, S. Reid, N. Lin and B. Wang, Microwave-Assisted Synthesis of Ethynylarylboronates for the Construction of Boronic Acid-Based Fluorescent Sensors for Carbohydrates, Tetrahedron Letters, 47, 2331–2335, 2006.CrossRefGoogle Scholar
  87. 87.
    N. Lin, J. Yan, Z. Huang, C. Altier, M. Li, N. Carrasco, M. Suyemoto, L. Johnston, S. Wang, Q. Wang, H. Fang, J. Caton-Williams and B. Wang, Design and Synthesis of Boronic-Acid-Labeled Thymidine Triphosphate for Incorporation into DNA, Nucleic Acids Research, 35, 1222–1229, 2007.CrossRefPubMedGoogle Scholar
  88. 88.
    G. A. Molander and J. Ham, Synthesis of Functionalized Organotrifluoroborates via the 1,3-Dipolar Cycloaddition of Azides, Organic Letters, 8, 2767–2770, 2006.CrossRefPubMedGoogle Scholar
  89. 89.
    A. K. L. Yuen and C. A. Hutton, Deprotection of Pinacolyl Boronate Esters via Hydrolysis of Intermediate Potassium Trifluoroborates, Tetrahedron Letters, 46, 7899–7903, 2005.CrossRefGoogle Scholar
  90. 90.
    F. D’Hooge, D. Rogalle, M. J. Thatcher, S. P. Perera, J. M. H. van den Elsen, A. T. A. Jenkins, T. D. James and J. S. Fossey, Polymerisation Resistant Synthesis of Methacrylamido Phenylboronic Acids, Polymer, 49, 3362–3365, 2008.Google Scholar
  91. 91.
    S. Arimori, L. I. Bosch, C. J. Ward and T. D. James, Fluorescent Internal Charge Transfer (ICT) Saccharide Sensor, Tetrahedron Letters, 42, 4553–4555, 2001.CrossRefGoogle Scholar
  92. 92.
    S. Arimori, L. I. Bosch, C. J. Ward and T. D. James, A d-glucose Selective Fluorescent Internal Charge Transfer (ICT) Sensor, Tetrahedron Letters, 43, 911–913, 2002.CrossRefGoogle Scholar
  93. 93.
    L. I. Bosch, M. F. Mahon and T. D. James, The B-N Bond Controls the Balance between Locally Excited (LE) and Twisted Internal Charge Transfer (TICT) States Observed for Aniline Based Fluorescent Saccharide Sensors, Tetrahedron Letters, 45, 2859–2862, 2004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of BathBathUK

Personalised recommendations