Hydrocarbon Fluid Inclusion Fluorescence: A Review

  • Nigel J.F. Blamey
  • Alan G. Ryder
Part of the Reviews in Fluorescence book series (RFLU, volume 2007)


Geological fluid inclusions are small voids that can contain a variety of liquids which are often found in natural minerals and rocks. Typically they are less than 10 micrometres in size that host fossil fluids which existed when the minerals grew or healed after fracture. Of particular interest to the petroleum industry are inclusions that contain hydrocarbon fluids, which originated from petroleum that once migrated through the rocks before becoming trapped. These hydrocarbon-bearing fluid inclusions (HCFI) are useful for learning about the processes, fluid compositions, temperatures and pressure conditions in geologic systems such as the migration of hydrocarbon fluids in petroleum basins. The accurate characterisation of the petroleum fluid entrapped in inclusions presents the analyst with considerable challenges. HCFI samples are very valuable (usually obtained from core drilling) and thus a non-contact, non-destructive, analytical method is required. The small size of HCFI necessitates the use of microscopy based techniques while spectroscopic methods are needed to characterise the chemical composition. Fluorescence based methods offer the best combination of high sensitivity, diagnostic potential, and relatively uncomplicated instrumentation. It is the fluorescence of HCFI and the spectroscopic methods employed for their analysis which is the focus of this review. Specific sections focus on the description of HCFI, petroleum fluorescence, and microscopic techniques. The review and discussion focuses primarily on advances and studies reported in the literature from 1980’s onwards, and outlines some of the issues that need to be addressed to make fluorescence methods more reproducible and quantitative for HCFI analysis.


Fluid inclusion Hydrocarbon Petroleum Fluorescence Microscopy Spectroscopy 


  1. 1.
    E. Roedder, Fluid inclusions. Mineralogical society of America. Rev. Mineral., 12, 1–644, (1984).Google Scholar
  2. 2.
    I.A. Munz, Petroleum inclusions in sedimentary basins: systematics, analytical methods and applications. Lithos, 55(1–4), 195–212, (2001).CrossRefGoogle Scholar
  3. 3.
    S.C. George, H. Volk, and M. Ahmed, Geochemical analysis techniques and geological applications of oil-bearing fluid inclusions, with some Australian case studies. J. Petrol. Sci. Eng., 57(1–2), 119–138, (2007).CrossRefGoogle Scholar
  4. 4.
    I.A. Munz, K. Iden, H. Johansen, and K. Vagle, The fluid regime during fracturing of the Embla field, Central Trough, North Sea. Mar. Pet. Geol., 15(8), 751–768, (1998).CrossRefGoogle Scholar
  5. 5.
    O. Walderhaug, Temperatures of quartz cementation in Jurassic sandstones from the Norwegian continental shelf—evidence from fluid inclusions. J. Sediment. Petrol., 64(2), 311–323, (1994).Google Scholar
  6. 6.
    O. Walderhaug, and P.A. Bjorkum, The effect of stylolite spacing on quartz cementation in the lower Jurassic Stø Formation, southern Barents Sea. J. Sediment. Res., 73(2), 146–156, (2003).CrossRefGoogle Scholar
  7. 7.
    N.H. Oxtoby, A.W. Mitchell, and J.G. Gluyas, The filling and emptying of the Ula Oilfield: fluid inclusion constraints. In: The Geochemistry of Reservoirs: Special Publication, (Eds. Cubitt, J. M., and England, W. A.), Geological Society, London, 86, 141–157, (1995).Google Scholar
  8. 8.
    R.C. Burruss, K.R. Cercone, and P.M. Harris, Fluid inclusion petrography and tectonic-burial history of the Al Ali No. 2 well; evidence for the timing of diagenesis and oil migration, northern Oman Foredeep. Geology, 11(10), 567–570, (1983).CrossRefGoogle Scholar
  9. 9.
    J. Jensenius and R.C. Burruss, Hydrocarbon-water interactions during brine migration: Evidence from hydrocarbon inclusions in calcite cements from Danish North Sea oil fields. Geochim. Cosmochim. Acta, 54(3), 705–713, (1990).CrossRefGoogle Scholar
  10. 10.
    E. Gonzalez-Partida, A. Carrillo-Chavez, J.O.W. Grimmer, J. Pironon, J. Mutterer, and G. Levresse, Fluorite deposits at Encantada-Buenavista, Mexico: products of Mississippi Valley type processes. Ore Geol. Rev., 23(3–4), 107–124, (2003).CrossRefGoogle Scholar
  11. 11.
    M.A. Kendrick, R. Burgess, R.A.D. Pattrick, and G. Turner, Hydrothermal fluid origins in a fluorite-rich Mississippi Valley-Type district: Combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the South Pennine Ore Field, United Kingdom. Econ. Geol., 97(3), 435–451, (2002).CrossRefGoogle Scholar
  12. 12.
    A. Dutkiewicz, B. Rasmussen, and R. Buick, Oil preserved in fluid inclusions in Archaean sandstones. Nature, 395, 885–888, (1998).CrossRefGoogle Scholar
  13. 13.
    G.L. England, B. Rasmussen, B. Krapez, and D.I. Groves, Archaean oil migration in the Witwatersrand Basin of South Africa. J. Geol. Soc., 159(2), 189–201, (2002).CrossRefGoogle Scholar
  14. 14.
    B. Rasmussen, Evidence for pervasive petroleum generation and migration in 3.2 and 2.63 Ga shales. Geology, 33(6), 497–500, (2005).CrossRefGoogle Scholar
  15. 15.
    V. Lüders and K. Rickers, Fluid inclusion evidence for impact-related hydrothermal fluid and hydrocarbon migration in Cretaceous sediments of the ICDP-Chicxulub drill core Yax-1. Meteorit. Planet. Sci., 39(7), 1187–1197, (2004).CrossRefGoogle Scholar
  16. 16.
    J. Parnell, G.R. Watt, D. Middleton, J. Kelly, and M. Baron, Deformation band control on hydrocarbon migration. J. Sediment. Res., 74(4), 552–560, (2004).CrossRefGoogle Scholar
  17. 17.
    J.M. Peter, B.R.T. Simoneit, O.E. Kawka, and S.D. Scott, Liquid hydrocarbon-bearing inclusions in modern hydrothermal chimneys and mounds from the southern trough of Guaymas Basin, Gulf of California. Appl. Geochem., 5(1–2), 51–63, (1990).CrossRefGoogle Scholar
  18. 18.
    J.M. Hunt, Petroleum Geochemistry and Geology. W.H. Freeman and Company, San Francisco, (1979).Google Scholar
  19. 19.
    T.J. Shepherd, A.H. Rankin, and D.H.M. Alderton, A Practical Guide to Fluid Inclusion Studies, Blackie and Son, Glasgow, (1985).Google Scholar
  20. 20.
    S.C. George, T.E. Ruble, A. Dutkiewicz, and P.J. Eadington, Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours. Appl. Geochem., 16(4), 451–473, (2001).CrossRefGoogle Scholar
  21. 21.
    J. Parnell, D. Middleton, C. Honghan, and D. Hall, The use of integrated fluid inclusion studies in constraining oil charge history and reservoir compartmentation: examples from the Jeanne d'Arc Basin, offshore Newfoundland. Mar. Pet. Geol., 18(5), 535–549, (2001).CrossRefGoogle Scholar
  22. 22.
    N. Guilhaumou, N. Szydlowskii, and B. Pradier, Characterization of hydrocarbon fluid inclusions by infra-red and fluorescence microspectroscopy. Mineral. Mag., 54(375), 311–324, (1990).CrossRefGoogle Scholar
  23. 23.
    J. Pironon and B. Pradier, Ultraviolet-fluorescence alteration of hydrocarbon fluid inclusions. Org. Geochem., 18(4), 501–509, (1992).CrossRefGoogle Scholar
  24. 24.
    A.G. Ryder, Analysis of crude petroleum oils using fluorescence spectroscopy. In: C.D. Geddes and J.R. Lakowicz, Editors, Reviews in Fluorescence 2005, Springer New York, 169–198, (2005).CrossRefGoogle Scholar
  25. 25.
    T.D. Downare and O.C. Mullins, Visible and near-infrared fluorescence of crude oils. Appl. Spectrosc., 49(6), 754–764, (1995).CrossRefGoogle Scholar
  26. 26.
    C.Y. Ralston, X. Wu, and O.C. Mullins, Quantum yields of crude oils. Appl. Spectrosc., 50(12), 1563–1568, (1996).CrossRefGoogle Scholar
  27. 27.
    O.C. Mullins and E.Y. Sheu, Structure and Dynamics of Asphaltenes, Plenum Press, New York, 21–77, (1998).Google Scholar
  28. 28.
    A.G. Ryder, T.J. Glynn, M. Feely, and A.J.G. Barwise, Characterization of crude oils using fluorescence lifetime data. Spectrochim. Acta (A), 58(5), 1025–1038, (2002).Google Scholar
  29. 29.
    X. Wang and O.C. Mullins, Fluorescence lifetime studies of crude oils. Appl. Spectrosc., 48(8), 977–984, (1994).CrossRefGoogle Scholar
  30. 30.
    H.W. Hagemann and A. Hollerbach, The fluorescence behaviour of crude oils with respect to their thermal maturation and degradation. Org. Geochem., 10(1–3), 473–480, (1986).CrossRefGoogle Scholar
  31. 31.
    L.D. Stasiuk and L.R. Snowdon, Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusions: crude oil chemistry, density and application to petroleum migration. Appl. Geochem., 12(3), 229–241, (1997).CrossRefGoogle Scholar
  32. 32.
    L.D. Stasiuk, T. Gentzis, and P. Rahimi, Application of spectral fluorescence microscopy for the characterization of Athabasca bitumen vacuum bottoms. Fuel, 79(7), 769–775, (2000).CrossRefGoogle Scholar
  33. 33.
    B. Pradier, C. Largeau, S. Derenne, L. Martinez, P. Bertrand, and Y. Pouet, Chemical basis of fluorescence alteration of crude oils and kerogens–I. Microfluorimetry of an oil and its isolated fractions; relationships with chemical structure. Org. Geochem., 16(1–3), 451–460, (1990).CrossRefGoogle Scholar
  34. 34.
    K.Y. Liu and P. Eadington, Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history. Org. Geochem., 36(7), 1023–1036, (2005).CrossRefGoogle Scholar
  35. 35.
    S. Gong, S.C. George, H. Volk, K. Liu, and P. Peng. Petroleum charge history in the Lunnan low uplift, Tarim basin, China - Evidence from oil-bearing fluid inclusions. Org. Geochem., 38(8), 1341–1355, (2007).CrossRefGoogle Scholar
  36. 36.
    R.C. Murray, Hydrocarbon fluid inclusions in quartz. Amer. Assoc. Pet. Geol. Bull. 41(5), 950–956, (1957).Google Scholar
  37. 37.
    R.C. Burruss, D.J. Toth, and R.H. Goldstein, Fluorescence microscopy of hydrocarbon fluid inclusions: relative timing of hydrocarbon migration events in the Arkoma Basin, NW Arkansas. EOS 61, 400, (1980).Google Scholar
  38. 38.
    R.C. Burruss, Hydrocarbon fluid inclusions in studies of sedimentary diagenesis. Mineral. Assoc. Canada, Short Course Handbook 6, 138–156, (1981).Google Scholar
  39. 39.
    R.C. Burruss, Practical aspects of fluorescence microscopy of petroleum fluid inclusions. Luminescence microscopy and spectroscopy: Qualitative and quantitative applications. In: Barker, C.E., and Kopp, O.C. (Eds.), SEPM Short Course 25, 1–7, (1991).Google Scholar
  40. 40.
    A.G. Ryder, M.A. Przyjalgowski, M. Feely, B. Szczupak, and T.J. Glynn, Time-resolved fluorescence microspectroscopy for characterizing crude oils in bulk and hydrocarbon bearing fluid inclusions. Appl. Spectrosc., 58(9), 1106–1115, (2004).PubMedCrossRefGoogle Scholar
  41. 41.
    A. Blanchet, M. Pagel, F. Walgenwitz, and A. Lopez, Microspectrofluormetric and microthermometric evidence for variability in hydrocarbon fluid inclusions in quartz overgrowths: implications for inclusion trapping in the Alwyn North field, North Sea. Org. Geochem., 34(11), 1477–1490, (2003).CrossRefGoogle Scholar
  42. 42.
    W.-L. Huang and G.A. Otten, Cracking kinetics of crude oil and alkanes determined by diamond anvil cell-fluorescence spectroscopy pyrolysis: technique development and preliminary results. Org. Geochem., 32(6), 817–830, (2001).CrossRefGoogle Scholar
  43. 43.
    R.-F. Weng, W.-L. Huang, C.-L. Kuo, and S. Inan, Characterization of oil generation and expulsion from coals and source rocks using diamond anvil cell pyrolysis. Org. Geochem. 34(6), 771–787, (2003).CrossRefGoogle Scholar
  44. 44.
    Y.-J. Chang and W.-L. Huang, Simulation of the fluorescence evolution of "live" oils from kerogens in a diamond anvil cell: application to inclusion oils in terms of maturity and source. Geochim. Cosmochim. Acta, 72(15), 3771–3787, (2008).CrossRefGoogle Scholar
  45. 45.
    J. Kihle and H. Johansen, Low-temperature isothermal trapping of hydrocarbon fluid inclusions in synthetic-crystals of KH2PO4. Geochim. Cosmochim. Acta, 58(3), 1193–1202, (1994).CrossRefGoogle Scholar
  46. 46.
    S. Teinturier, M. Elie, and J. Pironon, Oil-cracking processes evidence from synthetic petroleum inclusions. J. Geochem. Explor., 78-79, 421–425, (2003).CrossRefGoogle Scholar
  47. 47.
    A.M. Van den Kerkhof and U.F. Hein, Fluid inclusion petrography. Lithos, 55(1–4), 27–47, (2001).CrossRefGoogle Scholar
  48. 48.
    B. McNeil and E. Morris, The preparation of double-polished fluid inclusion wafers from friable, water-sensitive material. Mineral. Mag., 56(382), 120–122, (1992).CrossRefGoogle Scholar
  49. 49.
    N.H. Oxtoby, Comments on: assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours. Appl. Geochem., 17(10), 1371–1374, (2002).CrossRefGoogle Scholar
  50. 50.
    S.C. George, T.E. Ruble, A. Dutkiewicz, and P.J. Eadington, Reply to comment by Oxtoby on “Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours”. Appl. Geochem., 17(10), 1375–1378, (2002).CrossRefGoogle Scholar
  51. 51.
    P.K. Mukhopadhyay and J. Rullkotter, Quantitative microscopic spectral fluorescence measurement of crude oil, bitumen, kerogen and coal. AAPG Bull., 70(5), 624, (1986).Google Scholar
  52. 52.
    R.K. McLimans, The application of fluid inclusions to migration of oil and diagenesis of in petroleum reservoirs. Appl. Geochem., 2(5–6), 585–603, (1987).CrossRefGoogle Scholar
  53. 53.
    R.J. Bodnar, Petroleum migration in the Miocene Monterey Formation, California, USA: constraints from fluid inclusion studies. Mineral. Mag., 54(375), 295–304, (1990).CrossRefGoogle Scholar
  54. 54.
    J.R. Levine, I.M. Samson, and R. Hesse, Occurrence of fracture-hosted impsonite and petroleum fluid inclusions, Quebec City region, Canada. AAPG Bull., 75(1), 139–155, (1991).Google Scholar
  55. 55.
    M.R. Moser, A.H. Rankin, and H.J. Milledge, Hydrocarbon-bearing fluid inclusions in fluorite associated with the Windy Knoll Bitumen Deposit, UK. Geochim. Cosmochim. Acta, 56(1), 155–168, (1992).CrossRefGoogle Scholar
  56. 56.
    K.D. Newell, R.C. Burruss, and J.G. Palacas, Thermal maturation and organic richness of potential petroleum source rocks in Proterozoic Rice Formation, North American Mid-Continent Rift System, northeastern Kansas. AAPG Bull., 77(11), 1922–1941, (1993).Google Scholar
  57. 57.
    J. Pironon, M. Pagel, M.H. Leveque, and M. Moge, Organic inclusions in salt .1. Solid and liquid organic-matter, carbon-dioxide and nitrogen species in fluid inclusions from the Bresse Basin (France). Org. Geochem., 23(5), 391–402, (1995).CrossRefGoogle Scholar
  58. 58.
    J. Pironon, M. Pagel, F. Walgenwitz, and O. Barres, Organic inclusions in salt .2. Oil, gas and ammonium in inclusions from the Gabon Margin. Org. Geochem., 23(8), 739–750, (1995).CrossRefGoogle Scholar
  59. 59.
    J. Parnell, P.F. Carey, and B. Monson, Fluid inclusion constraints on temperatures of petroleum migration from authigenic quartz in bitumen veins. Chem. Geol., 129(3–4), 217–226, (1996).CrossRefGoogle Scholar
  60. 60.
    X.M. Xiao, D.H. Liu, and J.M. Fu, Multiple phases of hydrocarbon generation and migration in the Tazhong petroleum system of the Tarim Basin, People's Republic of China. Org. Geochem., 25(3–4), 191–197, (1996).CrossRefGoogle Scholar
  61. 61.
    S.C. George, F.W. Krieger, P.J. Eadington, R.A. Quezada, P.F. Greenwood, L.I. Eisenberg, P.J. Hamilton, and M.A. Wilson, Geochemical comparison of oil-bearing fluid inclusions and produced oil from the Toro Sandstone, Papua New Guinea. Org. Geochem., 26(3–4), 155–173, (1997).CrossRefGoogle Scholar
  62. 62.
    J. Parnell, P. Carey, and W. Duncan, History of hydrocarbon charge on the Atlantic margin: evidence from fluid-inclusion studies, West of Shetland. Geology, 26(9), 807–810, (1998).CrossRefGoogle Scholar
  63. 63.
    S.C. George, M. Lisk, R.E. Summons, and R.A. Quezada, Constraining the oil charge history of the South Pepper oilfield from the analysis of oil-bearing fluid inclusions. Org. Geochem., 29(1–3), 631–648, (1998).CrossRefGoogle Scholar
  64. 64.
    C. O’Reilly, P.M. Shannon, and M. Feely, A fluid inclusion study of cement and vein minerals from the Celtic Sea Basins, offshore Ireland. Mar. Pet. Geol., 15(6), 519–533, (1998).CrossRefGoogle Scholar
  65. 65.
    H.-Y. Tseng, R.C. Burruss, T.C. Onstott, and G. Omar, Paleofluid-flow circulation within a Triassic rift basin: Evidence from oil inclusions and thermal histories. Geo. Soc. Am. Bull., 111(2), 275–290, (1999).CrossRefGoogle Scholar
  66. 66.
    D. Smale, J.L. Mauk, J. Palmer, R. Soong, and P. Blattner, Variations in sandstone diagenesis with depth, time, and space, onshore Taranaki wells, New Zealand. New Zeal. J. Geol. Geop., 42, 137–154, (1999).CrossRefGoogle Scholar
  67. 67.
    G. Rantitsch, J. Jochum, R.F. Sachsenhofer, B. Russegger, E. Schroll, and B. Horsfield, Hydrocarbon-bearing fluid inclusions in the Drau Range (Eastern Alps, Austria): implications for the genesis of Bleiberg-type Pb-Zn deposits. Mineral. Petrol., 65(3–4), 141–159, (1999).CrossRefGoogle Scholar
  68. 68.
    J. Parnell, P.F. Carey, P. Green, and W. Duncan, Hydrocarbon migration history, west of Shetland; integrated fluid inclusion and fission track studies. Petroleum Geology of Northwest Europe: Proc. Geol. Soc. London Conf., 5, 613–625, (1999).Google Scholar
  69. 69.
    N.N. Cesaretti, J. Parnell, and E.A. Dominguez, Pore fluid evolution within a hydrocarbon reservoir: Yacoraite formation (upper Cretaceous), northwest basin, Argentina. J. Pet. Geol., 23(4), 375–398, (2000).CrossRefGoogle Scholar
  70. 70.
    J. Lonnee and I.S. Al-Aasm, Dolomitization and fluid evolution in the Middle Devonian Sulphur Point Formation, Rainbow South Field, Alberta: petrographic and geochemical evidence. Bull. Can. Pet. Geol., 48(3), 262–283, (2000).CrossRefGoogle Scholar
  71. 71.
    A.M.E. Marchand, R.S. Haszeldine, C.I. Macaulay, R. Swennen, and A.E. Fallick, Quartz cementation inhibited by crestal oil charge: Miller deep water sandstone, UK North Sea. Clay Miner., 35(1), 201–210, (2000).CrossRefGoogle Scholar
  72. 72.
    R. Thiéry, J. Pironon, F. Walgenwitz, and F. Montel, PIT (Petroleum Inclusion Thermodynamic): a new modeling tool for the characterization of hydrocarbon fluid inclusions from volumetric and microthermometric measurements. J. Geochem. Explor., 69, 701–704, (2000).CrossRefGoogle Scholar
  73. 73.
    J. Parnell, C. Honghan, D. Middleton, T. Haggan, and P. Carey, Significance of fibrous mineral veins in hydrocarbon migration: fluid inclusion studies. J. Geochem. Explor., 69, 623–627, (2000).CrossRefGoogle Scholar
  74. 74.
    D. Middleton, J. Parnell, P. Carey, and G. Xu, Reconstruction of fluid migration history in Northwest Ireland using fluid inclusion studies. J. Geochem. Explor., 69, 673–677, (2000).CrossRefGoogle Scholar
  75. 75.
    D. Lavoie, G. Chi, and M.G. Fowler, The Lower Devonian Upper Gaspé Limestones in eastern Gaspé: carbonate diagenesis and reservoir potential. Bull. Can. Pet. Geol., 49(2), 346–365, (2001).CrossRefGoogle Scholar
  76. 76.
    A. Ceriani, A. Di Giulio, R.H. Goldstein, and C. Rossi, Diagenesis associated with cooling during burial: an example from Lower Cretaceous Reservoir Sandstones (Sirt Basin, Libya). AAPG Bull., 86(9), 1573–1591, (2002).Google Scholar
  77. 77.
    C. Rossi, R.H. Goldstein, A. Ceriani, and R. Marfil, Fluid inclusions record thermal and fluid evolution in reservoir sandstones, Khatatba Formation, Western Desert, Egypt: A case for fluid injection. AAPG Bull., 86(10), 1773–1799, (2002).Google Scholar
  78. 78.
    M. Lisk, G.W. O'Brien, and P.J. Eadington, Quantitative evaluation of the Oil-Leg potential in the Oliver Gas Field, Timor Sea, Australia. AAPG Bull., 86(9), 1531–1542, (2002).Google Scholar
  79. 79.
    J.L. Mauk and R.C. Burruss, Water washing of Proterozoic oil in the Midcontinent rift system. AAPG Bull., 86(6), 1113–1127, (2002).Google Scholar
  80. 80.
    H. Volk, B. Horsfield, U. Mann, and V. Suchy, Variability of petroleum inclusions in vein, fossil and vug cements – a geochemical study in the Barrandian Basin (Lower Palaeozoic, Czech Republic). Org. Geochem., 33(12), 1319–1341, (2002).CrossRefGoogle Scholar
  81. 81.
    H.-Y. Tseng and R.J. Pottorf, Fluid inclusion constraints on petroleum PVT and compositional history of the Greater Alwyn-South Brent petroleum system, northern North Sea. Mar. Pet. Geol., 19(7), 797–809, (2002).CrossRefGoogle Scholar
  82. 82.
    A. Dutkiewicz, J. Ridley, and R. Buick, Oil-bearing CO2-CH4-H2O fluid inclusions; oil survival since the Palaeoproterozoic after high temperature entrapment. Chem. Geol., 194 (1–3), 51–79, (2003).CrossRefGoogle Scholar
  83. 83.
    A. Dutkiewicz and J. Ridley, Hydrocarbon pseudo-inclusions in barite: how to recognize and avoid artifacts. J. Sediment. Res., 73(2), 171–176, (2003).CrossRefGoogle Scholar
  84. 84.
    A. Dutkiewicz, H. Volk, J. Ridley, and S.C. George, Biomarkers, brines, and oil in the Mesoproterozoic, Roper Superbasin, Australia. Geology, 31(11), 981–984, (2003).CrossRefGoogle Scholar
  85. 85.
    M. Feely and J. Parnell, Fluid inclusion studies of well samples from the hydrocarbon prospective Porcupine Basin, offshore Ireland. J. Geochem. Explor., 78-79, 55–59, (2003).CrossRefGoogle Scholar
  86. 86.
    J.R. Boles, P. Eichhubl, G. Garven, and J. Chen, Evolution of a hydrocarbon migration pathway along basin-bounding faults: Evidence from fault cement. AAPG Bull., 88(7), 947–970, (2004).CrossRefGoogle Scholar
  87. 87.
    R. Martinez-Ibarra, J. Tritlla, E. Cedillo-Pardo, J.M. Grajales-Nishimura, and G. Murillo-Muneton, Brine and hydrocarbon evolution during the filling of the Cantarell oil field (Gulf of Mexico). J. Geochem. Explor., 78-79, 399–403, (2003).CrossRefGoogle Scholar
  88. 88.
    A. Dutkiewicz, H. Volk, J. Ridley, and S.C. George, Geochemistry of oil in fluid inclusions in a middle Proterozoic igneous intrusion: implications for the source of hydrocarbons in crystalline rocks. Org. Geochem., 35(8), 937–957, (2004).CrossRefGoogle Scholar
  89. 89.
    R. Jonk, J. Parnell, and A. Whitham, Fluid inclusion evidence for a Cretaceous-Palaeogene petroleum system, Kangerlussuaq Basin, East Greenland. Mar. Pet. Geol., 22(3), 319–330, (2005).CrossRefGoogle Scholar
  90. 90.
    H. Volk, S.C. George, A. Dutkiewicz, and J. Ridley, Characterization of fluid inclusion oil in a mid-Proterozoic sandstone and dolerite (Roper Superbasin, Australia). Chem. Geol., 223(1–3), 109–135, (2005).CrossRefGoogle Scholar
  91. 91.
    A. Dutkiewicz, H. Volk, S.C. George, J. Ridley, and R. Buick, Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. Geology, 34(6), 437–440, (2006).CrossRefGoogle Scholar
  92. 92.
    C.L. Hanks, T.M. Parris, and W.K. Wallace, Fracture paragenesis and microthermometry in Lisburne Group detachment folds: implications for the thermal and structural evolution of the northeastern Brooks Range, Alaska. AAPG Bull., 90(1), 1–20, (2006).CrossRefGoogle Scholar
  93. 93.
    M. Brincat, A. Gartrell, M. Lisk, W. Bailey, L. Johnson, and D. Dewhurst, An integrated evaluation of hydrocarbon charge and retention at the Griffin, Chinook, and Scindian oil and gas fields, Barrow Subbasin, North West Shelf, Australia. AAPG Bull., 90(9), 1359–1380, (2006).CrossRefGoogle Scholar
  94. 94.
    C.M. Rott and H. Qing, Analysis of Mississippian anhydrite by fluorescence microscopy – implications for the origin of oil-bearing anhydrite. In Summary of Investigations 2006, Volume 1, Saskatchewan Geological Survey, Sask, Report 2006–4.1, 1–11, (2006).Google Scholar
  95. 95.
    R. Wierzbicki, J.J. Dravis, I. Al-Aasm, and N. Harland, Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia, Canada. AAPG Bull., 90(11), 1843–1861, (2006).CrossRefGoogle Scholar
  96. 96.
    M. Wilkinson, R.S. Haszeldine, and A.E. Fallick, Hydrocarbon filling and leakage history of a deep geopressured sandstone, Fulmar Formation, United Kingdom North Sea. AAPG Bull., 90(12), 1945–1961, (2006).CrossRefGoogle Scholar
  97. 97.
    M. Baron and J. Parnell, Relationships between stylolites and cementation in sandstone reservoirs: examples from the North Sea, U.K. and East Greenland. Sed. Geol., 194(1–2), 17–35, (2007).CrossRefGoogle Scholar
  98. 98.
    A. Dutkiewicz, S.C. George, D.J. Mossman, J. Ridley, and H. Volk, Oil and its biomarkers associated with the Palaeoproterozoic Oklo, natural fission reactors, Gabon. Chem. Geol., 244(1–2), 130–154, (2007).CrossRefGoogle Scholar
  99. 99.
    K.E. Higgs, H. Zwingmann, A.G. Reyes, and R.H. Funnell, Diagenesis, porosity evolution, and petroleum emplacement in tight gas reservoirs, Taranaki Basin, New Zealand. J. Sediment. Res., 77(11–12), 1003–1025, (2007).CrossRefGoogle Scholar
  100. 100.
    F. Schubert, L.W. Diamond, and T.M. Toth, Fluid inclusion evidence for petroleum migration through a buried metamorphic dome in the Pannonian Basin, Hungary. Chem. Geol., 244(3–4), 357–381, (2007).CrossRefGoogle Scholar
  101. 101.
    M. Baron, J. Parnell, D. Mark, A. Carr, M. Przyjalgowski, and M. Feely, Evolution of hydrocarbon migration style in a fractured reservoir deduced from fluid inclusion data, Clair Field, west of Shetland, UK. Mar. Pet. Geol., 25(2), 153–172, (2008).CrossRefGoogle Scholar
  102. 102.
    J. Bourdet, J. Pironon, G. Levresse, and J. Tritlla, Petroleum type determination through homogenization temperature and vapour volume fraction measurements in fluid inclusions. Geofluids 8(1), 46–59, (2008).CrossRefGoogle Scholar
  103. 103.
    R.K. McLimans, Studies of reservoir diagenesis, burial history, and petroleum migration using luminescence microscopy. In Barker, C.E., Kopp, O. (Eds.), Luminescence Microscopy: Qualitative and Quantitative Applications, (SEPM) Short Course 25, 97–106, Society for Sedimentary Geology, Tulsa, USA, (1991).Google Scholar
  104. 104.
    R.C. Burruss, K.R. Cercone, and P.M. Harris, Timing of hydrocarbon migration: evidence from fluid inclusions in calcite cements, tectonics and burial history. In: N. Schneidermann, and P.M. Harris (eds.), Carbonate Cements, Special Publication – Society of Economic Paleontologists and Mineralogists, 36, 277–289, (1985).Google Scholar
  105. 105.
    N.J.F. Blamey, A.G. Ryder, M. Feely, and P. Owens, Fluorescence lifetime analysis of single hydrocarbon-bearing fluid inclusions – A paragenetic perspective. 23rd IMOG, Torquay, UK, 669–670, (2007).Google Scholar
  106. 106.
    S.C. George, M. Ahmed, K. Liu, and H. Volk, The analysis of oil trapped during secondary migration. Org. Geochem., 35 (11–12), 1489–1511, (2004).Google Scholar
  107. 107.
    J. Conliffe, M. Feely, J. Parnell, N.J.F. Blamey, and A.G. Ryder, Unpublished work.Google Scholar
  108. 108.
    J.B. Pawley (Ed.). Handbook of Biological Confocal Microscopy, 2nd ed. Plenum Press, New York, (1995).Google Scholar
  109. 109.
    G. Macleod, S.R. Larter, A.C. Aplin, K.S. Pedersen, and T.A. Booth. Determination of the effective composition of single petroleum inclusions using Confocal Scanning Laser Microscopy and PVT simulation. In P.E. Brown, S.G. Hagemann (Eds.), Biennial Pan-American Conference on Research on Fluid Inclusions (PACROFI VI) Madison Wisconsin, USA, 81–82, (1996).Google Scholar
  110. 110.
    J. Pironon, M. Canals, M. Dubessy, F. Walgenwitz, and C. Laplace-Builhe, Volumetric reconstruction of individual oil inclusions by confocal scanning laser microscopy. Eur. J. Mineral., 10(6), 1143–1150, (1998).Google Scholar
  111. 111.
    A.C. Aplin, G. Macleod, S.R. Larter, K.S. Pedersen, H. Sørensen, and T. Booth, Combined use of confocal laser scanning microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions. Mar. Pet. Geol., 16(2), 97–110, (1999).CrossRefGoogle Scholar
  112. 112.
    R. Thiéry, J. Pironon, F. Walgenwitz, and F. Montel, Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy: inferences from applied thermodynamics of oils. Mar. Pet. Geol., 19(7), 847 -859, (2002).CrossRefGoogle Scholar
  113. 113.
    J. Kihle, Adaptation of fluorescence excitation-emission micro-spectroscopy for characterization of single hydrocarbon fluid inclusions. Org. Geochem., 23(11–12), 1029–1042, (1995).CrossRefGoogle Scholar
  114. 114.
    J.A. Musgrave, R.G. Carey, D.R. Janecky, and C.D. Tait, Adaption of Synchronously Scanned Luminescence Spectroscopy to organic-rich fluid inclusion microanalysis. Rev. Sci. Instrum., 65(6), 1877–1882, (1994).CrossRefGoogle Scholar
  115. 115.
    A.C. Aplin, S.R. Larter, M.A. Bigge, G. Macleod, R.E. Swarbrick, and D. Grunberger. Confocal microscopy of fluid inclusions reveals fluid-pressure histories of sediments and an unexpected origin of gas condensate. Geology, 28(11), 1047–1050, (2000).CrossRefGoogle Scholar
  116. 116.
    R.E. Swarbrick, M.J. Osborne, D. Grunberger, G.S. Yardley, G. Macleod, A.C. Aplin, S.R. Larter, I. Knight, and H.A. Auld, Integrated study of the Judy Field (Block 30/7a) — an overpressured Central North Sea oil/gas field. Mar. Pet. Geol., 17(9), 993–1010, (2000).CrossRefGoogle Scholar
  117. 117.
    R. Thiéry, J. Pironon, F. Walgenwitz, and F. Montel, Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy: inferences from applied thermodynamics of oils. Mar. Pet. Geol., 19(7), 847–859, (2002).CrossRefGoogle Scholar
  118. 118.
    P. Stoller, Y. Krüger, J. Rička, and M. Frenz, Femtosecond lasers in fluid inclusion analysis: Three-dimensional imaging and determination of inclusion volume in quartz using second harmonic generation microscopy. Earth Planet. Sci. Lett., 253(3–4), 359–368, (2007).CrossRefGoogle Scholar
  119. 119.
    N.J.F. Blamey, A.G. Ryder, M. Feely, P. Dockery, and P. Owens, The application of structured-light illumination to hydrocarbon-bearing fluid inclusions. Geofluids, 8(2), 102–112, (2008).CrossRefGoogle Scholar
  120. 120.
    M.A.A. Neil, R. Juškaitis, and T. Wilson, Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett. 22(24), 1905–1907, (1997).PubMedCrossRefGoogle Scholar
  121. 121.
    A.G. Ryder, Quantitative analysis of crude oils by fluorescence lifetime and steady state measurements using 380-nm excitation. Appl. Spectrosc., 56(1), 107–116, (2002).CrossRefGoogle Scholar
  122. 122.
    E.S. Wachman, W.-H. Niu, and D.L. Farkas, AOTF Microscope for imaging with increased speed and spectral versatility. Biophys. J., 73(3), 1215–1222, (1997).PubMedCrossRefGoogle Scholar
  123. 123.
    A. Feofanov, S. Sharonov, P. Valisa, E. Dasilva, I. Nabiev, and M. Manfait, A new confocal stigmatic spectrometer for micro-Raman and microfluorescence spectral imaging analysis – design and applications. Rev. Sci. Instrum., 66(5), 3146–3158, (1995).CrossRefGoogle Scholar
  124. 124.
    E.A.J. Burke, Raman microspectrometry of fluid inclusions. Lithos, 55, 139–158, (2001).CrossRefGoogle Scholar
  125. 125.
    J. Jochum, G. Friedrich, D. Leythaeuser, R. Littke, and B. Ropertz, Hydrocarbon-bearing fluid inclusions in calcite-filled horizontal fractures from mature Posidonia Shale (Hils Syncline, NW Germany). Ore Geol. Rev., 9(5), 363–370, (1995).CrossRefGoogle Scholar
  126. 126.
    G. Chi, D. Lavoie, and R. Bertrand, Regional-scale variation of characteristics of hydrocarbon fluid inclusions and thermal conditions along the Paleozoic Laurentian continental margin in eastern Quebec, Canada. Bull. Can. Petrol. Geol., 48(3), 193–211, (2000).CrossRefGoogle Scholar
  127. 127.
    D. Kirkwood, M.M. Savard, and G. Chi, Microstructural analysis and geochemical vein characterization of the Salinic event and Acadian Orogeny: evaluation of the hydrocarbon reservoir potential in eastern Gaspé. Bull. Can. Petrol. Geol., 49(2), 262–281, (2001).CrossRefGoogle Scholar
  128. 128.
    D.W. Morrow, M. Zhao, and L.D. Stasiuk, The gas-bearing Devonian Presqu'ile Dolomite of the Cordova embayment region of British Columbia, Canada: Dolomitization and the stratigraphic template. AAPG Bull., 86(9), 1609–1638, (2002).Google Scholar
  129. 129.
    R. Li and J. Parnell, In situ microanalysis of petroleum fluid inclusions by Time of Flight-Secondary Ion Mass Spectrometry as an indicator of evolving oil chemistry: a pilot study in the Bohai Basin, China. J. Geochem. Explor., 78-9, 377–384, (2003).CrossRefGoogle Scholar
  130. 130.
    D.H.M. Alderton, N.H. Oxtoby, H. Brice, N. Grassineau, and R.E. Bevins, The link between fluids and rank variation in the South Wales Coalfield: evidence from fluid inclusions and stable isotopes. Geofluids, 4(3), 221–236, (2004).CrossRefGoogle Scholar
  131. 131.
    I.A. Munz, M. Wangen, J-P. Girard, J-C. Lacharpagne, and H. Johansen, Pressure-temperature-time-composition (P-T-t-X) constraints of multiple petroleum charges in the Hild field, Norwegian North Sea. Mar. Pet. Geol., 21(8), 1043–1060, (2004).CrossRefGoogle Scholar
  132. 132.
    D. Lavoie, G. Chi, P. Brennan-Alpert, A. Desrochers, and R. Bertrand, Hydrothermal dolomitization in the Lower Ordovician Romaine Formation of the Anticosti Basin: significance for hydrocarbon exploration. Bull. Can. Pet. Geol., 53(4), 454–471, (2005).CrossRefGoogle Scholar
  133. 133.
    M. Li, L. Stasiuk, R. Maxwell, F. Monnier, and O. Bazhenova, Geochemical and petrological evidence for Tertiary terrestrial and Cretaceous marine potential petroleum source rocks in the western Kamchatka coastal margin, Russia. Org. Geochem., 37(3), 304–320, (2006).CrossRefGoogle Scholar
  134. 134.
    R. Baranger, L.Martinez, J.-L. Pittion, and J. Pouleau, A new calibration procedure for fluorescence measurements of sedimentary organic matter. Org. Geochem. 17(4), 467–475, (1991).CrossRefGoogle Scholar
  135. 135.
    U. Resch-Genger, K. Hoffmann, and A. Hoffmann, Standardization of fluorescence measurements – criteria for the choice of suitable standards and approaches to fit-for-purpose calibration tools. Ann. NY Acad. Sci., 1130, 35–43, (2008)PubMedCrossRefGoogle Scholar
  136. 136.
    O. Barres, A. Burneau, J. Dubessy, and M. Pagel, Application of micro-FT-IR spectroscopy to individual hydrocarbon fluid inclusion analysis. Appl. Spectrosc., 41(6), 1000–1008, (1987).CrossRefGoogle Scholar
  137. 137.
    N. Guilhaumou, J.C. Touray, V. Perthuisot, and F. Roure, Palaeocirculation in the basin of southeastern France sub-alpine range: a synthesis from fluid inclusions studies. Mar. Pet. Geol., 13(6), 695–706, (1996).CrossRefGoogle Scholar
  138. 138.
    N. Guilhaumou, N. Ellouz, T.M. Jaswal, and P. Mougin. Genesis and evolution of hydrocarbons entrapped in the fluorite deposit of Koh-i-Maran, (North Kirthar Range, Pakistan). Mar. Pet. Geol., 17(10), 1151–1164, (2000).CrossRefGoogle Scholar
  139. 139.
    Commission Internationale de l’E´ clairage, Colorimetry. Publication No. 15. Commission Internationale de l’E´ clairage, Paris, (1971).Google Scholar
  140. 140.
    Commission Internationale de l‘E´ clairage, Standard on Colorimetric Observers. CIE S002. Commission Internationale de l’E´ clairage, Vienna, (1986).Google Scholar
  141. 141.
    S. Mazères, Mise en oeuvre d'un microspectrofluorimètre pour l'étude de mircroéchantillons en fluorescence stationnaire et résolue dans le temps. In: Biophysique, Université Paul Sabatier, Toulouse, pp. 200, (1997).Google Scholar
  142. 142.
    A. G. Ryder and P. Owens, manuscript in preparation.Google Scholar
  143. 143.
    A.G. Ryder, Assessing the maturity of crude petroleum oils using Total Synchronous Fluorescence Scan Spectra. J. Fluoresc., 14(1), 99–104, (2004).CrossRefGoogle Scholar
  144. 144.
    O. Abbas, C. Rébufa, N. Dupuy, A. Permanyer, J. Kister, and D.A. Azevedo, Application of chemometric methods to synchronous UV fluorescence spectra of petroleum oils. Fuel, 85(17–18), 2653–2661, (2006).CrossRefGoogle Scholar
  145. 145.
    G. Ellingsen and S. Fery-Forgues, Application of fluorescence spectroscopy to the study of petroleum: challenging complexity. Revue De L Institut Francais Du Petrole, 53(2), 201–216, (1998).Google Scholar
  146. 146.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy. 3rd edition, Springer, New York, (2006).Google Scholar
  147. 147.
    A.G. Ryder, Time-resolved fluorescence spectroscopic study of crude petroleum oils: influence of chemical composition. Appl. Spectrosc., 58(5), 613–623, (2004).PubMedCrossRefGoogle Scholar
  148. 148.
    A.G. Ryder, T.J. Glynn, and M. Feely. Influence of chemical composition on the fluorescence lifetimes of crude petroleum oils. Proc SPIE – Int. Soc. Opt. Eng., 4876, 1188–1195, (2003).Google Scholar
  149. 149.
    K. Dowling, M.J. Dayel, S.C.W. Hyde, P.M.W. French, M.J. Lever, J.D. Hares, and A.K.L. Dymoke-Bradshaw. High resolution time-domain fluorescence lifetime imaging for biomedical applications. J. Mod. Opt., 46(2), 199–209, (1999).Google Scholar
  150. 150.
    M.F. Quinn, A.S. Al-Otaibi, A. Abdullah, P.S. Sethi, F. Al-Bahrani, and O. Alameddine, Determination of intrinsic fluorescence lifetime parameters of crude oils using a laser fluorosensor with a streak camera detection system. Instrum. Sci. Tech. 23(3), 201–215, (1995).CrossRefGoogle Scholar
  151. 151.
    A.G. Ryder, T.J. Glynn, M. Przyjalgowski, and B. Szczupak. A compact violet diode laser based fluorescence lifetime microscope. J. Fluoresc., 12(2), 177–180, (2002).CrossRefGoogle Scholar
  152. 152.
    P. Owens, A.G. Ryder, and N.J.F. Blamey. Frequency domain fluorescence lifetime study of crude petroleum oils. J. Fluoresc., 18 (5), 997–1006, (2008).Google Scholar
  153. 153.
    T.W.J. Gadella, T.M. Jovin, and R.M. Clegg, Fluorescence lifetime imaging microscopy (FLIM) – spatial-resolution of microstructures on the nanosecond time-scale. Biophys. Chem., 48(2), 221–239, (1993).CrossRefGoogle Scholar
  154. 154.
    E.B. van Munster, J. Goedhart, G.J. Kremers, E.M.M. Manders, and T.W.J. Gadella Jr., Combination of a spinning disc confocal unit with frequency-domain fluorescence lifetime imaging microscopy. Cytometry Part A, 71A(4), 207–214, (2007).CrossRefGoogle Scholar
  155. 155.
    K. Nithipatikom and L.B. McGown, Factors affecting calibration for phase-modulation fluorescence lifetime determinations. Appl. Spectrosc. 40(4), 549–553, (1986).CrossRefGoogle Scholar
  156. 156.
    N.J.F. Blamey, J.F. Conliffe, J. Parnell, A.G. Ryder, and M. Feely, unpublished results.Google Scholar
  157. 157.
    N.J.F. Blamey, A.G. Ryder, P. Owens, and M. Feely, unpublished results.Google Scholar
  158. 158.
    M.A. Przyjalgowski, A.G. Ryder, M. Feely, and T.J. Glynn, Analysis of hydrocarbon-bearing fluid inclusions (HCFI) using time-resolved fluorescence spectroscopy. Proc. SPIE-Int. Soc. Opt. Eng., 5826, 173–184, (2005).Google Scholar
  159. 159.
    M.A. Przyjalgowski, Time-resolved fluorescence spectroscopic analysis of petroleum oils and hydrocarbon bearing fluid inclusions (HCFI), Ph.D. Thesis, National University of Ireland, Galway, Galway, Ireland (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nigel J.F. Blamey
    • 1
  • Alan G. Ryder
    • 1
  1. 1.Nanoscale Biophotonics Laboratory, School of ChemistryNational University of Ireland – GalwayIreland

Personalised recommendations