Neurosteroids and Sexual Behavior and Reproduction

  • Steven R. KingEmail author

Gonadal and adrenal steroids strongly determine sexual behavior and reproductive function through their effects on the brain. These “neuroactive steroids” act directly on neural cells or following their conversion to other metabolites locally. For instance, the production of estrogen from testicular testosterone by neural aromatase is essential for masculinization of the brain. However, steroids synthesized de novo within the central and peripheral nervous systems (CNS and PNS), termed “neurosteroids,” may also strongly impact sexual differentiation of the brain and sexual function. Specifically, neurosteroids affect sexual and gender-typical behaviors, ovulation, and behaviors that influence sexual interest and motivation like aggression, anxiety, and depression.


Ventral Tegmental Area GABAA Receptor Sexual Interest GnRH Neuron Neuroactive Steroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mellon SH, Deschepper CF. Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 1993; 629:283–92.PubMedCrossRefGoogle Scholar
  2. 2.
    King SR, Manna PR, Ishii T, et al. An essential component in steroid synthesis, the steroidogenic acute regulatory protein, is expressed in discrete regions of the brain. J Neurosci 2002; 22:10613–20.PubMedGoogle Scholar
  3. 3.
    King SR, Ginsberg SD, Ishii T, et al. The steroidogenic acute regulatory protein is expressed in steroidogenic cells of the day-old brain. Endocrinology 2004; 145:4775–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Furukawa A, Miyatake A, Ohnishi T, et al. Steroidogenic acute regulatory protein (StAR) transcripts constitutively expressed in the adult rat central nervous system: colocalization of StAR, cytochrome P-450scc (CYP XIA1), and 3β-hydroxysteroid dehydrogenase in the rat brain. J Neurochem 1998; 71: 2231–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Compagnone NA, Mellon SH. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 2000; 21:1–56.PubMedCrossRefGoogle Scholar
  6. 6.
    Takase M, Ukena K, Yamazaki T, et al. Pregnenolone, pregnenolone sulfate, and cytochrome P450 side-chain cleavage enzyme in the amphibian brain and their seasonal changes. Endocrinology 1999; 140:1936–44.PubMedCrossRefGoogle Scholar
  7. 7.
    Inai Y, Nagai K, Ukena K, et al. Seasonal changes in neurosteroid concentrations in the amphibian brain and environmental factors regulating their changes. Brain Res 2003; 959: 214–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Tsutsui K, Matsunaga M, Miyabara H, et al. Neurosteroid biosynthesis in the quail brain: a review. J Exp Zoolog A Comp Exp Biol 2006; 305:733–42.CrossRefGoogle Scholar
  9. 9.
    London SE, Monks DA, Wade J, et al. Widespread capacity for steroid synthesis in the avian brain and song system. Endocrinology 2006; 147:5975–87.PubMedCrossRefGoogle Scholar
  10. 10.
    London SE, Schlinger BA. Steroidogenic enzymes along the ventricular proliferative zone in the developing songbird brain. J Comp Neurol 2007; 502:507–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Sierra A, Lavaque E, Perez-Martin M, et al. Steroidogenic acute regulatory protein in the rat brain: cellular distribution, developmental regulation and overexpression after injury. Eur J Neurosci 2003; 18:1458–67.PubMedCrossRefGoogle Scholar
  12. 12.
    Compagnone NA, Bulfone A, Rubenstein JL, et al. Expression of the steroidogenic enzyme P450scc in the central and peripheral nervous systems during rodent embryogenesis. Endocrinology 1995; 136:2689–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Kishimoto W, Hiroi T, Shiraishi M, et al. Cytochrome P450 2D catalyze steroid 21-hydroxylation in the brain. Endocrinology 2004; 145:699–705.PubMedCrossRefGoogle Scholar
  14. 14.
    Gomez-Sanchez EP, Ahmad N, Romero DG, et al. Is aldosterone synthesized within the rat brain? Am J Physiol Endocrinol Metab 2005; 288:E342–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Weill-Engerer S, David JP, Sazdovitch V, et al. Neurosteroid quantification in human brain regions: comparison between Alzheimer’s and nondemented patients. J Clin Endocrinol Metab 2002; 87:5138–43.PubMedCrossRefGoogle Scholar
  16. 16.
    Kriz L, Bicikova M, Hill M, et al. Steroid sulfatase and sulfuryl transferase activity in monkey brain tissue. Steroids 2005; 70:960–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Ebner MJ, Corol DI, Havlikova H, et al. Identification of neuroactive steroids and their precursors and metabolites in adult male rat brain. Endocrinology 2006; 147:179–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Rupprecht R, Holsboer F. Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci 1999; 22:410–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Chaban VV, Lakhter AJ, Micevych P. A membrane estrogen receptor mediates intracellular calcium release in astrocytes. Endocrinology 2004; 145:3788–95.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhu Y, Bond J, Thomas P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc Natl Acad Sci U S A 2003; 100:2237–42.PubMedCrossRefGoogle Scholar
  21. 21.
    Dong Y, Fu YM, Sun JL, et al. Neurosteroid enhances glutamate release in rat prelimbic cortex via activation of α1-adrenergic and sigma1 receptors. Cell Mol Life Sci 2005; 62:1003–14.PubMedCrossRefGoogle Scholar
  22. 22.
    Bertrand D, Valera S, Bertrand S, et al. Steroids inhibit nicotinic acetylcholine receptors. Neuroreport 1991; 2:277–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Bullock AE, Clark AL, Grady SR, et al. Neurosteroids modulate nicotinic receptor function in mouse striatal and thalamic synaptosomes. J Neurochem 1997; 68:2412–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Frye CA, Walf AA, Sumida K. Progestins’ actions in the VTA to facilitate lordosis involve dopamine-like type 1 and 2 receptors. Pharmacol Biochem Behav 2004; 78:405–18.PubMedCrossRefGoogle Scholar
  25. 25.
    Gee KW, McCauley LD, Lan NC. A putative receptor for neurosteroids on the GABAA receptor complex: the pharmacological properties and therapeutic potential of epalons. Crit Rev Neurobiol 1995; 9:207–27.PubMedGoogle Scholar
  26. 26.
    Lambert JJ, Belelli D, Peden DR, et al. Neurosteroid modulation of GABAA receptors. Prog Neurobiol 2003; 71:67–80.PubMedCrossRefGoogle Scholar
  27. 27.
    Reddy DS. Role of neurosteroids in catamenial epilepsy. Epilepsy Res. 2004; 62:99–118.PubMedCrossRefGoogle Scholar
  28. 28.
    Belelli D, Lambert JJ. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 2005; 6:565–75.PubMedCrossRefGoogle Scholar
  29. 29.
    Morrow AL, Suzdak PD, Paul SM. Steroid hormone metabolites potentiate GABA receptor-mediated chloride ion flux with nanomolar potency. Eur J Pharmacol 1987; 142:483–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Brot MD, Akwa Y, Purdy RH, et al. The anxiolytic-like effects of the neurosteroid allopregnanolone: interactions with GABA(A) receptors. Eur J Pharmacol 1997; 325:1–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Weir CJ, Ling AT, Belelli D, et al. The interaction of anaesthetic steroids with recombinant glycine and GABAA receptors. Br J Anaesth 2004; 92:704–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Majewska MD, Harrison NL, Schwartz RD, et al. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 1986; 232:1004–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Majewska MD, Schwartz RD. Pregnenolone-sulfate: an endogenous antagonist of the gamma-aminobutyric acid receptor complex in brain? Brain Res 1987; 404:355–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Majewska MD, Demirgoren S, Spivak CE, et al. The neurosteroid dehydroepiandrosterone sulfate is an allosteric antagonist of the GABAA receptor. Brain Res 1990; 526:143–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Chappell PE, Schneider JS, Kim P, et al. Absence of gonadotropin surges and gonadotropin-releasing hormone self-priming in ovariectomized (OVX), estrogen (E2)-treated, progesterone receptor knockout (PRKO) mice. Endocrinology 1999; 140:3653–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Chappell PE, Levine JE. Stimulation of gonadotropin-releasing hormone surges by estrogen I. Role of hypothalamic progesterone receptors. Endocrinology 2000; 141:1477–85.PubMedCrossRefGoogle Scholar
  37. 37.
    Micevych P, Sinchak K, Mills RH, et al. The luteinizing hormone surge is preceded by an estrogen-induced increase of hypothalamic progesterone in ovariectomized and adrenalectomized rats. Neuroendocrinology 2003; 78:29–35.PubMedCrossRefGoogle Scholar
  38. 38.
    Soma KK, Sinchak K, Lakhter A, et al. Neurosteroids and female reproduction: estrogen increases 3β-HSD mRNA and activity in rat hypothalamus. Endocrinology 2005; 146:4386–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Micevych PE, Chaban V, Ogi J, et al. Estradiol stimulates progesterone synthesis in hypothalamic astrocyte cultures. Endocrinology 2007; 148:782–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Genazzani AR, Stomati M, Bernardi F, et al. Conjugated equine estrogens reverse the effects of aging on central and peripheral allopregnanolone and β-endorphin levels in female rats. Fertil Steril 2004; 81 Suppl 1:757–66.PubMedCrossRefGoogle Scholar
  41. 41.
    Sullivan SD, Moenter SM. Neurosteroids alter gamma-aminobutyric acid postsynaptic currents in gonadotropin-releasing hormone neurons: a possible mechanism for direct steroidal control. Endocrinology 2003; 144:4366–75.PubMedCrossRefGoogle Scholar
  42. 42.
    El-Etr M, Akwa Y, Fiddes RJ, et al. A progesterone metabolite stimulates the release of gonadotropin-releasing hormone from GT1-1 hypothalamic neurons via the gamma-aminobutyric acid type A receptor. Proc Natl Acad Sci U S A 1995; 92:3769–73.PubMedCrossRefGoogle Scholar
  43. 43.
    Genazzani AR, Palumbo MA, de Micheroux AA, et al. Evidence for a role for the neurosteroid allopregnanolone in the modulation of reproductive function in female rats. Eur J Endocrinol 1995; 133:375–80.PubMedCrossRefGoogle Scholar
  44. 44.
    El-Etr M, Akwa Y, Baulieu EE, et al. The neuroactive steroid pregnenolone sulfate stimulates the release of gonadotropin-releasing hormone from GT1-7 hypothalamic neurons, through N-methyl-D-aspartate receptors. Endocrinology 2006; 147: 2737–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Calogero AE, Palumbo MA, Bosboom AM, et al. The neuroactive steroid allopregnanolone suppresses hypothalamic gonadotropin-releasing hormone release through a mechanism mediated by the gamma-aminobutyric acidA receptor. J Endocrinol 1998; 158:121–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Wiebe JP, Boushy D, Wolfe M. Synthesis, metabolism and levels of the neuroactive steroid, 3α-hydroxy-4-pregnen-20-one (3αHP), in rat pituitaries. Brain Res 1997; 764:158–66.PubMedCrossRefGoogle Scholar
  47. 47.
    Wiebe JP, Wood PH. Selective suppression of follicle-stimulating hormone by 3 α-hydroxy-4-pregnen-20-one, a steroid found in Sertoli cells. Endocrinology 1987; 120:2259–64.PubMedCrossRefGoogle Scholar
  48. 48.
    Wood PH, Wiebe JP. Selective suppression of follicle-stimulating hormone secretion in anterior pituitary cells by the gonadal steroid 3 α-hydroxy-4-pregnen-20-one. Endocrinology 1989; 125:41–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Beck CA, Wolfe M, Murphy LD, et al. Acute, nongenomic actions of the neuroactive gonadal steroid, 3 α-hydroxy-4-pregnen-20-one (3 α HP), on FSH release in perifused rat anterior pituitary cells. Endocrine 1997; 6:221–29.PubMedCrossRefGoogle Scholar
  50. 50.
    Wiebe JP, Dhanvantari S, Watson PH, et al. Suppression in gonadotropes of gonadotropin-releasing hormone-stimulated follicle-stimulating hormone release by the gonadal- and neurosteroid 3 α-hydroxy-4-pregnen-20-one involves cytosolic calcium. Endocrinology 1994; 134:377–82.PubMedCrossRefGoogle Scholar
  51. 51.
    Dhanvantari S, Wiebe JP. Suppression of follicle-stimulating hormone by the gonadal- and neurosteroid 3 α-hydroxy-4-pregnen-20-one involves actions at the level of the gonadotrope membrane/calcium channel. Endocrinology 1994; 134:371–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Liu T, Wimalasena J, Bowen RL, et al. Luteinizing hormone receptor mediates neuronal pregnenolone production via up-regulation of steroidogenic acute regulatory protein expression. J Neurochem 2007; 100:1329–39.PubMedCrossRefGoogle Scholar
  53. 53.
    King SR, Lamb DJ. Why we loose interest in sex: do neurosteroids play a role? Sexuality, Reproduction, and Menopause 2006; 4:20–3.CrossRefGoogle Scholar
  54. 54.
    Pfaff D, Schwartz-Giblin S. Cellular mechanisms of female reproductive behaviors. In: Knobil E, Neill J, Ewing L, et al, editors. The Physiology of Reproduction. New York: Raven Press, 1998:1487–568.Google Scholar
  55. 55.
    Frye CA, Paris JJ, Rhodes. Engaging in paced mating, but neither exploratory, anti-anxiety, nor social behavior, increases 5α-reduced progestin concentrations in midbrain, hippocampus, striatum, and cortex. Reproduction 2007; 133:663–74.PubMedCrossRefGoogle Scholar
  56. 56.
    Frye CA, DeBold JF. 3 α-OH-DHP and 5 α-THDOC implants to the ventral tegmental area facilitate sexual receptivity in hamsters after progesterone priming to the ventral medial hypothalamus. Brain Res 1993; 612:130–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Frye CA, Gardiner SG. Progestins can have a membrane-mediated action in rat midbrain for facilitation of sexual receptivity. Horm Behav 1996; 30:682–91.PubMedCrossRefGoogle Scholar
  58. 58.
    Frye CA, Vongher JM. Ventral tegmental area infusions of inhibitors of the biosynthesis and metabolism of 3α,5α-THP attenuate lordosis of hormone-primed and behavioural oestrous rats and hamsters. J Neuroendocrinol 2001; 13:1076–86.PubMedCrossRefGoogle Scholar
  59. 59.
    Petralia SM, Jahagirdar V, Frye CA. Inhibiting biosynthesis and/or metabolism of progestins in the ventral tegmental area attenuates lordosis of rats in behavioural oestrus. J Neuroendocrinol 2005; 17:545–52.PubMedCrossRefGoogle Scholar
  60. 60.
    Frye CA. The role of neurosteroids and non-genomic effects of progestins and androgens in mediating sexual receptivity of rodents. Brain Res Brain Res Rev 2001; 37:201–22.PubMedCrossRefGoogle Scholar
  61. 61.
    Frye CA. The role of neurosteroids and nongenomic effects of progestins in the ventral tegmental area in mediating sexual receptivity of rodents. Horm Behav 2001; 40:226–33.PubMedCrossRefGoogle Scholar
  62. 62.
    Petralia SM, Frye CA. In the ventral tegmental area, G-proteins and cAMP mediate the neurosteroid 3α,5α-THP’s actions at dopamine type 1 receptors for lordosis of rats. Neuroendocrinology 2004; 80:233–43.PubMedCrossRefGoogle Scholar
  63. 63.
    Laconi MR, Cabrera RJ. Effect of centrally injected allopregnanolone on sexual receptivity, luteinizing hormone release, hypothalamic dopamine turnover, and release in female rats. Endocrine 2002; 17:77–83.PubMedCrossRefGoogle Scholar
  64. 64.
    Frye CA, Sumida K, Lydon JP, et al. Mid-aged and aged wild-type and progestin receptor knockout (PRKO) mice demonstrate rapid progesterone and 3α,5α-THP-facilitated lordosis. Psychopharmacology (Berl) 2006; 185:423–32.CrossRefGoogle Scholar
  65. 65.
    Apostolakis EM, Garai J, Lohmann JE, et al. Epidermal growth factor activates reproductive behavior independent of ovarian steroids in female rodents. Mol Endocrinol 2000; 14:1086–98.PubMedCrossRefGoogle Scholar
  66. 66.
    Frye CA, Van Keuren KR, Erskine MS. Behavioral effects of 3 α-androstanediol. I: Modulation of sexual receptivity and promotion of GABA-stimulated chloride flux. Behav Brain Res 1996; 79:109–18.PubMedCrossRefGoogle Scholar
  67. 67.
    Frye CA, Duncan JE, Basham M, et al. Behavioral effects of 3 α-androstanediol. II: Hypothalamic and preoptic area actions via a GABAergic mechanism. Behav Brain Res 1996; 79: 119–30.PubMedCrossRefGoogle Scholar
  68. 68.
    Frye CA, Van Keuren KR, Rao PN, et al. Progesterone and 3 α-androstanediol conjugated to bovine serum albumin affects estrous behavior when applied to the MBH and POA. Behav Neurosci 1996; 110:603–12.PubMedCrossRefGoogle Scholar
  69. 69.
    More L. Mouse major urinary proteins trigger ovulation via the vomeronasal organ. Chem Senses 2006; 31:393–401.PubMedCrossRefGoogle Scholar
  70. 70.
    Haage D, Johansson S. Neurosteroid modulation of synaptic and GABA-evoked currents in neurons from the rat medial preoptic nucleus. J Neurophysiol 1999; 82:143–51.PubMedGoogle Scholar
  71. 71.
    Uchida S, Noda E, Kakazu Y, et al. Allopregnanolone enhancement of GABAergic transmission in rat medial preoptic area neurons. Am J Physiol Endocrinol Metab 2002; 283:E1257–65.PubMedGoogle Scholar
  72. 72.
    Haage D, Backstrom T, Johansson S. Interaction between allopregnanolone and pregnenolone sulfate in modulating GABA-mediated synaptic currents in neurons from the rat medial preoptic nucleus. Brain Res 2005; 1033:58–67.PubMedCrossRefGoogle Scholar
  73. 73.
    Schneider JS, Burgess C, Sleiter NC, et al. Enhanced sexual behaviors and androgen receptor immunoreactivity in the male progesterone receptor knockout mouse. Endocrinology 2005; 146:4340–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Huddleston GG, Michael RP, Zumpe D, et al. Estradiol in the male rat amygdala facilitates mounting but not ejaculation. Physiol Behav 2003; 79:239–46.PubMedCrossRefGoogle Scholar
  75. 75.
    Balthazart J, Baillien M, Cornil CA, et al. Preoptic aromatase modulates male sexual behavior: slow and fast mechanisms of action. Physiol Behav 2004; 83:247–70.PubMedGoogle Scholar
  76. 76.
    Huddleston GG, Paisley JC, Clancy AN. Effects of estrogen in the male rat medial amygdala: infusion of an aromatase inhibitor lowers mating and bovine serum albumin-conjugated estradiol implants do not promote mating. Neuroendocrinology 2006; 83:106–16.PubMedCrossRefGoogle Scholar
  77. 77.
    Kavaliers M, Wiebe JP, Galea LA. Male preference for the odors of estrous female mice is enhanced by the neurosteroid 3 α-hydroxy-4-pregnen-20-one (3 α HP). Brain Res 1994; 646: 140–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Kavaliers M, Kinsella DM. Male preference for the odors of estrous female mice is reduced by the neurosteroid pregnenolone sulfate. Brain Res 1995; 682:222–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Lavaque E, Mayen A, Azcoitia I, et al. Sex differences, developmental changes, response to injury and cAMP regulation of the mRNA levels of steroidogenic acute regulatory protein, cytochrome p450scc, and aromatase in the olivocerebellar system. J Neurobiol 2006; 66:308–18.PubMedCrossRefGoogle Scholar
  80. 80.
    Wade J, Arnold AP. Functional testicular tissue does not masculinize development of the zebra finch song system. Proc Natl Acad Sci U S A 1996; 93:5264–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Holloway CC, Clayton DF. Estrogen synthesis in the male brain triggers development of the avian song control pathway in vitro. Nat Neurosci 2001; 4:170–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Forlano PM, Schlinger BA, Bass AH. Brain aromatase: new lessons from non-mammalian model systems. Front Neuroendocrinol 2006; 27:247–74.PubMedCrossRefGoogle Scholar
  83. 83.
    Tsutsui K, Inoue K, Miyabara H, et al. 7α-hydroxypregnenolone mediates melatonin action underlying diurnal locomotor rhythms. Neurosci 2008; 28:2158–67.CrossRefGoogle Scholar
  84. 84.
    Verleye M, Akwa Y, Liere P, et al. The anxiolytic etifoxine activates the peripheral benzodiazepine receptor and increases the neurosteroid levels in rat brain. Pharmacol Biochem Behav 2005; 82:712–20.PubMedCrossRefGoogle Scholar
  85. 85.
    Walf AA, Sumida K, Frye CA. Inhibiting 5α-reductase in the amygdala attenuates antianxiety and antidepressive behavior of naturally receptive and hormone-primed ovariectomized rats. Psychopharmacology (Berl) 2006; 186:302–11.CrossRefGoogle Scholar
  86. 86.
    Barbaccia ML, Roscetti G, Bolacchi F, et al. Stress-induced increase in brain neuroactive steroids: antagonism by abecarnil. Pharmacol Biochem Behav 1996; 54:205–10.PubMedCrossRefGoogle Scholar
  87. 87.
    Barbaccia ML, Roscetti G, Trabucchi M, et al. Isoniazid-induced inhibition of GABAergic transmission enhances neurosteroid content in the rat brain. Neuropharmacology 1996; 35: 1299–305.PubMedCrossRefGoogle Scholar
  88. 88.
    Melchior CL, Ritzmann RF. Pregnenolone and pregnenolone sulfate, alone and with ethanol, in mice on the plus-maze. Pharmacol Biochem Behav 1994; 48:893–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Meieran SE, Reus VI, Webster R, et al. Chronic pregnenolone effects in normal humans: attenuation of benzodiazepine-induced sedation. Psychoneuroendocrinology 2004; 29:486–500.PubMedCrossRefGoogle Scholar
  90. 90.
    Strous RD, Maayan R, Weizman A. The relevance of neurosteroids to clinical psychiatry: from the laboratory to the bedside. Eur Neuropsychopharmacol 2006; 16:155–69.PubMedCrossRefGoogle Scholar
  91. 91.
    Avis NE, Zhao X, Johannes CB, et al. Correlates of sexual function among multi-ethnic middle-aged women: results from the Study of Women’s Health Across the Nation (SWAN). Menopause 2005; 12:385–98.PubMedCrossRefGoogle Scholar
  92. 92.
    Rhodes ME, Frye CA. Inhibiting progesterone metabolism in the hippocampus of rats in behavioral estrus decreases anxiolytic behaviors and enhances exploratory and antinociceptive behaviors. Cogn Affect Behav Neurosci 2001; 1:287–96.PubMedCrossRefGoogle Scholar
  93. 93.
    Frye CA, Rhodes ME. Infusions of 3α,5α-THP to the VTA enhance exploratory, anti-anxiety, social, and sexual behavior and increase levels of 3α,5α-THP in the midbrain, hippocampus, diencephalon, and cortex of female rats. Behav Brain Res 2008; 187:88–99.PubMedCrossRefGoogle Scholar
  94. 94.
    Maayan R, bou-Kaud M, Strous RD, et al. The influence of parturition on the level and synthesis of sulfated and free neurosteroids in rats. Neuropsychobiology 2004; 49:17–23.PubMedCrossRefGoogle Scholar
  95. 95.
    Maayan R, Strous RD, bou-Kaoud M, et al. The effect of 17β estradiol withdrawal on the level of brain and peripheral neurosteroids in ovarectomized rats. Neurosci Lett 2005; 384:156–61.PubMedCrossRefGoogle Scholar
  96. 96.
    Zimmerberg B, Rackow SH, George-Friedman KP. Sex-dependent behavioral effects of the neurosteroid allopregnanolone (3α,5α-THP) in neonatal and adult rats after postnatal stress. Pharmacol Biochem Behav 1999; 64:717–24.PubMedCrossRefGoogle Scholar
  97. 97.
    Dong E, Matsumoto K, Uzunova V, et al. Brain 5α-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc Natl Acad Sci U S A 2001; 98:2849–54.PubMedCrossRefGoogle Scholar
  98. 98.
    Pinna G, Agís-Balboa RC, Doueiri MS, et al. Brain neurosteroids in gender-related aggression induced by social isolation. Crit Rev Neurobiol 2004; 16:75–82.PubMedCrossRefGoogle Scholar
  99. 99.
    Pinna G, Costa E, Guidotti A. Changes in brain testosterone and allopregnanolone biosynthesis elicit aggressive behavior. Proc Natl Acad Sci U S A 2005; 102:2135–40.PubMedCrossRefGoogle Scholar
  100. 100.
    Agís-Balboa RC, Pinna G, Pibiri F, et al. Down-regulation of neurosteroid biosynthesis in corticolimbic circuits mediates social isolation-induced behavior in mice. Proc Natl Acad Sci U S A 2007; 104:18736–41.PubMedCrossRefGoogle Scholar
  101. 101.
    Pibiri F, Nelson M, Guidotti A, et al. Decreased corticolimbic allopregnanolone expression during social isolation enhances contextual fear: a model relevant for posttraumatic stress disorder. Proc Natl Acad Sci U S A 2008; 105:5567–72.PubMedCrossRefGoogle Scholar
  102. 102.
    Pinna G, Dong E, Matsumoto K, et al. In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci U S A 2003; 100:2035–40.PubMedCrossRefGoogle Scholar
  103. 103.
    Young J, Corpechot C, Haug M, et al. Suppressive effects of dehydroepiandrosterone and 3 β-methyl-androst-5-en-17-one on attack towards lactating female intruders by castrated male mice. II. Brain Neurosteroids. Biochem Biophys Res Commun 1991; 174:892–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Robel P, Young J, Corpechot C, et al. Biosynthesis and assay of neurosteroids in rats and mice: functional correlates. J Steroid Biochem Mol Biol 1995; 53:355–60.PubMedCrossRefGoogle Scholar
  105. 105.
    Nohria V, Giller E. Ganaxolone. Neurotherapeutics 2007; 4: 102–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Uzunova V, Sampson L, Uzunov DP. Relevance of endogenous 3α-reduced neurosteroids to depression and antidepressant action. Psychopharmacology (Berl) 2006; 186:351–61.CrossRefGoogle Scholar
  107. 107.
    Vallée M, Mayo W, Darnaudéry M, et al. Neurosteroids: deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc Natl Acad Sci U S A 1997; 94:14865–70.PubMedCrossRefGoogle Scholar
  108. 108.
    Fester L, Ribeiro-Gouveia V, Prange-Kiel J, et al. Proliferation and apoptosis of hippocampal granule cells require local oestrogen synthesis. J Neurochem 2006; 97:1136–44.PubMedCrossRefGoogle Scholar
  109. 109.
    Wang JM, Irwin RW, Liu L, et al. Regeneration in a degenerating brain: potential of allopregnanolone as a neuroregenerative agent. Curr Alzheimer Res 2007; 4:510–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Griffin LD, Gong W, Verot L, et al. Niemann-Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat Med 2004; 10:704–11.PubMedCrossRefGoogle Scholar
  111. 111.
    Chen G, Li HM, Chen YR, et al. Decreased estradiol release from astrocytes contributes to the neurodegeneration in a mouse model of Niemann-Pick disease type C. Glia 2007; 55:1509–18.PubMedCrossRefGoogle Scholar
  112. 112.
    Liu B, Li H, Repa JJ, et al. Genetic variations and treatments that affect the lifespan of the NPC1 mouse. J Lipid Res 2008; 49: 663–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Schumacher M, Guennoun R, Stein DG, et al. Progesterone: therapeutic opportunities for neuroprotection and myelin repair. Pharmacol Ther 2007; 116:77–106.PubMedCrossRefGoogle Scholar
  114. 114.
    Marx CE, Shampine LJ, Duncan GE, et al. Clozapine markedly elevates pregnenolone in rat hippocampus, cerebral cortex, and serum: candidate mechanism for superior efficacy? Pharmacol Biochem Behav 2006; 84:598–608.PubMedCrossRefGoogle Scholar
  115. 115.
    Leiblum SR, Goldmeier D. Persistent genital arousal disorder in women: case reports of association with anti-depressant usage and withdrawal. J Sex Marital Ther 2008; 34:150–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Altomare G, Capella GL. Depression circumstantially related to the administration of finasteride for androgenetic alopecia. J Dermatol 2002; 29:665–9.PubMedGoogle Scholar
  117. 117.
    Rahimi-Ardabili B, Pourandarjani R, Habibollahi P, et al. Finasteride induced depression: a prospective study. BMC Clin Pharmacol 2006; 6:7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Scott Department of Urology Baylor College of MedicineHoustonUSA

Personalised recommendations