Present State of Electron Backscatter Diffraction and Prospective Developments

  • Robert A. Schwarzer
  • David P. Field
  • Brent L. Adams
  • Mukul Kumar
  • Adam J. Schwartz

Electron backscatter diffraction (EBSD), when employed as an additional characterization technique to a scanning electron microscope (SEM), enables individual grain orientations, local texture, point-to-point orientation correlations, and phase identification and distributions to be determined routinely on the surfaces of bulk polycrystals. The application has experienced rapid acceptance in metallurgical, materials, and geophysical laboratories within the past decade (Schwartz et al. 2000) due to the wide availability of SEMs, the ease of sample preparation from the bulk, the high speed of data acquisition, and the access to complementary information about the microstructure on a submicron scale. From the same specimen area, surface structure and morphology of the microstructure are characterized in great detail by the relief and orientation contrast in secondary and backscatter electron images, element distributions are accessed by energy dispersive spectroscopy (EDS), wavelength dispersive spectroscopy (WDS), or cathodoluminescence analysis, and the orientations of single grains and phases can now be determined, as a complement, by EBSD.


Grain Orientation Phosphor Screen Radon Transformation EBSD Pattern Kikuchi Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The ion blocking pattern in Fig. 1.7 is a reprint from Tulinov (1965). Permission for reproduction is gratefully acknowledged to Prof. Dr. A.F. Tulinov, Lomonosov Moscow State University, and Uspekhi Fizicheskikh Nauk, Moscow. RS would like to thank Prof. Dr. U. Wendt, University of Magdeburg, Germany, for kindly providing the orientation contrast micrograph in Fig. 1.8. The work of MK and AJS was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.


  1. Adams BL, Wright SI, Kunze K (1993) Orientation imaging: The emergence of a new microscopy. Met Trans 24A: 819–831Google Scholar
  2. Alam MN, Blackman M, Pashley DW (1954) High-angle Kikuchi patterns. Proc Roy Soc London A221:224–242ADSGoogle Scholar
  3. Barrett CS (1979) Ion beam scattering applied to crystallography. Naturwissenschaften 57:287–295CrossRefADSGoogle Scholar
  4. Chadderton LT (1968) A correspondence principle for the channelling of fast charged particles. Phil Mag 8(18): 1017–1031CrossRefADSGoogle Scholar
  5. Day A (1993) Developments in the EBSP technique and their application to grain imaging. Ph. D. dissertation, University of Bristol, Bristol, EnglandGoogle Scholar
  6. Deans SR (1983) The Radon transform and some of its applications. Wiley, New YorkzbMATHGoogle Scholar
  7. Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures. Comm ACM 15:11–15CrossRefGoogle Scholar
  8. Field D (1997) Recent advances in the application of orientation imaging. Ultramicroscopy 67:1–9CrossRefGoogle Scholar
  9. Jarle Hjelen AS, N-7079 Flatåsen, Trondheim, Norway (2007) NORDIF ultra-fast EBSD detectors—the UF series.
  10. Hjelen J, Ørsund E, Hoel E, Runde P, Furu T, Nes E (1993) EBSP, progress in technique and applications. Textures Microstruct 20:29–40CrossRefGoogle Scholar
  11. Hough PVC (1962) Methods and means for recognizing complex patterns. US patent 3069654Google Scholar
  12. Krieger Lassen NC (1994) Automated determination of crystal orientations from electron backscattering patterns. Ph. D. thesis, Danmarks Tekniske Universitet, DK-2800 LyngbyGoogle Scholar
  13. Krieger Lassen N (1998) Automatic high-precision measurements of the location and width of Kikuchi bands in electron backscatter diffraction pattern. J Microsc 190:375–391CrossRefGoogle Scholar
  14. Kunze K, Zaefferer S, Schwarzer R (1994) Orientierungsmapping mit dem Raster-Elektronenmikroskop. Beitr Elektronenmikroskop Direktabb Oberfl 27:169–176Google Scholar
  15. Michael JR, Goehner RP (1994) Advances in backscattered-electron Kikuchi patterns for crystallographic phase identification. In: Bailey GW, Garratt-Reed AJ (eds), Proceedings of the 52nd annual meeting of the microscopy society of America, San Francisco Press, pp 596–597Google Scholar
  16. Morawiec A (1999) Reliability of automatic orientation determination from Kikuchi patterns. In: Szpunar JA (ed), Proceedings of the 12th international conference on textures of materials. NRC Research Press, Ottawa 1:62–67Google Scholar
  17. Morgan J, Notte J, Hill R, Ward B (2006) An introduction to the helium ion microscope. Microsc Today 14(4):24–31Google Scholar
  18. Nishikawa S, Kikuchi S (1928) The diffraction of cathode rays by calcite. Proc Imperial Acad (Japan) 4:475–477Google Scholar
  19. Radon J (1917) Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber Verh Sächs Akad Wiss Leipzig Math-Naturw Klasse 69:262–267Google Scholar
  20. Reimer L (1985) Scanning electron microscopy. Springer Verlag, BerlinGoogle Scholar
  21. Schwartz AJ, Kumar M, Adams BL (2000) Electron backscatter diffraction in materials science. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  22. Schwarzer R (1989) Die Aufnahme von Reflexions-Kikuchi-Diagrammen im REM mit einer peltiergekühlten, integrierenden CCD-Videokamera. Beitr Elektronenmikr Direktabb Oberfl 22:279–282Google Scholar
  23. Schwarzer RA (1994) Preparation of high-resistance or sensitive samples for grain orientation measurement with electron microscopes. Mater Sci Forum 157–162:201–206CrossRefGoogle Scholar
  24. Schwarzer RA (1997) Automated crystal lattice orientation mapping using a computer-controlled SEM. Micron 28: 249–265CrossRefGoogle Scholar
  25. Schwarzer RA, Sukkau J (1998) Automated crystal orientation mapping (ACOM) with a computer-controlled TEM by interpreting transmission Kikuchi patterns. Mater Sci Forum 273–275:215–222CrossRefGoogle Scholar
  26. Schwarzer RA (1999) Advancements of ACOM and applications to orientation stereology. In: Szpunar JA (ed) Proceedings of the 12th international conference on textures of materials. NRC Research Press, Ottawa 1:52–61Google Scholar
  27. Schwarzer RA, Sukkau J (2003) Automated evaluation of Kikuchi patterns by means of Radon and fast Fourier transformation, and verification by an artificial neural network. Adv Eng Mater 5:601–606CrossRefGoogle Scholar
  28. Schwarzer R (2007) Vorrichtung zur Kristallorientierungsmessung mittels Ionen-Blocking-Pattern und einer fokussierten Ionensonde. Patent pendingGoogle Scholar
  29. Schwarzer RA (2008a) A fast ACOM/EBSD system. Arch Metall Mater 53:1–6Google Scholar
  30. Schwarzer RA (2008b) Spatial resolution in ACOM—What will come after EBSD. Microsc Today 16(1):34–37Google Scholar
  31. Scipioni L, Stern L, Notte J (2007) Applications of the helium ion microscope. Microsc Today 15(6):12–15Google Scholar
  32. Søfferud M, Hjelen J, Karlsen M, Breivik T, Krieger Lassen NC, Schwarzer R (2008) Development of an ultra-fast EBSD detector system. In: Luysberg M, Tillmann K, Weirich T (eds) Proceedings of the 14th European microscopy congress, EMC2008, Vol. 1: Instrumentation and methods. Springer-Verlag, Berlin, pp 623–624Google Scholar
  33. Toft P (1996) The Radon transform—Theory and implementation. Ph. D. thesis, Danmarks Tekniske Universitet, DK-2800 Lyngby. Free download from:
  34. Tondare VN (2005) Quest for high brightness, monochromatic noble gas ion sources. J Vac Sci Technol A 23:1498–1508CrossRefADSGoogle Scholar
  35. Tulinov AF (1965) On an effect accompanying nuclear reactions in single crystals and its use in various physical investigations. Sov Phys-Doklady 10:463–465 (English translation of the original article of A.F. Tulinov in Doklady Akademii Nauk SSSR 162:546–548)ADSGoogle Scholar
  36. Venables JA, Harland CJ (1973) Electron back-scattering patterns—A new technique for obtaining crystallographic information in the scanning electron microscope. Phil Mag 27:1193–1200CrossRefADSGoogle Scholar
  37. Venables JA, Bin-Jaya R (1977) Accurate microcrystallography using electron back-scattering patterns. Phil Mag 35: 1317–1328CrossRefADSGoogle Scholar
  38. Wendt U, Nolze G (2007) FIB milling and channeling. GIT Imaging Microsc 9(3):34–36CrossRefGoogle Scholar
  39. Winkelmann A, Trager-Cowan C, Sweeney F, Day A, Parbrook P (2007) Many-beam dynamical simulation of electron backscatter diffraction patterns. Ultramicroscopy 107: 414–421CrossRefPubMedGoogle Scholar
  40. Winkelmann A (2008) Dynamical simulation of electron backscatter diffraction patterns. Chapter 2, this volumeGoogle Scholar
  41. Wu CT, Adams BL, Bauer CL, Casasent D, Morawiec A, Ozdemir S, Talukder A (1999) Mapping the mesoscale interface structure in polycrystalline materials. Microsc Microanal 5(Suppl 2):260–261Google Scholar
  42. Yang W, Adams BL, De Graef M (1999) Adaptive orientation imaging microscopy. In: Szpunar JA (ed) Proceedings of the 12th international conference on textures of materials. NRC Research Press, Ottawa 1:192–197Google Scholar
  43. Zaefferer S, Schwarzer RA (1994) Automated measurement of single grain orientations in the TEM. Z Metallkd 85: 585–591Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Robert A. Schwarzer
    • 1
  • David P. Field
    • 2
  • Brent L. Adams
    • 3
  • Mukul Kumar
    • 4
  • Adam J. Schwartz
    • 4
  1. 1.Institute of PhysicsClausthal University of TechnologyGermany
  2. 2.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  3. 3.Department of Mechanical EngineeringBrigham Young UniversityProvoUSA
  4. 4.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations