Enhancing Web Search with Heterogeneous Semantic Knowledge

  • Rui Huang
  • Zhongzhi Shi
Part of the IFIP – The International Federation for Information Processing book series (IFIPAICT, volume 288)

Abstract

This paper explores four kinds of semantic knowledge to improve keyword-based Web search, including thesauruses, categories, ontologies, and social annotations. These heterogeneous semantic knowledge represent meanings of Web information, thus they can be used to improve search results in respect of semantic relevance. Currently, different semantic search paradigms have been developed for different kind of semantic knowledge respectively. However, how to make the most of all heterogeneous semantic knowledge to optimize Web search is still a big challenge in practice. To these ends, this paper proposes an integrated semantic search mechanism to incorporate textual information and keyword search with heterogeneous semantic knowledge and semantic search. Experiments show that the proposed mechanism effectively integrates heterogeneous semantic knowledge to improve Web search.

Keywords

Web search semantic search semantic Web Web 2.0 ontology social annotation 

References

  1. 1.
    Guha R., Mccool, R., and Miller. E. “Semantic search”, In Proceedings of WWW ’03, pp.700–709, 2003.Google Scholar
  2. 2.
    Mayfield, J., and Finin T. “Information retrieval on the semantic web: Integrating inference and retrieval”, In SIGIR 2003 Semantic Web Workshop, 2003.Google Scholar
  3. 3.
    Zhang, L., Yu, Y., Zhou, J., Lin, C., and Yang, Y., “An enhanced model for searching in semantic portals”, In Proceedings of WWW ’05, pp.453–462, 2005.Google Scholar
  4. 4.
    Tran, T., Cimiano, P., Rudolph, S., and Studer, R., “Ontology-Based Interpretation of Keywords for Semantic Search”, In Proceedings of ISWC ’07, pp.523–536, 2007.Google Scholar
  5. 5.
    Bao, S., Wu, X., Fei, B., Xue, G., Su, Z., and Yu, Y., “Optimizing web search using social annotations”, In Proceedings of WWW ’07, pp.501–510, 2007.Google Scholar
  6. 6.
    Furnas, G.W., Deerwester, S., Dumais, S.T., Landauer, T.K., Harshman, R.A., Streeter, L.A., and Lochbaum, K.E., “Information retrieval using a singular value decomposition model of latent semantic structure”, In Proceedings of SIGIR ’88, pp.465–480, 1988.Google Scholar
  7. 7.
    Voorhees, E.M., “Query expansion using lexical semantic relations”, In Proceedings of SIGIR ’94, pp.61–69, 1994.Google Scholar
  8. 8.
    Tollari, S., Glotin, H., and Maitre, J.L., “Enhancement of textual images classification using segmented visual contents for image search engine”, Multimedia Tools and Applications, vol.25, No.3, pp.405–417, 2005.CrossRefGoogle Scholar
  9. 9.
    Studer, R., Benjamins, V.R., and Fensel, D., “Knowledge engineering: principles and methods”, Data and Knowledge Engineering, vol.25, No.1–2, pp.161–197, 1998.CrossRefMATHGoogle Scholar
  10. 10.
    Berners-Lee, T., Hendler, J., and Lassila, O., “The semantic web”, Scientific American, vol.284, No.5, pp.34–43, 2001.CrossRefGoogle Scholar
  11. 11.
    Cohen, S., Mamou, J., Kanza, Y., and Sagiv, Y., “Xsearch: A semantic search engine for xml”, In Proceedings of VLDB ’03, pp.45–56, 2003.Google Scholar
  12. 12.
    Ding, L., Finin, T., Joshi, A., Peng, Y., Pan, R., and Reddivari, P., “Search on the semantic web”, IEEE Computer, vol.10, No.38, pp.62–69, 2005.CrossRefGoogle Scholar
  13. 13.
    Rocha, C., Schwabe, D., and de Aragao, M.P., “A hybrid approach for searching in the semantic web”, In Proceedings of WWW ’04, pp.374–383, 2004.Google Scholar
  14. 14.
    O’Reilly, T., “What is web 2.0: Design patterns and business models for the next generation of software”, O’Reilly (http://www.oreilly.com/), September 2005.
  15. 15.
    Wu, X., Zhang, L., and Yu, Y., “Exploring social annotations for the semantic web”, In Proceedings of WWW ’06, pp.417–426, 2006.Google Scholar
  16. 16.
    Dmitriev, D.A., Eiron, N., Fontoura, M., and Shekita, E., “Using annotations in enterprise search”, In Proceedings of WWW ’06, pp.811–817, 2006.Google Scholar
  17. 17.
    Crestani, F., “Application of spreading activation techniques in information retrieval” Artificial Intelligence Review, vol. 11, No.6, pp.453–482, 1997.CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Rui Huang
    • 1
    • 2
  • Zhongzhi Shi
    • 1
  1. 1.Key Laboratory of Intelligent Information Processing Institute of Computing TechnologyChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations