Evaluating Recommendation Systems

Chapter

Abstract

Recommender systems are now popular both commercially and in the research community, where many approaches have been suggested for providing recommendations. In many cases a system designer that wishes to employ a recommendation system must choose between a set of candidate approaches. A first step towards selecting an appropriate algorithm is to decide which properties of the application to focus upon when making this choice. Indeed, recommendation systems have a variety of properties that may affect user experience, such as accuracy, robustness, scalability, and so forth. In this paper we discuss how to compare recommenders based on a set of properties that are relevant for the application. We focus on comparative studies, where a few algorithms are compared using some evaluation metric, rather than absolute benchmarking of algorithms. We describe experimental settings appropriate for making choices between algorithms. We review three types of experiments, starting with an offline setting, where recommendation approaches are compared without user interaction, then reviewing user studies, where a small group of subjects experiment with the system and report on the experience, and finally describe large scale online experiments, where real user populations interact with the system. In each of these cases we describe types of questions that can be answered, and suggest protocols for experimentation. We also discuss how to draw trustworthy conclusions from the conducted experiments. We then review a large set of properties, and explain how to evaluate systems given relevant properties. We also survey a large set of evaluation metrics in the context of the properties that they evaluate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bamber, D.: The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of Mathematical Psychology 12, 387–415 (1975)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    benjamini: Controlling the false discovery rate:a practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57(1), 289–300 (1995)MathSciNetMATHGoogle Scholar
  3. 3.
    Bonhard, P., Harries, C., McCarthy, J., Sasse, M.A.: Accounting for taste: using profile similarity to improve recommender systems. In: CHI ’06: Proceedings of the SIGCHI conference on Human Factors in computing systems, pp. 1057–1066. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1124772.1124930
  4. 4.
    Boutilier, C., Zemel, R.S.: Online queries for collaborative filtering. In: In Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics (2002)Google Scholar
  5. 5.
    Box, G.E.P., Hunter,W.G., Hunter, J.S.: Statistics for Experimenters. Wiley, New York (1978)MATHGoogle Scholar
  6. 6.
    Bradley, K., Smyth, B.: Improving recommendation diversity. In: Twelfth Irish Conference on Artificial Intelligence and Cognitive Science, pp. 85–94 (2001)Google Scholar
  7. 7.
    Braziunas, D., Boutilier, C.: Local utility elicitation in GAI models. In: Proceedings of the Twenty-first Conference on Uncertainty in Artificial Intelligence, pp. 42–49. Edinburgh (2005)Google Scholar
  8. 8.
    Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algorithms for collaborative filtering. In: UAI, pp. 43–52 (1998)Google Scholar
  9. 9.
    Celma, O., Herrera, P.: A new approach to evaluating novel recommendations. In: RecSys ’08: Proceedings of the 2008 ACM conference on Recommender systems, pp. 179–186. ACM, New York, NY, USA (2008). DOI http://doi.acm.org/10.1145/1454008.1454038
  10. 10.
    Chirita, P.A., Nejdl, W., Zamfir, C.: Preventing shilling attacks in online recommender systems. In: WIDM ’05: Proceedings of the 7th annual ACM international workshop on Web information and data management, pp. 67–74. ACM, New York, NY, USA (2005). DOI http://doi.acm.org/10.1145/1097047.1097061
  11. 11.
    Cramer, H., Evers, V., Ramlal, S., Someren, M., Rutledge, L., Stash, N., Aroyo, L.,Wielinga, B.: The effects of transparency on trust in and acceptance of a content-based art recommender. User Modeling and User-Adapted Interaction 18(5), 455–496 (2008). DOI http://dx.doi.org/10.1007/s11257-008-9051-3
  12. 12.
    Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: WWW ’07: Proceedings of the 16th international conference on World Wide Web, pp. 271–280. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1242572.1242610
  13. 13.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)Google Scholar
  14. 14.
    Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms. ACM Transactions on Information Systems 22(1), 143–177 (2004)CrossRefGoogle Scholar
  15. 15.
    Fischer, G.: User modeling in human-computer interaction. User Model. User-Adapt. Interact. 11(1-2), 65–86 (2001)CrossRefMATHGoogle Scholar
  16. 16.
    Fleder, D.M., Hosanagar, K.: Recommender systems and their impact on sales diversity. In: EC ’07: Proceedings of the 8th ACM conference on Electronic commerce, pp. 192–199. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1250910.1250939
  17. 17.
    Frankowski, D., Cosley, D., Sen, S., Terveen, L., Riedl, J.: You are what you say: privacy risks of public mentions. In: SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 565–572. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1148170.1148267
  18. 18.
    Fredricks, G.A., Nelsen, R.B.: On the relationship between spearman’s rho and kendall’s tau for pairs of continuous random variables. Journal of Statistical Planning and Inference 137(7), 2143–2150 (2007)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    George, T.: A scalable collaborative filtering framework based on co-clustering. In: Fifth IEEE International Conference on Data Mining, pp. 625–628 (2005)Google Scholar
  20. 20.
    Greenwald, A.G.: Within-subjects designs: To use or not to use? Psychological Bulletin 83, 216–229 (1976)Google Scholar
  21. 21.
    Haddawy, P., Ha, V., Restificar, A., Geisler, B., Miyamoto, J.: Preference elicitation via theory refinement. Journal of Machine Learning Research 4, 2003 (2002)Google Scholar
  22. 22.
    Herlocker, J.L., Konstan, J.A., Riedl, J.T.: Explaining collaborative filtering recommendations. In: CSCW ’00: Proceedings of the 2000 ACM conference on Computer supported cooperative work, pp. 241–250. ACM, New York, NY, USA (2000). DOI http://doi.acm.org/10.1145/358916.358995
  23. 23.
    Herlocker, J.L., Konstan, J.A., Riedl, J.T.: An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Inf. Retr. 5(4), 287–310 (2002). DOI http://dx.doi.org/10.1023/A:1020443909834
  24. 24.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). DOI http://doi.acm.org/10.1145/963770.963772 Google Scholar
  25. 25.
    Hijikata, Y., Shimizu, T., Nishida, S.: Discovery-oriented collaborative filtering for improving user satisfaction. In: IUI ’09: Proceedings of the 13th international conference on Intelligent user interfaces, pp. 67–76. ACM, New York, NY, USA (2009). DOI http://doi.acm.org/10.1145/1502650.1502663
  26. 26.
    Hu, R., Pu, P.: A comparative user study on rating vs. personality quiz based preference elicitation methods. In: IUI ´09: Proceedings of the 13th international conference on Intelligent user interfaces, pp. 367–372. ACM, New York, NY, USA (2009). DOI http://doi.acm.org/10.1145/1502650.1502702
  27. 27.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002). DOI http://doi.acm.org/10.1145/582415.582418 Google Scholar
  28. 28.
    Jones, N., Pu, P.: User technology adoption issues in recommender systems. In: Networking and Electronic Conference (2007)Google Scholar
  29. 29.
    Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: CIKM ’01: Proceedings of the tenth international conference on Information and knowledge management, pp. 247–254. ACM, New York, NY, USA (2001). DOI http://doi.acm.org/10.1145/502585.502627
  30. 30.
    Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1–2), 81–93 (1938)MathSciNetMATHGoogle Scholar
  31. 31.
    Kendall, M.G.: The treatment of ties in ranking problems. Biometrika 33(3), 239–251 (1945)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the web: survey and practical guide. Data Min. Knowl. Discov. 18(1), 140–181 (2009). DOI http://dx.doi.org/10.1007/s10618-008-0114-1
  33. 33.
    Konstan, J.A., McNee, S.M., Ziegler, C.N., Torres, R., Kapoor, N., Riedl, J.: Lessons on applying automated recommender systems to information-seeking tasks. In: AAAI (2006)Google Scholar
  34. 34.
    Koychev, I., Schwab, I.: Adaptation to drifting user’s interests. In: In Proceedings of ECML2000 Workshop: Machine Learning in New Information Age, pp. 39–46 (2000)Google Scholar
  35. 35.
    Lam, S.K., Frankowski, D., Riedl, J.: Do you trust your recommendations? an exploration of security and privacy issues in recommender systems. In: In Proceedings of the 2006 Interna296 Guy Shani and Asela Gunawardana tional Conference on Emerging Trends in Information and Communication Security (ETRICS (2006)Google Scholar
  36. 36.
    Lam, S.K., Riedl, J.: Shilling recommender systems for fun and profit. In: WWW ’04: Proceedings of the 13th international conference on World Wide Web, pp. 393–402. ACM, New York, NY, USA (2004). DOI http://doi.acm.org/10.1145/988672.988726
  37. 37.
    Mahmood, T., Ricci, F.: Learning and adaptivity in interactive recommender systems. In: ICEC ’07: Proceedings of the ninth international conference on Electronic commerce, pp. 75–84. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1282100.1282114
  38. 38.
    Marlin, B.M., Zemel, R.S., Roweis, S., Slaney, M.: Collaborative filtering and the missing at random assumption. In: Proceedings of the 23rd COnference on Uncertainity in Artificial Intelligence (2007)Google Scholar
  39. 39.
    Massa, P., Bhattacharjee, B.: Using trust in recommender systems: An experimental analysis. In: In Proceedings of iTrust2004 International Conference, pp. 221–235 (2004)Google Scholar
  40. 40.
    McLaughlin, M.R., Herlocker, J.L.: A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In: SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 329–336. ACM, New York, NY, USA (2004). DOI http://doi.acm.org/10.1145/1008992.1009050
  41. 41.
    McNee, S.M., Riedl, J., Konstan, J.A.: Making recommendations better: an analytic model for human-recommender interaction. In: CHI ’06: CHI ’06 extended abstracts on Human factors in computing systems, pp. 1103–1108. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1125451.1125660
  42. 42.
    McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the netflix prize contenders. In: KDD ’09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 627–636. ACM, New York, NY, USA (2009). DOI http://doi.acm.org/10.1145/1557019.1557090
  43. 43.
    Mobasher, B., Burke, R., Bhaumik, R., Williams, C.: Toward trustworthy recommender systems: An analysis of attack models and algorithm robustness. ACM Trans. Internet Technol. 7(4), 23 (2007). DOI http://doi.acm.org/10.1145/1278366.1278372
  44. 44.
    Murakami, T., Mori, K., Orihara, R.: Metrics for evaluating the serendipity of recommendation lists. New Frontiers in Artificial Intelligence 4914, 40–46 (2008)CrossRefGoogle Scholar
  45. 45.
    O’Mahony, M., Hurley, N., Kushmerick, N., Silvestre, G.: Collaborative recommendation: A robustness analysis. ACM Trans. Internet Technol. 4(4), 344–377 (2004). DOI http://doi.acm.org/10.1145/1031114.1031116 Google Scholar
  46. 46.
    Pfleeger, S.L., Kitchenham, B.A.: Principles of survey research. SIGSOFT Softw. Eng. Notes 26(6), 16–18 (2001). DOI http://doi.acm.org/10.1145/505532.505535
  47. 47.
    Pu, P., Chen, L.: Trust building with explanation interfaces. In: IUI ’06: Proceedings of the 11th international conference on Intelligent user interfaces, pp. 93–100. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1111449.1111475
  48. 48.
    Queiroz, S.: Adaptive preference elicitation for top-k recommendation tasks using gainetworks. In: AIAP’07: Proceedings of the 25th conference on Proceedings of the 25th IASTED International Multi-Conference, pp. 579–584. ACTA Press, Anaheim, CA, USA (2007)Google Scholar
  49. 49.
    Salzberg, S.L.: On comparing classifiers: Pitfalls toavoid and a recommended approach. Data Min. Knowl. Discov. 1(3), 317–328 (1997). DOI http://dx.doi.org/10.1023/A:1009752403260
  50. 50.
    Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommendation algorithms. In:WWW’01: Proceedings of the 10th international conference onWorld Wide Web, pp. 285–295. ACM, New York, NY, USA (2001). DOI http://doi.acm.org/10.1145/371920.372071
  51. 51.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: EC ’00: Proceedings of the 2nd ACM conference on Electronic commerce, pp. 158–167. ACM, New York, NY, USA (2000). DOI http://doi.acm.org/10.1145/352871.352887
  52. 52.
    Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: SIGIR ’02: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 253–260. ACM, New York, NY, USA (2002). DOI http://doi.acm.org/10.1145/564376.564421
  53. 53.
    Shani, G., Chickering, D.M., Meek, C.: Mining recommendations from the web. In: RecSys ’08: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 35–42 (2008)Google Scholar
  54. 54.
    Shani, G., Heckerman, D., Brafman, R.I.: An mdp-based recommender system. Journal of Machine Learning Research 6, 1265–1295 (2005)MathSciNetGoogle Scholar
  55. 55.
    Smyth, B., McClave, P.: Similarity vs. diversity. In: ICCBR, pp. 347–361 (2001)Google Scholar
  56. 56.
    Spillman, W., Lang, E.: The Law of Diminishing Returns. World Book Company (1924)Google Scholar
  57. 57.
    Swearingen, K., Sinha, R.: Beyond algorithms: An hci perspective on recommender systems. In: ACM SIGIR 2001 Workshop on Recommender Systems (2001)Google Scholar
  58. 58.
    Van Rijsbergen, C.J.: Information Retrieval. Butterworth-Heinemann, Newton, MA, USA (1979). URL http://portal.acm.org/citation.cfm?id=539927
  59. 59.
    Voorhees, E.M.: Overview of trec 2002. In: In Proceedings of the 11th Text Retrieval Conference (TREC 2002), NIST Special Publication 500-251, pp. 1–15 (2002)Google Scholar
  60. 60.
    Voorhees, E.M.: The philosophy of information retrieval evaluation. In: CLEF ’01: Revised Papers from the Second Workshop of the Cross-Language Evaluation Forum on Evaluation of Cross-Language Information Retrieval Systems, pp. 355–370. Springer-Verlag, London, UK (2002)Google Scholar
  61. 61.
    Yao, Y.Y.: Measuring retrieval effectiveness based on user preference of documents. J. Amer. Soc. Inf. Sys 46(2), 133–145 (1995)CrossRefGoogle Scholar
  62. 62.
    Zhang, M., Hurley, N.: Avoiding monotony: improving the diversity of recommendation lists. In: RecSys ’08: Proceedings of the 2008 ACM conference on Recommender systems, pp. 123–130. ACM, New York, NY, USA (2008). DOI http://doi.acm.org/10.1145/1454008.1454030
  63. 63.
    Zhang, Y., Callan, J., Minka, T.: Novelty and redundancy detection in adaptive filtering. In: SIGIR ’02: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 81–88. ACM, New York, NY, USA (2002).DOI http://doi.acm.org/10.1145/564376.564393
  64. 64.
    Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: WWW ´05: Proceedings of the 14th international conference on World Wide Web, pp. 22–32. ACM, New York, NY, USA (2005). DOI http://doi.acm.org/10.1145/1060745.1060754

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Microsoft ResearchRedmondUSA

Personalised recommendations