Recommender Systems Handbook pp 257-297 | Cite as
Evaluating Recommendation Systems
- 388 Citations
- 20k Downloads
Abstract
Recommender systems are now popular both commercially and in the research community, where many approaches have been suggested for providing recommendations. In many cases a system designer that wishes to employ a recommendation system must choose between a set of candidate approaches. A first step towards selecting an appropriate algorithm is to decide which properties of the application to focus upon when making this choice. Indeed, recommendation systems have a variety of properties that may affect user experience, such as accuracy, robustness, scalability, and so forth. In this paper we discuss how to compare recommenders based on a set of properties that are relevant for the application. We focus on comparative studies, where a few algorithms are compared using some evaluation metric, rather than absolute benchmarking of algorithms. We describe experimental settings appropriate for making choices between algorithms. We review three types of experiments, starting with an offline setting, where recommendation approaches are compared without user interaction, then reviewing user studies, where a small group of subjects experiment with the system and report on the experience, and finally describe large scale online experiments, where real user populations interact with the system. In each of these cases we describe types of questions that can be answered, and suggest protocols for experimentation. We also discuss how to draw trustworthy conclusions from the conducted experiments. We then review a large set of properties, and explain how to evaluate systems given relevant properties. We also survey a large set of evaluation metrics in the context of the properties that they evaluate.
Keywords
Root Mean Square Error Recommendation System User Study Test User Mean Absolute ErrorPreview
Unable to display preview. Download preview PDF.
References
- 1.Bamber, D.: The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of Mathematical Psychology 12, 387–415 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
- 2.benjamini: Controlling the false discovery rate:a practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57(1), 289–300 (1995)MathSciNetzbMATHGoogle Scholar
- 3.Bonhard, P., Harries, C., McCarthy, J., Sasse, M.A.: Accounting for taste: using profile similarity to improve recommender systems. In: CHI ’06: Proceedings of the SIGCHI conference on Human Factors in computing systems, pp. 1057–1066. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1124772.1124930
- 4.Boutilier, C., Zemel, R.S.: Online queries for collaborative filtering. In: In Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics (2002)Google Scholar
- 5.Box, G.E.P., Hunter,W.G., Hunter, J.S.: Statistics for Experimenters. Wiley, New York (1978)zbMATHGoogle Scholar
- 6.Bradley, K., Smyth, B.: Improving recommendation diversity. In: Twelfth Irish Conference on Artificial Intelligence and Cognitive Science, pp. 85–94 (2001)Google Scholar
- 7.Braziunas, D., Boutilier, C.: Local utility elicitation in GAI models. In: Proceedings of the Twenty-first Conference on Uncertainty in Artificial Intelligence, pp. 42–49. Edinburgh (2005)Google Scholar
- 8.Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algorithms for collaborative filtering. In: UAI, pp. 43–52 (1998)Google Scholar
- 9.Celma, O., Herrera, P.: A new approach to evaluating novel recommendations. In: RecSys ’08: Proceedings of the 2008 ACM conference on Recommender systems, pp. 179–186. ACM, New York, NY, USA (2008). DOI http://doi.acm.org/10.1145/1454008.1454038
- 10.Chirita, P.A., Nejdl, W., Zamfir, C.: Preventing shilling attacks in online recommender systems. In: WIDM ’05: Proceedings of the 7th annual ACM international workshop on Web information and data management, pp. 67–74. ACM, New York, NY, USA (2005). DOI http://doi.acm.org/10.1145/1097047.1097061
- 11.Cramer, H., Evers, V., Ramlal, S., Someren, M., Rutledge, L., Stash, N., Aroyo, L.,Wielinga, B.: The effects of transparency on trust in and acceptance of a content-based art recommender. User Modeling and User-Adapted Interaction 18(5), 455–496 (2008). DOI http://dx.doi.org/10.1007/s11257-008-9051-3
- 12.Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: WWW ’07: Proceedings of the 16th international conference on World Wide Web, pp. 271–280. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1242572.1242610
- 13.Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)Google Scholar
- 14.Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms. ACM Transactions on Information Systems 22(1), 143–177 (2004)CrossRefGoogle Scholar
- 15.Fischer, G.: User modeling in human-computer interaction. User Model. User-Adapt. Interact. 11(1-2), 65–86 (2001)CrossRefzbMATHGoogle Scholar
- 16.Fleder, D.M., Hosanagar, K.: Recommender systems and their impact on sales diversity. In: EC ’07: Proceedings of the 8th ACM conference on Electronic commerce, pp. 192–199. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1250910.1250939
- 17.Frankowski, D., Cosley, D., Sen, S., Terveen, L., Riedl, J.: You are what you say: privacy risks of public mentions. In: SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 565–572. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1148170.1148267
- 18.Fredricks, G.A., Nelsen, R.B.: On the relationship between spearman’s rho and kendall’s tau for pairs of continuous random variables. Journal of Statistical Planning and Inference 137(7), 2143–2150 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
- 19.George, T.: A scalable collaborative filtering framework based on co-clustering. In: Fifth IEEE International Conference on Data Mining, pp. 625–628 (2005)Google Scholar
- 20.Greenwald, A.G.: Within-subjects designs: To use or not to use? Psychological Bulletin 83, 216–229 (1976)Google Scholar
- 21.Haddawy, P., Ha, V., Restificar, A., Geisler, B., Miyamoto, J.: Preference elicitation via theory refinement. Journal of Machine Learning Research 4, 2003 (2002)Google Scholar
- 22.Herlocker, J.L., Konstan, J.A., Riedl, J.T.: Explaining collaborative filtering recommendations. In: CSCW ’00: Proceedings of the 2000 ACM conference on Computer supported cooperative work, pp. 241–250. ACM, New York, NY, USA (2000). DOI http://doi.acm.org/10.1145/358916.358995
- 23.Herlocker, J.L., Konstan, J.A., Riedl, J.T.: An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Inf. Retr. 5(4), 287–310 (2002). DOI http://dx.doi.org/10.1023/A:1020443909834
- 24.Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). DOI http://doi.acm.org/10.1145/963770.963772 Google Scholar
- 25.Hijikata, Y., Shimizu, T., Nishida, S.: Discovery-oriented collaborative filtering for improving user satisfaction. In: IUI ’09: Proceedings of the 13th international conference on Intelligent user interfaces, pp. 67–76. ACM, New York, NY, USA (2009). DOI http://doi.acm.org/10.1145/1502650.1502663
- 26.Hu, R., Pu, P.: A comparative user study on rating vs. personality quiz based preference elicitation methods. In: IUI ´09: Proceedings of the 13th international conference on Intelligent user interfaces, pp. 367–372. ACM, New York, NY, USA (2009). DOI http://doi.acm.org/10.1145/1502650.1502702
- 27.Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002). DOI http://doi.acm.org/10.1145/582415.582418 Google Scholar
- 28.Jones, N., Pu, P.: User technology adoption issues in recommender systems. In: Networking and Electronic Conference (2007)Google Scholar
- 29.Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: CIKM ’01: Proceedings of the tenth international conference on Information and knowledge management, pp. 247–254. ACM, New York, NY, USA (2001). DOI http://doi.acm.org/10.1145/502585.502627
- 30.Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1–2), 81–93 (1938)MathSciNetzbMATHGoogle Scholar
- 31.Kendall, M.G.: The treatment of ties in ranking problems. Biometrika 33(3), 239–251 (1945)CrossRefMathSciNetGoogle Scholar
- 32.Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the web: survey and practical guide. Data Min. Knowl. Discov. 18(1), 140–181 (2009). DOI http://dx.doi.org/10.1007/s10618-008-0114-1
- 33.Konstan, J.A., McNee, S.M., Ziegler, C.N., Torres, R., Kapoor, N., Riedl, J.: Lessons on applying automated recommender systems to information-seeking tasks. In: AAAI (2006)Google Scholar
- 34.Koychev, I., Schwab, I.: Adaptation to drifting user’s interests. In: In Proceedings of ECML2000 Workshop: Machine Learning in New Information Age, pp. 39–46 (2000)Google Scholar
- 35.Lam, S.K., Frankowski, D., Riedl, J.: Do you trust your recommendations? an exploration of security and privacy issues in recommender systems. In: In Proceedings of the 2006 Interna296 Guy Shani and Asela Gunawardana tional Conference on Emerging Trends in Information and Communication Security (ETRICS (2006)Google Scholar
- 36.Lam, S.K., Riedl, J.: Shilling recommender systems for fun and profit. In: WWW ’04: Proceedings of the 13th international conference on World Wide Web, pp. 393–402. ACM, New York, NY, USA (2004). DOI http://doi.acm.org/10.1145/988672.988726
- 37.Mahmood, T., Ricci, F.: Learning and adaptivity in interactive recommender systems. In: ICEC ’07: Proceedings of the ninth international conference on Electronic commerce, pp. 75–84. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1282100.1282114
- 38.Marlin, B.M., Zemel, R.S., Roweis, S., Slaney, M.: Collaborative filtering and the missing at random assumption. In: Proceedings of the 23rd COnference on Uncertainity in Artificial Intelligence (2007)Google Scholar
- 39.Massa, P., Bhattacharjee, B.: Using trust in recommender systems: An experimental analysis. In: In Proceedings of iTrust2004 International Conference, pp. 221–235 (2004)Google Scholar
- 40.McLaughlin, M.R., Herlocker, J.L.: A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In: SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 329–336. ACM, New York, NY, USA (2004). DOI http://doi.acm.org/10.1145/1008992.1009050
- 41.McNee, S.M., Riedl, J., Konstan, J.A.: Making recommendations better: an analytic model for human-recommender interaction. In: CHI ’06: CHI ’06 extended abstracts on Human factors in computing systems, pp. 1103–1108. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1125451.1125660
- 42.McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the netflix prize contenders. In: KDD ’09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 627–636. ACM, New York, NY, USA (2009). DOI http://doi.acm.org/10.1145/1557019.1557090
- 43.Mobasher, B., Burke, R., Bhaumik, R., Williams, C.: Toward trustworthy recommender systems: An analysis of attack models and algorithm robustness. ACM Trans. Internet Technol. 7(4), 23 (2007). DOI http://doi.acm.org/10.1145/1278366.1278372
- 44.Murakami, T., Mori, K., Orihara, R.: Metrics for evaluating the serendipity of recommendation lists. New Frontiers in Artificial Intelligence 4914, 40–46 (2008)CrossRefGoogle Scholar
- 45.O’Mahony, M., Hurley, N., Kushmerick, N., Silvestre, G.: Collaborative recommendation: A robustness analysis. ACM Trans. Internet Technol. 4(4), 344–377 (2004). DOI http://doi.acm.org/10.1145/1031114.1031116 Google Scholar
- 46.Pfleeger, S.L., Kitchenham, B.A.: Principles of survey research. SIGSOFT Softw. Eng. Notes 26(6), 16–18 (2001). DOI http://doi.acm.org/10.1145/505532.505535
- 47.Pu, P., Chen, L.: Trust building with explanation interfaces. In: IUI ’06: Proceedings of the 11th international conference on Intelligent user interfaces, pp. 93–100. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1111449.1111475
- 48.Queiroz, S.: Adaptive preference elicitation for top-k recommendation tasks using gainetworks. In: AIAP’07: Proceedings of the 25th conference on Proceedings of the 25th IASTED International Multi-Conference, pp. 579–584. ACTA Press, Anaheim, CA, USA (2007)Google Scholar
- 49.Salzberg, S.L.: On comparing classifiers: Pitfalls toavoid and a recommended approach. Data Min. Knowl. Discov. 1(3), 317–328 (1997). DOI http://dx.doi.org/10.1023/A:1009752403260
- 50.Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommendation algorithms. In:WWW’01: Proceedings of the 10th international conference onWorld Wide Web, pp. 285–295. ACM, New York, NY, USA (2001). DOI http://doi.acm.org/10.1145/371920.372071
- 51.Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: EC ’00: Proceedings of the 2nd ACM conference on Electronic commerce, pp. 158–167. ACM, New York, NY, USA (2000). DOI http://doi.acm.org/10.1145/352871.352887
- 52.Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: SIGIR ’02: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 253–260. ACM, New York, NY, USA (2002). DOI http://doi.acm.org/10.1145/564376.564421
- 53.Shani, G., Chickering, D.M., Meek, C.: Mining recommendations from the web. In: RecSys ’08: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 35–42 (2008)Google Scholar
- 54.Shani, G., Heckerman, D., Brafman, R.I.: An mdp-based recommender system. Journal of Machine Learning Research 6, 1265–1295 (2005)MathSciNetGoogle Scholar
- 55.Smyth, B., McClave, P.: Similarity vs. diversity. In: ICCBR, pp. 347–361 (2001)Google Scholar
- 56.Spillman, W., Lang, E.: The Law of Diminishing Returns. World Book Company (1924)Google Scholar
- 57.Swearingen, K., Sinha, R.: Beyond algorithms: An hci perspective on recommender systems. In: ACM SIGIR 2001 Workshop on Recommender Systems (2001)Google Scholar
- 58.Van Rijsbergen, C.J.: Information Retrieval. Butterworth-Heinemann, Newton, MA, USA (1979). URL http://portal.acm.org/citation.cfm?id=539927
- 59.Voorhees, E.M.: Overview of trec 2002. In: In Proceedings of the 11th Text Retrieval Conference (TREC 2002), NIST Special Publication 500-251, pp. 1–15 (2002)Google Scholar
- 60.Voorhees, E.M.: The philosophy of information retrieval evaluation. In: CLEF ’01: Revised Papers from the Second Workshop of the Cross-Language Evaluation Forum on Evaluation of Cross-Language Information Retrieval Systems, pp. 355–370. Springer-Verlag, London, UK (2002)Google Scholar
- 61.Yao, Y.Y.: Measuring retrieval effectiveness based on user preference of documents. J. Amer. Soc. Inf. Sys 46(2), 133–145 (1995)CrossRefGoogle Scholar
- 62.Zhang, M., Hurley, N.: Avoiding monotony: improving the diversity of recommendation lists. In: RecSys ’08: Proceedings of the 2008 ACM conference on Recommender systems, pp. 123–130. ACM, New York, NY, USA (2008). DOI http://doi.acm.org/10.1145/1454008.1454030
- 63.Zhang, Y., Callan, J., Minka, T.: Novelty and redundancy detection in adaptive filtering. In: SIGIR ’02: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 81–88. ACM, New York, NY, USA (2002).DOI http://doi.acm.org/10.1145/564376.564393
- 64.Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: WWW ´05: Proceedings of the 14th international conference on World Wide Web, pp. 22–32. ACM, New York, NY, USA (2005). DOI http://doi.acm.org/10.1145/1060745.1060754