Content-based Recommender Systems: State of the Art and Trends

  • Pasquale Lops
  • Marco de Gemmis
  • Giovanni Semeraro


Recommender systems have the effect of guiding users in a personalized way to interesting objects in a large space of possible options. Content-based recommendation systems try to recommend items similar to those a given user has liked in the past. Indeed, the basic process performed by a content-based recommender consists in matching up the attributes of a user profile in which preferences and interests are stored, with the attributes of a content object (item), in order to recommend to the user new interesting items. This chapter provides an overview of content-based recommender systems, with the aim of imposing a degree of order on the diversity of the different aspects involved in their design and implementation. The first part of the chapter presents the basic concepts and terminology of contentbased recommender systems, a high level architecture, and their main advantages and drawbacks. The second part of the chapter provides a review of the state of the art of systems adopted in several application domains, by thoroughly describing both classical and advanced techniques for representing items and user profiles. The most widely adopted techniques for learning user profiles are also presented. The last part of the chapter discusses trends and future research which might lead towards the next generation of systems, by describing the role of User Generated Content as a way for taking into account evolving vocabularies, and the challenge of feeding users with serendipitous recommendations, that is to say surprisingly interesting items that they might not have otherwise discovered.


Recommender System Relevance Feedback Domain Ontology Collaborative Filter User Interest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aciar, S., Zhang, D., Simoff, S., Debenham, J.: Informed Recommender: Basing Recommendations on Consumer Product Reviews. IEEE Intelligent Systems 22(3), 39–47 (2007)CrossRefGoogle Scholar
  2. 2.
    Ahn, J., Brusilovsky, P., Grady, J., He, D., Syn, S.Y.: Open User Profiles for Adaptive News Systems: Help or Harm? In: C.L.Williamson, M.E. Zurko, P.F. Patel-Schneider, P.J. Shenoy (eds.) Proceedings of the 16th International Conference on World Wide Web, pp. 11–20. ACM (2007)Google Scholar
  3. 3.
    Anderson, M.: Google Searches for Ad Dollars in Social Networks. IEEE Spectrum 45(12), 16 (2008)CrossRefGoogle Scholar
  4. 4.
    Asnicar, F., Tasso, C.: ifWeb: a Prototype of User Model-based Intelligent Agent for Documentation Filtering and Navigation in the Word Wide Web. In: C. Tasso, A. Jameson, C.L. Paris (eds.) Proceedings of the First International Workshop on Adaptive Systems and User Modeling on the World Wide Web, Sixth International Conference on User Modeling, pp. 3–12. Chia Laguna, Sardinia, Italy (1997)Google Scholar
  5. 5.
    Aurnhammer, M., Hanappe, P., Steels, L.: Integrating Collaborative Tagging and Emergent Semantics for Image Retrieval. In: Proceedings of the WWW 2006 Collaborative Web Tagging Workshop (2006)Google Scholar
  6. 6.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley (1999)Google Scholar
  7. 7.
    Balabanovic, M., Shoham, Y.: Fab: Content-based, Collaborative Recommendation. Communications of the ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  8. 8.
    Basile, P., Degemmis, M., Gentile, A., Lops, P., Semeraro, G.: UNIBA: JIGSAW algorithm for Word Sense Disambiguation. In: Proceedings of the 4th ACL 2007 International Workshop on Semantic Evaluations (SemEval-2007), Prague, Czech Republic, pp. 398–401. Association for Computational Linguistics (2007)Google Scholar
  9. 9.
    Basile, P., de Gemmis, M., Gentile, A., Iaquinta, L., Lops, P., Semeraro, G.: An Electronic Performance Support System Based on a Hybrid Content-Collaborative Recommender System. Neural Network World: International Journal on Neural and Mass-Parallel Computing and Information Systems 17(6), 529–541 (2007)Google Scholar
  10. 10.
    Basile, P., de Gemmis, M., Gentile, A., Iaquinta, L., Lops, P.: The JUMP project: Domain Ontologies and Linguistic Knowledge @ Work. In: Proceedings of the 4th Italian Semantic Web Applications and Perspectives - SWAP 2007, CEUR Workshop Proceedings. CEURWS. org (2007)Google Scholar
  11. 11.
    Billsus, D., Pazzani, M.: Learning Probabilistic User Models. In: Proceedings of the Workshop on Machine Learning for User Modeling. Chia Laguna, IT (1997). URL Scholar
  12. 12.
    Billsus, D., Pazzani, M.J.: A Hybrid User Model for News Story Classification. In: Proceedings of the Seventh International Conference on User Modeling.Banff, Canada (1999)Google Scholar
  13. 13.
    Billsus, D., Pazzani, M.J.: User Modeling for Adaptive News Access. User Modeling and User-Adapted Interaction 10(2-3), 147–180 (2000)CrossRefGoogle Scholar
  14. 14.
    Blanco-Fernandez, Y., Pazos-Arias J. J., G.S.A., Ramos-Cabrer, M., Lopez-Nores, M.: Providing Entertainment by Content-based Filtering and Semantic Reasoning in Intelligent Recommender Systems. IEEE Transactions on Consumer Electronics 54(2), 727–735 (2008)Google Scholar
  15. 15.
    Bollacker, K.D., Giles, C.L.: CiteSeer: An AutonomousWeb Agent for Automatic Retrieval and Identification of Interesting Publications. In: K. Sycara, M. Wooldridge (eds.) Proceedings of the Second International Conference on Autonomous Agents, pp. 116–123. ACM Press (1998)Google Scholar
  16. 16.
    Boone, G.: Concept Features in Re:Agent, an Intelligent Email Agent. In: K. Sycara, M. Wooldridge (eds.) Proceedings of the Second International Conference on Autonomous Agents, pp. 141–148. ACM Press (1998)Google Scholar
  17. 17.
    Burke, R.: Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Cantador, I., Bellogìn, A., Castells, P.: News@hand: A Semantic Web Approach to Recommending News. In: W. Nejdl, J. Kay, P. Pu, E. Herder (eds.) Adaptive Hypermedia and Adaptive Web-Based Systems, Lecture Notes in Computer Science, vol. 5149, pp. 279–283. Springer (2008)Google Scholar
  19. 19.
    Cantador, I., Szomszor, M., Alani, H., Fernandez, M., Castells, P.: Ontological User Profiles with Tagging History for Multi-Domain Recommendations. In: Proceedings of the Collective Semantics: Collective Intelligence and the SemanticWeb, CISWeb2008, Tenerife, Spain (2008)Google Scholar
  20. 20.
    Carmagnola, F., Cena, F., Cortassa, O., Gena, C., Torre, I.: Towards a Tag-Based User Model: How Can User Model Benefit from Tags? In: User Modeling 2007, Lecture Notes in Computer Science, vol. 4511, pp. 445–449. Springer (2007)Google Scholar
  21. 21.
    Celma, O., Ramìrez, M., Herrera, P.: Foafing the Music: A Music Recommendation System based on RSS Feeds and User Preferences. In: 6th International Conference on Music Information Retrieval (ISMIR), pp. 464–467. London, UK (2005)Google Scholar
  22. 22.
    Celma, O., Serra, X.: FOAFing the Music: Bridging the Semantic Gap in Music Recommendation. Web Semantics 6(4), 250–256 (2008)Google Scholar
  23. 23.
    Chen, L., Sycara, K.: WebMate: A Personal Agent for Browsing and Searching. In: K.P. Sycara, M. Wooldridge (eds.) Proceedings of the 2nd International Conference on Autonomous Agents, pp. 9–13. ACM Press, New York (1998)Google Scholar
  24. 24.
    Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.: Combining Content-Based and Collaborative Filters in an Online Newspaper. In: Proceedings of ACM SIGIR Workshop on Recommender Systems (1999). URL claypool99combining.htmlGoogle Scholar
  25. 25.
    25 Collins, A.M., Loftus, E.F.: A Spreading Activation Theory of Semantic Processing. Psychological Review 82(6), 407–428 (1975)CrossRefGoogle Scholar
  26. 26.
    Csomai, A., Mihalcea, R.: Linking Documents to Encyclopedic Knowledge. IEEE Intelligent Systems 23(5), 34–41 (2008)CrossRefGoogle Scholar
  27. 27.
    Degemmis, M., Lops, P., Semeraro, G.: A Content-collaborative Recommender that ExploitsWordNet-based User Profiles for Neighborhood Formation. User Modeling and User- Adapted Interaction: The Journal of Personalization Research (UMUAI) 17(3), 217–255 (2007). Springer Science + Business Media B.V.Google Scholar
  28. 28.
    Diederich, J., Iofciu, T.: Finding Communities of Practice from User Profiles Based On Folksonomies. In: Innovative Approaches for Learning and Knowledge Sharing, EC-TEL Workshop Proc., pp. 288–297 (2006)Google Scholar
  29. 29.
    Domingos, P., Pazzani, M.J.: On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning 29(2-3), 103–130 (1997)zbMATHCrossRefGoogle Scholar
  30. 30.
    Egozi, O., Gabrilovich, E., Markovitch, S.: Concept-Based Feature Generation and Selection for Information Retrieval. In: D. Fox, C.P. Gomes (eds.) Proceedings of the Twenty- Third AAAI Conference on Artificial Intelligence, AAAI 2008, pp. 1132–1137. AAAI Press (2008). ISBN 978-1-57735-368-3Google Scholar
  31. 31.
    Eirinaki, M., Vazirgiannis, M., Varlamis, I.: SEWeP: Using Site Semantics and a Taxonomy to enhance the Web Personalization Process. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 99–108. ACM (2003)Google Scholar
  32. 32.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998) 102 Pasquale Lops, Marco de Gemmis and Giovanni SemeraroGoogle Scholar
  33. 33.
    Firan, C.S., Nejdl, W., Paiu, R.: The Benefit of Using Tag-Based Profiles. In: Proceedings of the Latin American Web Conference, pp. 32–41. IEEE Computer Society, Washington, DC, USA (2007). DOI ISBN 0-7695-3008-7
  34. 34.
    Gabrilovich, E., Markovitch, S.: Overcoming the Brittleness Bottleneck using Wikipedia: Enhancing Text Categorization with Encyclopedic Knowledge. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, pp. 1301–1306. AAAI Press (2006)Google Scholar
  35. 35.
    Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis. In: M.M. Veloso (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 1606–1611 (2007)Google Scholar
  36. 36.
    Gemmis, M.d., Lops, P., Semeraro, G., Basile, P.: Integrating Tags in a Semantic Contentbased Recommender. In: Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008, Lausanne, Switzerland, October 23-25, 2008, pp. 163–170 (2008)CrossRefGoogle Scholar
  37. 37.
    Giles, J.: Internet Encyclopaedias Go Head to Head. Nature 438, 900–901 (2005)CrossRefGoogle Scholar
  38. 38.
    Godoy, D., Amandi, A.: Hybrid Content and Tag-based Profiles for Recommendation in Collaborative Tagging Systems. In: Proceedings of the 6th Latin American Web Congress (LA-WEB 2008), pp. 58–65. IEEE Computer Society (2008). ISBN 978-0-7695-3397-1Google Scholar
  39. 39.
    Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM 35(12), 61–70 (1992). URL http: // Special Issue on Information Filtering
  40. 40.
    Golder, S., Huberman, B.A.: The Structure of Collaborative Tagging Systems. Journal of Information Science 32(2), 198–208 (2006)CrossRefGoogle Scholar
  41. 41.
    Gup, T.: Technology and the End of Serendipity. The Chronicle of Higher Education (44), 52 (1997)Google Scholar
  42. 42.
    Herlocker, L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)CrossRefGoogle Scholar
  43. 43.
    Holte, R.C., Yan, J.N.Y.: Inferring What a User Is Not Interested in. In: G.I. McCalla (ed.) Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol. 1081, pp. 159– 171 (1996). ISBN 3-540-61291-2Google Scholar
  44. 44.
    Iaquinta, L., de Gemmis, M., Lops, P., Semeraro, G., Filannino, M., Molino, P.: Introducing Serendipity in a Content-based Recommender System. In: F. Xhafa, F. Herrera, A. Abraham, M. K¨oppen, J.M. Benitez (eds.) Proceedings of the Eighth International Conference on Hybrid Intelligent Systems HIS-2008, pp. 168–173. IEEE Computer Society Press, Los Alamitos, California (2008)CrossRefGoogle Scholar
  45. 45.
    Joachims, T., Freitag, D., Mitchell, T.M.: Web Watcher: A Tour Guide for the World Wide Web. In: 15th International Joint Conference on Artificial Intelligence, pp. 770–777 (1997). URL Scholar
  46. 46.
    Kim, S.B., Han, K.S., Rim, H.C., Myaeng, S.H.: Some Effective Techniques for Na¨ıve Bayes Text Classification. IEEE Trans. Knowl. Data Eng. 18(11), 1457–1466 (2006)CrossRefGoogle Scholar
  47. 47.
    Lees-Miller, J., Anderson, F., Hoehn, B., Greiner, R.: Does Wikipedia Information Help Netflix Predictions? In: Seventh International Conference on Machine Learning and Applications (ICMLA), pp. 337–343. IEEE Computer Society (2008). ISBN 978-0-7695-3495-4Google Scholar
  48. 48.
    Lewis, D.D., Ringuette, M.: A Comparison of Two Learning Algorithms for Text Categorization. In: Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, pp. 81–93. Las Vegas, US (1994)Google Scholar
  49. 49.
    Lieberman, H.: Letizia: an Agent that Assists Web Browsing. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 924–929. Morgan Kaufmann (1995)Google Scholar
  50. 50.
    Linden, G., Smith, B., York, J.: Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing 7(1), 76–80 (2003)CrossRefGoogle Scholar
  51. 51.
    Magnini, B., Strapparava, C.: Experiments in Word Domain Disambiguation for Parallel Texts. In: Proc. of SIGLEX Workshop on Word Senses and Multi-linguality, Hong-Kong, October 2000. ACL (2000)Google Scholar
  52. 52.
    Magnini, B., Strapparava, C.: Improving User Modelling with Content-based Techniques. In: Proceedings of the 8th International Conference of User Modeling, pp. 74–83. Springer (2001)Google Scholar
  53. 53.
    Mak, H., Koprinska, I., Poon, J.: INTIMATE: A Web-Based Movie Recommender Using Text Categorization. In: Proceedings of the IEEE/WIC International Conference on Web Intelligence, pp. 602–605. IEEE Computer Society (2003). ISBN 0-7695-1932-6Google Scholar
  54. 54.
    McCallum, A., Nigam, K.: A Comparison of Event Models for Na¨ıve Bayes Text Classification. In: Proceedings of the AAAI/ICML-98Workshop on Learning for Text Categorization, pp. 41–48. AAAI Press (1998)Google Scholar
  55. 55.
    McNee, S.M., Riedl, J., Konstan, J.A.: Accurate is not Always Good: How Accuracy Metrics have hurt Recommender Systems. In: Extended Abstracts of the ACM Conference on Human Factors in Computing Systems (2006)Google Scholar
  56. 56.
    Melville, P., Mooney, R.J., Nagarajan, R.: Content-Boosted Collaborative Filtering for Improved Recommendations. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelligence (AAAI/IAAI-02), pp. 187–192. AAAI Press, Menlo Parc, CA, USA (2002)Google Scholar
  57. 57.
    Michlmayr, E., Cayzer, S.: Learning User Profiles from Tagging Data and Leveraging them for Personal(ized) Information Access. In: Proc. of the Workshop on Tagging and Metadata for Social Information Organization, Int. WWW Conf. (2007)Google Scholar
  58. 58.
    Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological User Profiling in Recommender Systems. ACM Transactions on Information Systems 22(1), 54–88 (2004)CrossRefGoogle Scholar
  59. 59.
    Mihalcea, R., Csomai, A.: Wikify!: Linking Documents to Encyclopedic Knowledge. In: Proceedings of the sixteenth ACM conference on Conference on Information and Knowledge Management, pp. 233–242. ACM, New York, NY, USA (2007). DOI http://doi.acm. org/10.1145/1321440.1321475. ISBN 978-1-59593-803-9
  60. 60.
    Miller, G.: WordNet: An On-Line Lexical Database. International Journal of Lexicography 3(4) (1990). (Special Issue)Google Scholar
  61. 61.
    Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)Google Scholar
  62. 62.
    Mladenic, D.: Machine learning used by PersonalWebWatcher. In: Proceedings of ACAI-99 Workshop on Machine Learning and Intelligent Agents (1999)Google Scholar
  63. 63.
    Mladenic, D.: Text-learning and Related Intelligent Agents: A Survey. IEEE Intelligent Systems 14(4), 44–54 (1999)CrossRefGoogle Scholar
  64. 64.
    Montaner, M., Lopez, B., Rosa, J.L.D.L.: A Taxonomy of Recommender Agents on the Internet. Artificial Intelligence Review 19(4), 285–330 (2003)CrossRefGoogle Scholar
  65. 65.
    Mooney, R.J., Roy, L.: Content-Based Book Recommending Using Learning for Text Categorization. In: Proceedings of the 5th ACM Conference on Digital Libraries, pp. 195–204. ACM Press, New York, US, San Antonio, US (2000)Google Scholar
  66. 66.
    Moukas, A.: Amalthaea Information Discovery and Filtering Using a Multiagent Evolving Ecosystem. Applied Artificial Intelligence 11(5), 437–457 (1997)CrossRefGoogle Scholar
  67. 67.
    Mukherjee, R., Jonsdottir, G., Sen, S., Sarathi, P.: MOVIES2GO: an Online Voting based Movie Recommender System. In: Proceedings of the Fifth International Conference on Autonomous Agents, pp. 114–115. ACM Press (2001)Google Scholar
  68. 68.
    Pazzani, M., Billsus, D.: Learning and Revising User Profiles: The Identification of Interesting Web Sites. Machine Learning 27(3), 313–331 (1997)CrossRefGoogle Scholar
  69. 69.
    Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems. In: P. Brusilovsky, A. Kobsa, W. Nejdl (eds.) The Adaptive Web, Lecture Notes in Computer Science, vol. 4321, pp. 325–341 (2007). ISBN 978-3-540-72078-2Google Scholar
  70. 70.
    Pazzani, M.J., Muramatsu, J., Billsus, D.: Syskill and Webert: Identifying Interesting Web Sites. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence and the Eighth Innovative Applications of Artificial Intelligence Conference, pp. 54–61. AAAI Press / MIT Press, Menlo Park (1996)Google Scholar
  71. 71.
    Picard, R.W.: Affective Computing. MIT Press (2000)Google Scholar
  72. 72.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proceedings of ACM 1994 Conference 104 Pasquale Lops, Marco de Gemmis and Giovanni Semeraro on Computer Supported CooperativeWork, pp. 175–186. ACM, Chapel Hill, North Carolina (1994). URL Scholar
  73. 73.
    Resnick, P., Varian, H.: Recommender Systems. Communications of the ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  74. 74.
    Rich, E.: User Modeling via Stereotypes. Cognitive Science 3, 329–354 (1979)CrossRefGoogle Scholar
  75. 75.
    Rocchio, J.: Relevance Feedback Information Retrieval. In: G. Salton (ed.) The SMART retrieval system - experiments in automated document processing, pp. 313–323. Prentice- Hall, Englewood Cliffs, NJ (1971)Google Scholar
  76. 76.
    Rokach, L., Maimon, O., Data Mining with Decision Trees: Theory and Applications,World Scientific Publishing (2008).Google Scholar
  77. 77.
    Sahlgren, M.: The Word-Space Model: Using Distributional Analysis to Represent Syntagmatic and Paradigmatic Relations betweenWords in High-dimensional Vector Spaces. Ph.D. thesis, Stockholm: Stockholm University, Faculty of Humanities, Department of Linguistics (2006)Google Scholar
  78. 78.
    Salter, J., Antonoupoulos, N.: CinemaScreen Recommender Agent: Combining collaborative and content-based filtering. IEEE Intelligent Systems 21(1), 35–41 (2006)CrossRefGoogle Scholar
  79. 79.
    Salton, G.: Automatic Text Processing. Addison-Wesley (1989)Google Scholar
  80. 80.
    Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)Google Scholar
  81. 81.
    Schwab, I., Kobsa, A., Koychev, I.: Learning User Interests through Positive Examples using Content Analysis and Collaborative Filtering (2001). URL Scholar
  82. 82.
    Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys34(1)(2002)Google Scholar
  83. 83.
    Semeraro, G., Basile, P., de Gemmis, M., Lops, P.: User Profiles for Personalizing Digital Libraries. In: Y.L. Theng, S. Foo, D.G.H. Lian, J.C. Na (eds.) Handbook of Research on Digital Libraries: Design, Development and Impact, pp. 149–158. IGI Global (2009). ISBN 978-159904879-6Google Scholar
  84. 84.
    Semeraro, G., Degemmis, M., Lops, P., Basile, P.: Combining Learning and Word Sense Disambiguation for Intelligent User Profiling. In: M.M. Veloso (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 2856–2861 (2007). ISBN 978-I-57735-298-3Google Scholar
  85. 85.
    Semeraro, G., Lops, P., Basile, P., Gemmis, M.d.: Knowledge Infusion into Content-based Recommender Systems. In: Proceedings of the 2009 ACM Conference on Recommender Systems, RecSys 2009, New York, USA, October 22-25, 2009 (2009). To appearGoogle Scholar
  86. 86.
    Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating “Word of Mouth”. In: Proceedings of ACM CHI’95 Conference on Human Factors in Computing Systems, vol. 1, pp. 210–217 (1995). URL shardanand95social.htmlGoogle Scholar
  87. 87.
    Sheth, B., Maes, P.: Evolving Agents for Personalized Information Filtering. In: Proceedings of the Ninth Conference on Artificial Intelligence for Applications, pp. 345–352. IEEE Computer Society Press (1993)Google Scholar
  88. 88.
    Smirnov, A.V., Krizhanovsky, A.: Information Filtering based on Wiki Index Database. CoRR abs/0804.2354 (2008)Google Scholar
  89. 89.
    Smith, B., Cotter, P.: A Personalized TV Listings Service for the Digital TV Age. Knowledge-Based Systems 13, 53–59 (2000)CrossRefGoogle Scholar
  90. 90.
    Sorensen, H., McElligott, M.: PSUN: A Profiling System for Usenet News. In: Proceedings of CIKM ’95 Intelligent Information Agents Workshop (1995)Google Scholar
  91. 91.
    Sorensen, H., O’Riordan, A., O’Riordan, C.: Profiling with the INFOrmer Text Filtering Agent. Journal of Universal Computer Science 3(8), 988–1006 (1997)Google Scholar
  92. 92.
    Stefani, A., Strapparava, C.: Personalizing Access toWeb Sites: The SiteIF Project. In: Proc. of second Workshop on Adaptive Hypertext and Hypermedia, Pittsburgh, June 1998 (1998)Google Scholar
  93. 93.
    Straffin, P.D.J.: Topics in the Theory of Voting. The UMAP expository monograph series. Birkhauser (1980)Google Scholar
  94. 94.
    Symeonidis, P.: Content-based Dimensionality Reduction for Recommender Systems. In: C. Preisach, H. Burkhardt, L. Schmidt-Thieme, R. Decker (eds.) Data Analysis, Machine Learning and Applications, Studies in Classification, Data Analysis, and Knowledge Organization, pp. 619–626. Springer Berlin Heidelberg (2008). ISBN 978-3-540-78239-1Google Scholar
  95. 95.
    Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag Recommendations based on Tensor Dimensionality Reduction. In: Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008, Lausanne, Switzerland, October 23-25, 2008, pp. 43–50 (2008)Google Scholar
  96. 96.
    Szomszor, M., Cattuto, C., Alani, H., O’Hara, K., Baldassarri, A., Loreto, V., Servedio, V.D.P.: Folksonomies, the Semantic Web, and Movie Recommendation. In: Proceedings of the Workshop on Bridging the Gap between Semantic Web and Web 2.0 at the 4th ESWC (2007)Google Scholar
  97. 97.
    Toms, E.: Serendipitous Information Retrieval. In: Proceedings of DELOS Workshop: Information Seeking, Searching and Querying in Digital Libraries (2000)Google Scholar
  98. 98.
    Tso-Sutter, K.H.L., Marinho, L.B., Schmidt-Thieme, L.: Tag-aware Recommender Systems by Fusion of Collaborative Filtering Algorithms. In: SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing, pp. 1995–1999. ACM (2008). ISBN 978-1-59593-753-7Google Scholar
  99. 99.
    Wasfi, A.M.: Collecting User Access Patterns for Building User Profiles and Collaborative Filtering. In: Proceedings of the International Conference on Intelligent User Interfaces, pp. 57–64 (1999)Google Scholar
  100. 100.
    Witten, I.H., Bell, T.: The Zero-frequency Problem: Estimating the Probabilities of Novel Events in Adaptive Text Compression. IEEE Transactions on Information Theory 37(4) (1991)Google Scholar
  101. 101.
    Yang, Y., Pedersen, J.O.: A Comparative Study on Feature Selection in Text Categorization. In: D.H. Fisher (ed.) Proceedings of ICML-97, 14th International Conference on Machine Learning, pp. 412–420. Morgan Kaufmann Publishers, San Francisco, US, Nashville, US (1997). URL Scholar
  102. 102.
    Yeung, C.M.A., Gibbins, N., Shadbolt, N.: A Study of User Profile Generation from Folksonomies. In: Proc. of the Workshop on Social Web and Knowledge Management, WWW Conf. (2008)Google Scholar
  103. 103.
    Zhang, Y., Callan, J., Minka, T.: Novelty and Redundancy Detection in Adaptive Filtering. In: Proceedings of the 25th International ACM SIGIR Conference, pp. 81–88 (2002)Google Scholar
  104. 104.
    Zhao, S., Du, N., Nauerz, A., Zhang, X., Yuan, Q., Fu, R.: Improved Recommendation based on Collaborative Tagging Behaviors. In: Proceedings of International Conference on Intelligent User Interfaces, IUI, pp. 413–416. ACM (2008). ISBN 978-1-59593-987-6Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Pasquale Lops
    • 1
  • Marco de Gemmis
    • 1
  • Giovanni Semeraro
    • 1
  1. 1.Department of Computer ScienceUniversity of Bari “Aldo Moro”BariItaly

Personalised recommendations