Tropomyosin pp 283-292

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 644)

Tropomodulin/Tropomyosin Interactions Regulate Actin Pointed End Dynamics

  • Alla S. Kostyukova

Abstract

Dynamics of the slow-growing (pointed) end of the actin filament is regulated by tropomodulins, a family of capping proteins that require tropomyosin for optimal function. Tropomodulin is an elongated molecule with a molecular mass of about 40 kDa, containing the Tm-independent actin-binding site at the C-terminus. The highly disordered N-terminal half of tropomodulin contains two Tm-binding sites and a Tm-dependent actin-binding site. There are many Tm isoforms whose distribution varies in different tissues and cell compartments and changes during development of these tissues. Tropomyosin/tropomodulin interactions are isoform specific. Differences in Tm affinity for the two binding sites in Tmod may regulate its correct positioning at the pointed end as well as effectiveness of capping actin filament. The regulation of tropomodulin binding may have significant consequences for local cytoskeletal formation and filament dynamics in cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fowler VM. Identification and purification of a novel Mr 43,000 tropomyosin-binding protein from human erythrocyte membranes. J Biol Chem 1987; 262(26):12792–12800.PubMedGoogle Scholar
  2. 2.
    Weber A, Pennise CR, Babcock GG et al. Tropomodulin caps the pointed ends of actin filaments. J Cell Biol 1994; 127(6 Pt 1):1627–1635.PubMedCrossRefGoogle Scholar
  3. 3.
    Gregorio CC, Fowler VM. Mechanisms of thin filament assembly in embryonic chick cardiac myocytes: tropomodulin requires tropomyosin for assembly. J Cell Biol 1995; 129(3):683–695.PubMedCrossRefGoogle Scholar
  4. 4.
    Weber A, Pennise CR, Fowler VM. Tropomodulin increases the critical concentration of barbed end-capped actin filaments by converting ADP.P(i)-actin to ADP-actin at all pointed filament ends [In Process Citation]. J Biol Chem 1999; 274(49):34637–34645.PubMedCrossRefGoogle Scholar
  5. 5.
    Littlefield R, Almenar-Queralt A, Fowler VM. Actin dynamics at pointed ends regulates thin filament length in striated muscle. Nat Cell Biol 2001; 3(6):544–551.PubMedCrossRefGoogle Scholar
  6. 6.
    Gunning PW, Schevzov G, Kee AJ et al. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 2005; 15(6):333–341.PubMedCrossRefGoogle Scholar
  7. 7.
    Watakabe A, Kobayashi R, Helfman DM. N-tropomodulin: a novel isoform of tropomodulin identified as the major binding protein to brain tropomyosin. J Cell Sci 1996; 109 (Pt 9):2299–2310.PubMedGoogle Scholar
  8. 8.
    Almenar-Queralt A, Lee A, Conley CA et al. Identification of a novel tropomodulin isoform, skeletal tropomodulin, that caps actin filament pointed ends in fast skeletal muscle. J Biol Chem 1999; 274(40):28466–28475.PubMedCrossRefGoogle Scholar
  9. 9.
    Conley CA, Fritz-Six KL, Almenar-Queralt A et al. Leiomodins: larger members of the tropomodulin (tmod) gene family. Genomics 2001; 73(2):127–139.PubMedCrossRefGoogle Scholar
  10. 10.
    Dye CA, Lee JK, Atkinson RC et al. The Drosophila sanpodo gene controls sibling cell fate and encodes a tropomodulin homolog, an actin/tropomyosin-associated protein. Development 1998; 125(10):1845–1856.PubMedGoogle Scholar
  11. 11.
    Conley CA. Leiomodin and tropomodulin in smooth muscle. Am J Physiol Cell Physiol 2001; 280(6):C1645–1656.PubMedGoogle Scholar
  12. 12.
    Kostyukova A. Leiomodin/tropomyosin interactions are isoform specific. Archives Biochem. Biophys 2007; 465(1):227–230.CrossRefGoogle Scholar
  13. 13.
    Chereau D, Boczkowska M, Fujiwara I et al. Leiomodin: a novel actin filament nucleating factor. Paper presented at: 46th ASCB Annual Meeting 2006; San Diego, CA.Google Scholar
  14. 14.
    Fischer RS, Sept D, Weber KL et al. Tmod3 binds actin monomer in vitro and in vivo. Molecular Biology of the Cell 2004; 15:147a.Google Scholar
  15. 15.
    Fischer RS, Yarmola EG, Weber KL et al. Tropomodulin 3 binds to actin monomers. J. Biol Chem 2006; 281(47):36454–36465. Epub 32006-36451.PubMedCrossRefGoogle Scholar
  16. 16.
    Fischer RS, Fritz-Six KL, Fowler VM. Pointed-end capping by tropomodulin3 negatively regulates endothelial cell motility. J Cell Biol 2003; 161(2):371–380.PubMedCrossRefGoogle Scholar
  17. 17.
    Yang JW, Czech T, Felizardo M et al. Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino Acids 2006; 30(4):477–493.PubMedCrossRefGoogle Scholar
  18. 18.
    Iwazaki T, McGregor IS, Matsumoto I. Protein expression profile in the striatum of acute methamphetamine-treated rats. Brain Res 2006; 1097(1):19–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen A, Liao WP, Lu Q et al. Upregulation of dihydropyrimidinase-related protein 2, spectrin alpha II chain, heat shock cognate protein 70 pseudogene 1 and tropomodulin 2 after focal cerebral ischemia in rats-A proteomics approach. Neurochem Int 2007; 50(7–8):1078–1086.PubMedCrossRefGoogle Scholar
  20. 20.
    Fowler VM, Sussmann MA, Miller PG et al. Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J Cell Biol 1993; 120(2):411–420.PubMedCrossRefGoogle Scholar
  21. 21.
    Sussman MA, Ito M, Daniels MP et al. Chicken skeletal muscle tropomodulin: novel localization and characterization. Cell Tissue Res 1996; 285(2):287–296.PubMedCrossRefGoogle Scholar
  22. 22.
    Kee AJ, Schevzov G, Nair-Shalliker V et al. Sorting of a nonmuscle tropomyosin to a novel cytoskeletal compartment in skeletal muscle results in muscular dystrophy. J Cell Biol 2004; 166(5):685–696.PubMedCrossRefGoogle Scholar
  23. 23.
    Sussman MA, Welch S, Cambon N et al. Myofibril degeneration caused by tropomodulin overexpression leads to dilated cardiomyopathy in juvenile mice. J Clin Invest 1998; 101(1):51–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Sussman MA, Baque S, Uhm CS et al. Altered expression of tropomodulin in cardiomyocytes disrupts the sarcomeric structure of myofibrils. Circ Res 1998; 82(1):94–105.PubMedGoogle Scholar
  25. 25.
    Fritz-Six KL, Cox PR, Fischer RS et al. Aberrant myofibril assembly in tropomoduslin1 null mice leads to aborted heart development and embryonic lethality. J Cell Biol 2003; 163(5):1033–1044. Epub 2003, 1031.PubMedCrossRefGoogle Scholar
  26. 26.
    McElhinny AS, Schwach C, Valichnac M et al. Nebulin regulates the assembly and lengths of the thin filaments in striated muscle. J Cell Biol 2005; 170(6):947–957.PubMedCrossRefGoogle Scholar
  27. 27.
    Kostyukova A, Maeda K, Yamauchi E et al. Domain structure of tropomodulin: distinct properties of the N-terminal and C-terminal halves. Eur J Biochem 2000;267(21):6470–6475.PubMedCrossRefGoogle Scholar
  28. 28.
    Kostyukova AS, Tiktopulo EI, Maeda Y. Folding properties of functional domains of tropomodulin. Biophys J 2001; 81(1):345–351.PubMedCrossRefGoogle Scholar
  29. 29.
    Fujisawa T, Kostyukova A, Maeda Y. The shapes and sizes of two domains of tropomodulin, the P-end-capping protein of actin-tropomyosin. FEBS Lett 2001; 498(1):67–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Greenfield NJ, Fowler VM. Tropomyosin requires an intact N-terminal coiled coil to interact with tropomodulin. Biophys J 2002; 82(5):2580–2591.PubMedCrossRefGoogle Scholar
  31. 31.
    Kostyukova AS, Choy A, Rapp BA. Tropomodulin binds two tropomyosins: a novel model for actin filament capping. Biochemistry 2006; 45(39):12068–12075.PubMedCrossRefGoogle Scholar
  32. 32.
    Uversky VN. Natively unfolded proteins: a point where biology waits for physics. Protein Sci 2002; 11(4):739–756.PubMedCrossRefGoogle Scholar
  33. 33.
    Krieger I, Kostyukova AS, Maeda Y. Crystallization and preliminary characterization of crystals of the C-terminal half fragment of tropomodulin. Acta Crystallogr 2001; D57(Pt 5):743–744.Google Scholar
  34. 34.
    Krieger I, Kostyukova A, Yamashita A et al. structure of tropomodulin C-terminal half and structural basis of actin filament pointed-end capping. Biophysical J 2002; 83(5):2716–2725.CrossRefGoogle Scholar
  35. 35.
    Kajava AV. Structural diversity of leucine-rich repeat protein. J Mol Biol. 1998; 277(3):519–527.PubMedCrossRefGoogle Scholar
  36. 36.
    Kobe B, Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Mol Cell Neurosci 1995; 6(2):97–105.CrossRefGoogle Scholar
  37. 37.
    Greenfield NJ, Kostyukova AS, Hitchock-Degregori SE. Structure and tropomyosin binding properties of the N-terminal capping domain of tropomodulin 1. Biophys J 2005; 88(1):372–383.PubMedCrossRefGoogle Scholar
  38. 38.
    Kostyukova A, Rapp B, Choy A et al. Structural requirements of tropomodulin for tropomyosin binding and actin filament capping. Biochemistry 2005; 44(12):4905–4910.PubMedCrossRefGoogle Scholar
  39. 39.
    Sung LA, Fowler VM, Lambert K et al. Molecular cloning and characterization of human fetal liver tropomodulin. A tropomyosin-binding protein. J Biol Chem 1992; 267(4):2616–2621.PubMedGoogle Scholar
  40. 40.
    Babcock GG, Fowler VM. Isoform-specific interaction of tropomodulin with skeletal muscle and erythrocyte tropomyosins. J Biol Chem 1994; 269(44):27510–27518.PubMedGoogle Scholar
  41. 41.
    Fowler VM, Greenfield NJ, Moyer J. Tropomodulin contains two actin filament pointed end-capping domains. J Biol Chem 2003; 278(41):40000–40009.PubMedCrossRefGoogle Scholar
  42. 42.
    Vera C, Lao J, Hamelberg D et al. Mapping the tropomyosin isoform 5 binding site on human erythrocyte tropomodulin: Further insights into E-Tmod/TM5 interaction. Arch Biochem Biophys 2005; 444(2):130–138.PubMedCrossRefGoogle Scholar
  43. 43.
    Kong KY, Kedes L. Leucine-135 of tropomodulin-1 regulates its association with tropomyosin, its cellular localization and the integrity o sarcomeres. J Biol Chem 2006; 281(14):9589–9599.PubMedCrossRefGoogle Scholar
  44. 44.
    Potekhin SA, Privalov PL. Co-operative blocks in tropomyosin. J Mol Biol 1982; 159(3):519–535.PubMedCrossRefGoogle Scholar
  45. 45.
    Kostyukova AS, Hitchcock-DeGregori SE. Effect of the structure of teh N terminus of tropomyosin on tropomodulin function. J Biol Chem 2004; 279(7):5066–5071.PubMedCrossRefGoogle Scholar
  46. 46.
    Sussman MA, Fowler VM. Tropomodulin binding to tropomyosins. Isoform-specific differences in affinity and stoichiometry. Eur J Biochem 1992; 205(1):355–362.PubMedCrossRefGoogle Scholar
  47. 47.
    Fowler VM. Tropomodulin: a cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J Cell Biol 1990; 111(2):471–481.PubMedCrossRefGoogle Scholar
  48. 48.
    Sung LA, Lin JJ. Erythrocyte tropomodulin binds to the N-terminus of, hTM5, a tropomyosin isoform encoded by the gamma-tropomyosin gene. Biochem Biophys Res Commun 1994; 201(2):627–634.PubMedCrossRefGoogle Scholar
  49. 49.
    Vera C, Sood A, Gao KM et al. Tropomodulin-binding site mapped to residues 7–14 at the N-terminal heptad repeats of tropomyosin isoform 5. Arch Biochem Biophys 2000; 378(1):16–24.PubMedCrossRefGoogle Scholar
  50. 50.
    Greenfield NJ, Montelione GT, Farid RS et al. The structure of the N-terminus of striated muscle alpha-tropomyosin in a chimeric peptide: nuclear magnetic resonance structure and circular dichroism studies. Biochemistry 1998; 37(21):7834–7843.PubMedCrossRefGoogle Scholar
  51. 51.
    Greenfield NJ, Huang YJ, Palm T et al. Solution NMR structure and folding dynamics of the N terminus of a rat nonmuscle alpha-tropomyosin in an engineered chimeric protein. J Mol Biol 2001; 312(4):833–847.PubMedCrossRefGoogle Scholar
  52. 52.
    Kostyukova A, Hitchcock-DeGregori SE, Greenfield NJ. Molecular basis of tropomyosin binding to tropomodulin, an actin capping protein. J Mol Biol 2007; 372(3):608–618.PubMedCrossRefGoogle Scholar
  53. 53.
    dos Remedios CG, Chhabra D, Kekic M et al. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 2003; 83(2):433–473.PubMedGoogle Scholar
  54. 54.
    Bernstein BW, Bamburg JR. Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF). Cell Motil 1982; 2(1):1–8.PubMedCrossRefGoogle Scholar
  55. 55.
    DesMarais V, Ichetovkin I, Condeelis J et al. Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J Cell Sci 2002; 115(Pt 23).:4649–4660.PubMedCrossRefGoogle Scholar
  56. 56.
    Blanchoin L, Pollard TD, Hitchcock-DeGregori SE. Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin. Curr Biol 2001; 11(16):1300–1304.PubMedCrossRefGoogle Scholar
  57. 57.
    Gupton SL, Anderson KL, Kole TP et al. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J Cell Biol 2005; 168(4):619–631.PubMedCrossRefGoogle Scholar
  58. 58.
    Bryce NS, Schevzov G, Ferguson V et al. Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol. Biol. Cell 2003; 14(3):1002–1016.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Alla S. Kostyukova
    • 1
  1. 1.Department of Neuroscience and Cell BiologyRobert Wood Johnson Medical SchoolPiscatawayUSA

Personalised recommendations