FePt and Related Nanoparticles

  • J.W. Harrell
  • Shishou Kang
  • David E. Nikles
  • Gregory B. Thompson
  • Shifan Shi
  • Chandan Srivastava
Chapter

Abstract

This chapter reviews recent studies of chemically synthesized FePt and related nanoparticles. Various methods for synthesizing the nanoparticles and controlling their shape are described. Thermal effects in nanoparticles near the superparamagnetic limit are discussed. Some of the methods for reducing sintered grain growth during annealing to obtain the L10 phase are described, including the use of a hard shell, annealing in a salt matrix, and flash annealing. The effect of metal additives on the ordering temperature and on sintered grain growth is discussed. Additive Ag and Au significantly not only reduce the ordering temperature but also the grain growth temperature in close-packed 3-D arrays. Preliminary experiments that show additive Ag also reduces the ordering temperature when sintering is prevented. Easy-axis alignment of L10 FePt nanoparticles can be achieved by drying a nanoparticle dispersion in a magnetic field, and the effect of thermal fluctuations on orientation is discussed. Large particle-to-particle compositional distributions in chemically synthesized FePt nanoparticles have been measured. A method of determining the anisotropy distribution is described. Theoretical and experimental works showing the size effect on chemical ordering of FePt nanoparticles are discussed.

Acronyms

Nano-EDS

nano-beam energy dispersed spectrometry

HRTEM

high-resolution transmission electron microscopy

SCA

strong coupling approximation

TEM

transmission electron microscopy

TEOS

tetraethoxysilane

THF

tetrahydrofuran

TMA

tetramethylammonium

VSM

vibrating sample magnetometer

XRD

X-ray diffraction

ZFC

zero-field-cooled

References

  1. 1.
    Ahmadi, T.S., Wang, Z.L, Green, T.C., Henglein, A., ElSayed, M.A.: Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924–1926 (1996)CrossRefGoogle Scholar
  2. 2.
    Aslam, M., Fu, L., Li, S., Dravid, V.P.: Silica encapsulation and magnetic properties of FePt nanoparticles. J. Colloid. Interface Sci. 290, 444–449 (2005)CrossRefGoogle Scholar
  3. 3.
    Barmak, K., Kim, J., Berry, D.C., Wierman, K.W., Svedberg, E.B., Howard, J.K.: Calorimetric studies of the A1 to L10 transformation in FePt and related ternary alloy thin films. J. Appl. Phys. 95, 7486–7488 (2004)CrossRefGoogle Scholar
  4. 4.
    Brown, K.R., Walter, D.G., Natan, M.J.: Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chem. Mater. 12, 306–313 (2000)CrossRefGoogle Scholar
  5. 5.
    Brust, M., Bethell, D., Schiffrin, D.J., Kiely C.J.: Novel gold-dithiol nano-networks with nonmetallic electronic properties. Adv. Mater. 7, 795–798 (1995)CrossRefGoogle Scholar
  6. 6.
    Burshtain, D., Zeiri, L., Efrima, S.: Control of colloid growth and size distribution by adsorption-silver nanoparticles and adsorbed anisate. Langmuir 15, 3050–3055 (1999)CrossRefGoogle Scholar
  7. 7.
    Chen, M., Kim, J., Liu, J.P., Fan, H.Y., Sun, S.H.: Synthesis of FePt nanocubes and their oriented self-assembly. J. Am. Chem. Soc. 128, 7132–7133 (2006)CrossRefGoogle Scholar
  8. 8.
    Chen, M., Nikles, D.E.: Synthesis, self-assembly, and magnetic properties of FexCoyPt100-x-ynanoparticles. Nano Lett. 2, 211–214 (2002)CrossRefGoogle Scholar
  9. 9.
    Chen, S.K., Yuan, F.T., Shiao, S.N.: Magnetic property modification of L10 FePt thin films by interfacial diffusion of Cu and Au overlayers. IEEE Trans. Magn. 41, 921–923 (2005)CrossRefGoogle Scholar
  10. 10.
    Chepulskii, R.V., Butler, W.H.: Temperature and particle-size dependence of the equilibrium order parameter order parameter of FePt alloys. Phys. Rev. B 72, 134205-1–134205-18 (2005)CrossRefGoogle Scholar
  11. 11.
    Chepulskii, R.V., Velev, J., Butler, W.H.: Monte Carlo Monte Carlo simulation of equilibrium L10 ordering in FePt nanoparticles. J. Appl. Phys. 97, 10J311-1–10J311-3 (2005)CrossRefGoogle Scholar
  12. 12.
    Elkins, K., Li D., Poudyal, N., Nandwana, V., Jin, Z., Chen, K., Liu, J.P.: Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity. J. Phys. D. Appl. Phys. 38, 2306–2309 (2006)CrossRefGoogle Scholar
  13. 13.
    Faraday, M.: Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. B 147, 145–181 (1857)Google Scholar
  14. 14.
    Glavee, G.N., Klabunde, K.J., Sorensen, C.M., Hadjipanayis, G.C.: Borohydride reduction of nickel and copper ions in aqueous and nonaquoes media – controllable chemistry leading to nanoscale metal and metal boride particles. Langmuir 10, 4726–4730 (1994)CrossRefGoogle Scholar
  15. 15.
    Han, M.Y., Quek, C.H., Huang, W., Chew, C.H., Gan, L.M.: A simple and effective chemical route for the preparation of uniform nonaqueous gold colloids. Chem. Mater. 11, 1144–1147 (1999)CrossRefGoogle Scholar
  16. 16.
    Harrell, J.W.: Orientation dependence of the dynamic coercivity of Stoner-Wohlfarth particles. IEEE Trans. Magn. 37, 533–537 (2001)CrossRefGoogle Scholar
  17. 17.
    Harrell, J.W., Kang, S., Jia, Z., Nikles, D.E., Chantrell, R., Satoh, A.: Model for the easy-axis alignment of chemically synthesized L10 FePt nanoparticles. Appl. Phys. Lett. 87, 202508-1–202508-3 (2005a)CrossRefGoogle Scholar
  18. 18.
    Harrell, J.W., Nikles, D.E., Kang, S.S., Sun, X.C., Jia, Z.: Effect of additive Cu, Ag, and Au on L10 ordering of chemically synthesized FePt nanoparticles. J. Mag. Soc. Japan 28, 847–852 (2004)Google Scholar
  19. 19.
    Harrell, J.W., Nikles, D.E., Kang, S.S., Sun, X.C., Jia, Z., Shi, S., Lawson, J., Thompson, G.B., Srivastava, C., Seetala, N.V.: Effect of metal additives on L10 ordering of chemically synthesized FePt nanoparticles. Scripta Mater. 53, 411–416 (2005b)CrossRefGoogle Scholar
  20. 20.
    Hyun, C., Lee, D.C., Korgel, B.A., de Lozanne, A.: Micromagnetic study of single-domain FePt nanocrystals overcoated with silica. Nanotech. 18, 055704-1–055704-7 (2007)CrossRefGoogle Scholar
  21. 21.
    Jana, N.R., Gearheart, L., Murphy, C.J.: Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater. 13, 2313–2322 (2001)CrossRefGoogle Scholar
  22. 22.
    Kang, S. et al.: Sintering behavior of spin-coated spin-coated FePt and FePtAu nanoparticles. J. Appl. Phys. 99, 08N704-1-08N704-3 (2006a)Google Scholar
  23. 23.
    Kang, S., Harrell, J.W., Nikles, D.E.: Reduction of ordering temperature of self-assembled FePt nanoparticles by the addition of Ag. Nano Lett 2, 1033–1036 (2002)CrossRefGoogle Scholar
  24. 24.
    Kang, S., Jia, Z., Nikles, D.E., Harrell J.W.: Synthesis and phase transition of self-assembled FePd and FePdPt nanoparticles. J. Appl. Phys. 95, 6744–6746 (2004)CrossRefGoogle Scholar
  25. 25.
    Kang, S., Jia, Z., Shi, S., Nikles, D.E., Harrell, J.W.: Easy axis alignment of chemically partially ordered FePt nanoparticles. Appl. Phys. Lett. 86, 062503-1–1062503-3 (2005)Google Scholar
  26. 26.
    Kang, S., Miao, G.X., Shi, S., Jia, Z., Nikles, D.E., Harrell, J.W.: Enhanced magnetic properties of self-Assembled FePt nanoparticles with MnO shell. J. Am. Chem. Soc. 128, 1042–1043 (2006b)CrossRefGoogle Scholar
  27. 27.
    Kang, S., Shi, S., Jia, Z. Thompson, G.B., Nikles, D.E., Harrell, J.W.: Microstructures and magnetic alignment of L10 FePt nanoparticles. J. Appl. Phys. 101, 09J113-1–09J113-1 (2007)Google Scholar
  28. 28.
    Kang, S.S., Jia, Z., Nikles, D.E., Harrell, J.W.: Synthesis, chemical ordering and magnetic properties of [FePt]1-xAux nanoparticles. IEEE Trans. Magn. 39, 2753–2757 (2003a)CrossRefGoogle Scholar
  29. 29.
    Kang, S.S., Nikles, D.E., Harrell, J.W.: Synthesis, chemical ordering and magnetic properties of FePt-Ag nanoparticles. J. Appl. Phys. 93, 7178–7180 (2003b)CrossRefGoogle Scholar
  30. 30.
    Lee, D.C., Mikulec, F.V., Pelaez, K., Koo, B., Korgel, B.A.: Synthesis and magnetic properties of silica-coated FePt nanocrystals. J. Phys. Chem. 110, 11160–11166 (2006)Google Scholar
  31. 31.
    Liu, J.P., Elkins, K., Li, D., Nandwana, V., Poudyal, N.: Phase transformation of FePt nanoparticles. IEEE Trans. Magn. 42, 3036–3031 (2006)CrossRefGoogle Scholar
  32. 32.
    Maeda, T., Kai, T., Kikitsu, A., Nagase, T., Akiyama, J.: Reduction of ordering temperature of an FePt-ordered alloy by addition of Cu. Appl. Phys. Lett. 80, 2147–2149 (2002)CrossRefGoogle Scholar
  33. 33.
    Mayer, A.B.R., Grebner, W., Wannemacher, R.: Preparation of silver-latex composites. J. Phys. Chem. B 104, 7278–7285 (2000)CrossRefGoogle Scholar
  34. 34.
    McDaniel, T.W., Challener, W.A., Sendur, K.: Issues in heat-assisted perpendicular recording. IEEE Trans. Magn. 39, 1972–1979 (2003)CrossRefGoogle Scholar
  35. 35.
    Munro, C.H., Smith, W.E., Garner, M., Clarkson, J., White, P.C.: Characterization of the surface of a citrate reduced colloid optimized for use as a substrate for surface enhanced resonance Raman scattering. Langmuir 11, 3712–3720 (1995)CrossRefGoogle Scholar
  36. 36.
    Nishimura, K., Takahashi, K., Uchida, H., Inoue, M.: Effects of third elements (Ag, B, Cu, Ir) addition and high Ar gas pressure on L10 FePt films. J. Magn. Magn. Mater. 272, 2189–2190 (2004)CrossRefGoogle Scholar
  37. 37.
    Pathak, S., Greci, M.T., Kwong, R.C., Mercado, K., Prakash, G.K.S., Olah, G.A., Thompson, M.E.: Synthesis and applications of palladium-coated poly(vinylpyridine) nanospheres. Chem. Mater. 12, 1985–1989 (2000)CrossRefGoogle Scholar
  38. 38.
    Peng, Q.Z., Richter, H.J.: Field sweep rate dependence of media dynamic coercivity. IEEE Trans. Magn. 40, 2446–2448 (2004)CrossRefGoogle Scholar
  39. 39.
    Platt, C.L., Wierman, K.W., Svedberg, E.B., van de Veerdonk, R., Howard, J.K., Roy, A.G., Laughlin, D.E.: L10 ordering and microstructure of FePt thin films with Cu, Ag, and Au additive. J. Appl. Phys. 92, 6104–6109 (2002)CrossRefGoogle Scholar
  40. 40.
    Reed, D.: Use of silicate shells to prevent sintering during thermally induced chemical ordering of FePt nanoparticles. Ph.D. dissertation, University of Alabama (2007)Google Scholar
  41. 41.
    Rong, C. et al.: Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Adv. Mater. 18, 2984–2988 (2006)CrossRefGoogle Scholar
  42. 42.
    Salgueirino-Maceira, V., Correa-Duarte, M.A., Farle, M.: Manipulation of chemically synthesized FePt nanoparticles in water, core-shell silica/FePt nanocomposites. Small 1, 1073–1076 (2005)CrossRefGoogle Scholar
  43. 43.
    Scholz, W., Fidler, J., Schrefl, T., Suess, D., Forster, H., Dittrich, R., Tsiantos, V.: Numerical micromagnetic simulation of Fe-Pt nanoparticles with multiple easy axes. J. Magn. Magn. Mater. 272, 1524–1525 (2004)CrossRefGoogle Scholar
  44. 44.
    Sharrock, M.P., McKinney, J.T.: Kinetic effects in coercivity measurements. IEEE Trans. Magn. 17, 3020–3022 (1981)CrossRefGoogle Scholar
  45. 45.
    Shi, S., Kang, S., Lawson, J., Jia, Z., Nikles, D., Harrell, J.W., Ott, R., Kadolkar, P.: Pulsed-thermal processing of chemically synthesized FePt nanoparticles. JOM 58, 43–45 (2006)CrossRefGoogle Scholar
  46. 46.
    Shukla, N., Liu, C., Jones, P.M., Weller, D.: FTIR study of surfactant bonding to FePt nanoparticles. J. Magn. Magn. Mater. 36, 178–184 (2003)CrossRefGoogle Scholar
  47. 47.
    Srivastava, C., Balasubramanian, J., Turner, C.H., Wiest, J.M., Bagaria, H.G., Thompson, G.B.: Formation mechanism and composition distribution of FePt nanoparticles. J. Appl. Phys. 102, 104310 (2007)CrossRefGoogle Scholar
  48. 48.
    Srivastava, C., Thompson, G.B., Harrell, J.W., Nikles, D.E.: Size effect ordering in FePt100-xCrx nanoparticles. J. Appl. Phys. 99, 054304-1–054304-6 (2006)Google Scholar
  49. 49.
    Suess, D.: Multilayer exchange spring media for magnetic recording. Appl. Phys. Lett. 89, 113105-1–113105-3 (2006)Google Scholar
  50. 50.
    Sun, S.H., Anders, S., Thomson, T., Baglin, J.E.E., Toney, M.F., Hamann, H.F., Murray, C.B., Terris, B.D.: Controlled synthesis and assembly of FePt nanoparticles. J. Phys. Chem. B 107, 5419–5425 (2003a)CrossRefGoogle Scholar
  51. 51.
    Sun, S.H., Fullerton, E.E., Weller, D., Murray, C.B.: Compositionally controlled FePt nanoparticle materials. IEEE Trans. Magn. 37, 1239–1243 (2001)CrossRefGoogle Scholar
  52. 52.
    Sun, S.H., Murray, C.B.: Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J. Appl. Phys. 85, 4325–4330 (1999)CrossRefGoogle Scholar
  53. 53.
    Sun, S.H., Murray, C.B., Weller, D., Folks, L., Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)CrossRefGoogle Scholar
  54. 54.
    Sun, X.C., Kang, S.S., Harrell, J.W., Nikles, D.E., Dai, Z.R., Li, J., Wang, Z.L.: Synthesis, chemical ordering, and magnetic properties of FePtCu nanoparticle films. J. Appl. Phys. 93, 7337–7339 (2003b)CrossRefGoogle Scholar
  55. 55.
    Torigoe, K., Suzuki, A., Esumi, K.: Au(III)-PAMAM interaction and formation of Au-PAMAM nanocomposites in ethyl acetate. J. Colloid. Interface Sci. 241, 346–356 (2001)CrossRefGoogle Scholar
  56. 56.
    Turkevich, J., Kim, G.: Palladium: preparation and catalytic properties of particles of uniform size. Science 169, 873–879 (1970)CrossRefGoogle Scholar
  57. 57.
    Tzitzios, V., Basina, G., Gjoka, M., Boukos, N., Niarchos, D., Devlin, E., Petridis, D.: The effect of Mn doping in FePt nanoparticles on the magnetic properties of the L1(0) phase. Nanotechnology 17, 4270–4273 (2006)CrossRefGoogle Scholar
  58. 58.
    Wang, C., Hou, Y.L., Kim, J.M., Sun, S.H.: A general strategy for synthesizing FePt nanowires and nanorods. Angew. Chem. Int. Ed. 46, 6333–6335 (2007)CrossRefGoogle Scholar
  59. 59.
    Wang, J.G., Neoh, K.G., Kang, E.T.: Preparation of nanosized metallic particles in polyaniline. J. Colloid Interface Sci. 239, 78–86 (2001)CrossRefGoogle Scholar
  60. 60.
    Wang, S., Kang, S.S., Harrell, J.W., Wu, X.W., Chantrell, R.W.: Coercivity ratio and anisotropy distribution anisotropy distribution in chemically-synthesized L10 FePt nanoparticle systems. Phys. Rev. B 68, 104413-1–104413-7 (2003a)Google Scholar
  61. 61.
    Wang, S., Kang, S.S., Nikles, D.E., Harrell, J.W., Wu, X.W.: Magnetic properties of self-organized L10 FePtAg nanoparticle arrays. J. Magn. Magn. Mater. 266, 49–56 (2003b)CrossRefGoogle Scholar
  62. 62.
    Wang, Y., Ren, J.W., Deng, K., Gui, L.L., Tang, Y.Q.: Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chem. Mater. 12, 1622–1627 (2000)MATHCrossRefGoogle Scholar
  63. 63.
    Weller, D. et al.: High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn. 36, 10–15 (2000)CrossRefGoogle Scholar
  64. 64.
    Yamamoto, S, Morimoto, Y, Ono, T, Takano, M.: Magnetically superior and easy to handle L10-FePt nanocrystals. Appl. Phys. Lett. 87, 032503-1–032503-3 M (2005)Google Scholar
  65. 65.
    Yan, Q., Purkayastha, A., Kim, T., Kröger R., Bose, A., Ramanath, G.: Synthesis and assembly of monodisperse high-coercivity silica-capped FePt nanomagnets of tunable size, composition, and thermal stability thermal stability from microemulsions. Adv. Mater. 18, 2569–2573 (2006a)CrossRefGoogle Scholar
  66. 66.
    Yan, Q.Y., Kim, T., Purkayastha, A., Xu, Y., Shima, M., Gambino, R.J., Ramanath, G.: Magnetic properties of Sb-doped FePt nanoparticles. J. Appl. Phys. 99, 08N709-1–08N709-3 (2006b)Google Scholar
  67. 67.
    Yin, Y.D., Li, Z.Y., Zhong, Z.Y., Gates, B., Xia, Y.N., Venkateswaran, S.: Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J. Mater. Chem. 12, 522–527 (2002)CrossRefGoogle Scholar
  68. 68.
    Yu, A.C.C., Mizuno, M., Sasaki, Y., Kondo, H.: Atomic composition effect on the ordering of solution-phase synthesized FePt nanoparticle films. Appl. Phys. Lett. 85, 6242–6244 (2004)CrossRefGoogle Scholar
  69. 69.
    Yu, C.H., Caiulo, N., Lo, C.C.H., Tam, K., Tsang, S.C.: Synthesis and fabrication of a thin film containing silica-encapsulated face-centered tetragonal FePt nanoparticles. Adv. Mater. 18, 2312–2314 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J.W. Harrell
    • 1
  • Shishou Kang
    • 2
  • David E. Nikles
    • 3
  • Gregory B. Thompson
    • 4
  • Shifan Shi
    • 1
  • Chandan Srivastava
    • 4
  1. 1.Department of Physics & Center for Materials for Information TechnologyThe University of AlabamaTuscaloosaUSA
  2. 2.Center for Materials for Information TechnologyThe University of AlabamaTuscaloosaUSA
  3. 3.Department of Chemistry, Center for Materials for Information TechnologyThe University of AlabamaTuscaloosaUSA
  4. 4.Department of Metallurgical and Materials Engineering, Center for Materials for Information TechnologyThe University of AlabamaTuscaloosaUSA

Personalised recommendations