Stability Analysis and Control of Linear Periodic Delayed Systems Using Chebyshev and Temporal Finite Element Methods

Chapter

Abstract

In this chapter, a brief literature review is provided together with detailed descriptions of the authors’ work on the stability and control of systems represented by linear time-periodic delay-differential equations using the Chebyshev and temporal finite element analysis (TFEA) techniques. Here, the analysis and examples assume that there is a single fixed discrete delay, which is equal to the principal period. Two Chebyshev-based methods, Chebyshev polynomial expansion and collocation, are developed. After the computational techniques are explained in detail with illustrative examples, the TFEA and Chebyshev collocation techniques are both applied for comparison purposes to determine the stability boundaries of a single degree-of-freedom model of chatter vibrations in the milling process. Subsequently, it is shown how the Chebyshev polynomial expansion method is utilized for both optimal and delayed state feedback control of periodic delayed systems.

Keywords

Periodic delay systems Stability Temporal finite element analysis Chebyshev polynomials and collocation Milling process Optimal control Delayed state feedback control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argyris, J. H., and Scharpf, D. W., ‘Finite Elements in Time and Space’, Aeronaut. J. Roy. Soc. 73, 1969, 1041–1044.Google Scholar
  2. 2.
    Averina, V., Symbolic stability of delay differential equations, MS Thesis, Dept. of Mathematical Sciences, University of Alaska Fairbanks, 2002.Google Scholar
  3. 3.
    Balachandran, B., ‘Non-Linear Dynamics of Milling Process’, Proceedings of the Royal Society of London A 359, 2001, 793–819.MATHCrossRefGoogle Scholar
  4. 4.
    Balachandran, B. and Gilsinn, D., ‘Nonlinear Oscillations of Milling’, Mathematical and Computer Modelling of Dynamical Systems 11, 2005, 273–290.MATHCrossRefGoogle Scholar
  5. 5.
    Batzel, J. J., and Tran, H. T., ‘Stability of the Human Respiratory Control System. Part I: Analysis of a Two-Dimensional Delay State-Space Model’, J. Mathemat. Biol. 41, 2000, 45–79.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bayly, P. V., Halley, J. E., Mann, B. P., and Davis, M. A., ‘Stability of Interrupted Cutting by Temporal Finite Element Analysis’, J. Manufact. Sci. Eng. 125, 2003, 220–225.CrossRefGoogle Scholar
  7. 7.
    Bellen, A., ‘One-step collocation for delayed differential equations’, J. Comp. Appl. Math. 10, 1984, 275–283.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bellman, R., and Cooke, K., Differential-Difference Equations, Academic, 1963.Google Scholar
  9. 9.
    Borri, M., Bottasso, C., and Mantegazza, P., ‘Basic Features of the Time Finite Element Approach for Dynamics’, Meccanica 27, 1992, 119–130.MATHCrossRefGoogle Scholar
  10. 10.
    Budak, E., and Altintas, Y., ‘Analytical Prediction of Chatter Stability in Milling – Parts I and II’, J. Dynam. Sys. Measure. Cont. 120, 1998, 22–36.CrossRefGoogle Scholar
  11. 11.
    Bueler, E., ‘Guide to DDEC: Stability of linear, periodic DDEs using the DDEC suite of Matlab codes’, http://www.dms.uaf.edu/bueler/DDEcharts.htm, 2005.
  12. 12.
    Bueler, E., ‘Error bounds for approximate eigenvalues of periodic-coefficient linear delay differential equations’, SIAM J. Num. Anal. 45, 2007, 2510–2536.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Butcher, E. A., Ma, H., Bueler, E., Averina, V., and Szabó, Z., ‘Stability of Linear Time-Periodic Delay-Differential Equations via Chebyshev Polynomials’, International J. Num. Meth. Eng. 59, 2004, 895–922.MATHCrossRefGoogle Scholar
  14. 14.
    Butcher, E. A., Nindujarla, P., and Bueler, E., ‘Stability of Up- and Down-Milling Using Chebyshev Collocation Method’, proceedings of 5th International Conference on Multibody Systems, Nonlin. Dynam. Cont. ASME DETC05, Long Beach, CA, Sept. 24–28, 2005.Google Scholar
  15. 15.
    Butcher, E. A., Deshmukh, V., and Bueler, E., ‘Center Manifold Reduction of Periodic Delay Differential Systems’, proceedings of 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, ASME DETC07, Las Vegas, NV, Sept. 4–7, 2007.Google Scholar
  16. 16.
    Butcher, E. A., Bobrenkov, O. A., Bueler, E., and Nindujarla, P., ‘Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels’, J. Comput. Nonlin. Dynam., in press.Google Scholar
  17. 17.
    Clenshaw, C. W., ‘The Numerical Solution of Linear Differential Equations in Chebyshev Series’, Proc. Cambridge Philosophical Society 53, 1957, 134–149.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Deshmukh, V., Ma, H., and Butcher, E. A., ‘Optimal Control of Parametrically Excited Linear Delay Differential Systems via Chebyshev Polynomials’, Opt. Cont. Appl. Meth. 27, 2006, 123–136.CrossRefMathSciNetGoogle Scholar
  19. 19.
    Deshmukh, V., Butcher, E. A., and Bueler, E., ‘Dimensional Reduction of Nonlinear Delay Differential Equations with Periodic Coefficients using Chebyshev Spectral Collocation’, Nonlin. Dynam. 52, 2008, 137–149.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Elliot, D., ‘A Chebyshev Series Method for the Numerical Solution of Fredholm Integral Equations’, Comp. J. 6, 1963, 102–111.CrossRefGoogle Scholar
  21. 21.
    Engelborghs, K., Luzyanina, T., in T Hout, K. J., and Roose, D., ‘Collocation Methods for the Computation of Periodic Solutions of Delay Differential Equations’, SIAM J. Sci. Comput. 22, 2000, 1593–1609.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Fox, L., and Parker, I.B., Chebyshev Polynomials in Numerical Analysis, Oxford Univ. Press, London, 1968.Google Scholar
  23. 23.
    Fried, I., ‘Finite Element Analysis of Time Dependent Phenomena’, Am. Inst. Aeron. Astron. J. 7, 2002, 1170–1173.Google Scholar
  24. 24.
    Garg, N. K., Mann, B. P., Kim, N. H., Kurdi, M. H., ‘Stability of a Time-Delayed System With Parametric Excitation’, J. Dynam. Syst. Measurem. Cont. 129, 2007, 125–135.CrossRefGoogle Scholar
  25. 25.
    Gilsinn, D. E., and Potra, F. A., ‘Integral Operators and Delay Differential Equations’, J. Int. Equ. Appl. 18, 2006, 297–336.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Gouskov, A. M., Voronov, S. A., Butcher, E. A., and Sinha, S. C., ‘Nonconservative Oscillations of a Tool for Deep Hole Honing’, Comm. Nonlin. Sci. Num. Simulation 11, 2006, 685–708.MATHCrossRefGoogle Scholar
  27. 27.
    Hahn, W., ‘On difference differential equations with periodic coefficients’, J. Mathemat. Anal. Appl. 3, 1961, 70–101.MATHCrossRefGoogle Scholar
  28. 28.
    Halanay, A., Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York, 1966.Google Scholar
  29. 29.
    Hale, J. K., and Verduyn Lunel, S. M., Introduction to Functional Differential Equation, Springer, New York, 1993.Google Scholar
  30. 30.
    Hayes, N. D., ‘Roots of the Transcendental Equations Associated with Certain Differential-Difference Equations’, J. Lond. Mathemat. Soci. 25, 1950, 226–232.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Horng, I.-R., and Chou, J.-H., ‘Analysis, Parameter Estimation and Optimal Control of Time-Delay Systems via Chebyshev Series’, Int. J. Cont. 41, 1985, 1221–1234.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Hsu, C. S., and Bhatt, S. J., ‘Stability Charts for Second-Order Dynamical Systems with Time Lag’, J. Appl. Mech. 33E, 1966, 119–124.MathSciNetGoogle Scholar
  33. 33.
    Insperger, T., and Stépán, G., ‘Remote Control of Periodic Robot Motion’, Proceedings of 13th CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators, 2000, 197–203.Google Scholar
  34. 34.
    Insperger, T., and Stépán, G., ‘Comparison of the Stability Lobes for Up- and Down-Milling’, Proceedings of Dynamics and Control of Mechanical Processing Workshop, 2nd Workshop, 2001, 53–57, Budapest University of Technology and Economics, Budapest.Google Scholar
  35. 35.
    Insperger, T., and Stépán, G., ‘Semi-Discretization Method for Delayed Systems’, Int. J. Num. Meth. Engr. 55, 2002, 503–518.MATHCrossRefGoogle Scholar
  36. 36.
    Insperger, T., and Stépán, G., ‘Stability chart for the delayed Mathieu equation’, Proc. R. Soc., Math. Physic. Eng. Sci. 458, 2002, 1989–1998.MATHCrossRefGoogle Scholar
  37. 37.
    Insperger, T., Mann, B. P., Stépán, G., and Bayly, P. V., ‘Stability of Up-Milling and Down-Milling, Part 1: Alternative Analytical Methods’, Int. J. Machine Tools Manufacture 43, 2003, 25–34.CrossRefGoogle Scholar
  38. 38.
    Insperger T., and Stépán, G., ‘Updated Semi-Discretization Method for Periodic Delay-Differential Equations with Discrete Delay’, Int. J. Num. Meth. Eng. 61, 2004, 117–141.MATHCrossRefGoogle Scholar
  39. 39.
    Insperger, T., and Stépán, G., ‘Stability Analysis of Turning with Periodic Spindle Speed Modulation via Semi-Discretization’, J. Vibr. Cont. 10, 2004, 1835–1855.MATHCrossRefGoogle Scholar
  40. 40.
    Ito, K., Tran, H. T., and Manitius, A., ‘A Fully-Discrete Spectral Method for Delay-Differential Equations’, SIAM J. Numer. Anal. 28, 1991, 1121–1140.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Jaddu, H., and Shimenura, E., ‘Computation of Optimal Control Trajectories Using Chebyshev Polynomials: Parameterization and Quadratic Programming’, Opt. Cont. Appl. Meth. 20, 1999, 24–42.Google Scholar
  42. 42.
    Jemielniak, K., and Widota, A., ‘Suppression of Self-Excited Vibration by the Spindle Speed Variation Method’, Int. J. Mach. Tool Desi. Res., 24, 1984, 207–214.CrossRefGoogle Scholar
  43. 43.
    Kálmar-Nagy, T., ‘A New Look at the Stability Analysis of Delay Differential Equations’, Proceedings of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, California, DETC2005-84740, ASME, 2005.Google Scholar
  44. 44.
    Long, X.-H., and Balachandran, B., ‘Milling dynamics with a variable time delay’. Proceedings of ASME, IMECE 2004, Anaheim, CA, November 13–19, Paper No. IMECE 2004-59207.Google Scholar
  45. 45.
    Long, X.-H., and Balachandran, B., ‘Stability analysis of a variable spindle speed milling process’, proceedings of 5th International Conference on Multibody Systems, Nonlin. Dynam. Contr., ASME DETC05, Long Beach, CA, Sep. 24–28, 2005.Google Scholar
  46. 46.
    Long, X.-H., and Balachandran, B., ‘Stability Analysis for Milling Process’, Nonlin. Dynam., 49, 2007, 349–359.CrossRefGoogle Scholar
  47. 47.
    Ma, H., Analysis and Control of Time-periodic Systems with Time Delay via Chebyshev Polynomials, MS Thesis, Dept. of Mechanical Engineering, University of Alaska Fairbanks, 2003.Google Scholar
  48. 48.
    Ma, H., Butcher, E. A., and Bueler, E., ‘Chebyshev Expansion of Linear and Piecewise Linear Dynamic Systems with Time Delay and Periodic Coefficients Under Control Excitations’, J. Dynam. Syst. Measurement Cont. 125, 2003, 236–243.CrossRefGoogle Scholar
  49. 49.
    Ma, H., and Butcher, E. A., ‘Stability of Elastic Columns Subjected to Periodic Retarded Follower Forces’, J. Sound Vibration 286, 2005, 849–867.CrossRefGoogle Scholar
  50. 50.
    Ma, H., Deshmukh, V., Butcher, E. A., and Averina, V., ‘Delayed State Feedback and Chaos Control for Time-Periodic Systems via a Symbolic Approach’, Comm. Nonlin. Sci. Num. Simula. 10, 2005, 479–497.MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Mann, B. P., Insperger, T., Bayly, P. V., and Stépán, G., ‘Stability of Up-Milling and Down-Milling, Part 2: Experimental Verification’, International J. of Machine Tools and Manufacture 43, 2003, 35–40.CrossRefGoogle Scholar
  52. 52.
    Mann, B. P., Bayly, P. V., Davies, M. A., and Halley, J. E., ‘Limit Cycles, Bifurcations, and Accuracy of the Milling Process’, J. Sound Vibration 277, 2004, 31–48.CrossRefGoogle Scholar
  53. 53.
    Mann, B. P., Garg, N. K., Young, K. A., and Helvey, A. M., ‘Milling bifurcations from structural asymmetry and nonlinear regeneration’, Nonlin. Dynam. 42, 2005, 319–337.MATHCrossRefGoogle Scholar
  54. 54.
    Mann, B. P., Young, K. A., Schmitz, T. L., and Dilley, D. N., ‘Simultaneous stability and surface location error predictions in milling’, J. Manufact. Sci. Eng. 127, 2005, 446–453.CrossRefGoogle Scholar
  55. 55.
    Mann, B. P., and Young, K. A., ‘An empirical approach for delayed oscillator stability and parametric identification’, Proc. R. Soc. A 462, 2006, 2145–2160.MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Mann, B. P., and Patel, B., ‘Stability of delay equations written as state space models’, J. Vibra. Cont., invited paper for a special issue on delay systems, accepted in 2007.Google Scholar
  57. 57.
    Mann, B. P., Edes, B. T., Young, Easley, S. J. K. A., and Ma, K., ‘Surface location error and chatter prediction for helical end mills,’ Int. J. Machine Tools Manufacture, 48, 2008, 350–361.CrossRefGoogle Scholar
  58. 58.
    Mathieu, E., Memoire sur le Mouvement Vibratorie d’une Membrane de Forme Elliptique, J. Math 13, 1868, 137–203.Google Scholar
  59. 59.
    Nayfeh, A. H., and Mook, D. T., Nonlinear Oscillations, Wiley, New York, 1979.Google Scholar
  60. 60.
    Olgac, N., Sipahi, R., ‘A Unique Methodology for Chatter Stability Mapping in Simultaneous Machining’, J. Manufact. Sci. Eng. 127, 2005, 91–800.Google Scholar
  61. 61.
    Olgac, N., and Sipahi, R., ‘Dynamics and Stability of Variable-Pitch Milling’, J. Vibrat. Cont. 13, 2007, 1031–1043.CrossRefGoogle Scholar
  62. 62.
    Patel, B., Mann, B. P., and Young, K. A., ‘Uncharted islands of chatter instability in milling’, Int. J. of Machine Tools Manufact. 48, 2008, 124–134.CrossRefGoogle Scholar
  63. 63.
    Peters, D. A., and Izadpanah, ‘Hp-Version Finite Elements for the Space-Time Domain’, Comput. Mech. 3, 1988, 73–78.MATHCrossRefGoogle Scholar
  64. 64.
    Pontryagin, L. S., ‘On the zeros of some elementary transcendental functions’, Izv. Akad. Nauk SSSR 6, 1942, 115–134.MATHGoogle Scholar
  65. 65.
    Reddy, J. N., An Introduction To The Finite Element Method, McGraw-Hill, Inc., New York, NY, 2nd edition, 1993.Google Scholar
  66. 66.
    Schmitz, T. L., Mann, B. P., ‘Closed Form Solutions for the Prediction of Surface Location Error in Milling’, Int. Journal Mach. Tools Manufact. 46, 2006, 1369–1377.CrossRefGoogle Scholar
  67. 67.
    Segalman, D. J., and Redmond, J., ‘Chatter suppression through variable impedance and smart fluids’, Proc. SPIE Symposium on Smart Structures and Materials, SPIE 2721, 1996, 353–363.Google Scholar
  68. 68.
    Segalman, D. J., and Butcher, E. A., ‘Suppression of Regenerative Chatter via Impedance Modulation’, J. Vibra. Cont. 6, 2000, 243–256.CrossRefGoogle Scholar
  69. 69.
    Sexton, J. S., and Stone, B. J., ‘The stability of machining with continuously varying spindle speed’, Annals of the CIRP 27, 1978, 321–326.Google Scholar
  70. 70.
    Shampine, L. F., and Thompson, S., ‘Solving DDEs in MATLAB’, Applied Numerical Mathematics 37, 2001, 441–458.MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Sinha, S. C., and Wu, D.-H., ‘An efficient computational scheme for the analysis of periodic systems’, J. Sound Vibration 151, 1991, 91–117.CrossRefMathSciNetGoogle Scholar
  72. 72.
    Sinha, S. C., Gowrdon, E., and Zhang, Y., ‘Control of Time-Periodic Systems via Symbolic Computation with Application to Chaos Control’, Communications in Nonlinear Science and Numerical Simulation 10, 2005, 835–854.MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    Snyder, M. A., Chebyshev Methods in Numerical Approximation, Prentice-Hall, Englewood Cliffs, N. J., 1986.Google Scholar
  74. 74.
    Stépán, G., Retarded Dynamical Systems: Stability and Characteristic Functions, Longman Scientific and Technical, Harlow, UK, 1989.Google Scholar
  75. 75.
    Stépán, G., ‘Vibrations of Machines Subjected to Digital Force Control’, International J. Solids and Structures 38, 2001, 2149–2159.MATHCrossRefGoogle Scholar
  76. 76.
    Stépán, G., ‘Modelling Nonlinear Regenerative Effects in Metal Cutting’, Philosophical Transactions of the Royal Society of London A 359, 2001, 739–757.MATHCrossRefGoogle Scholar
  77. 77.
    Stokes, A., ‘A Floquet Theory for Functional Differential Equations’, Proc. Nat. Acad. Sci. U.S.A. 48, 1962, 1330–1334.MATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    Szalai, R., and Stépán, G., ‘Lobes and Lenses in the Stability Chart of Interrupted Turning’, J. Computational and Nonlinear Dynamics 1, 2006, 205–211.CrossRefGoogle Scholar
  79. 79.
    Szalai, R., Stépán, G., and Hogan, S. J., ‘Continuation of Bifurcations in Periodic Delay-Differential Equations Using Characteristic Matrices’, SIAM J. Sci. Comp. 28, 2006, 1301–1317.MATHCrossRefGoogle Scholar
  80. 80.
    Trefethen, L. N., Spectral Methods in Matlab, SIAM Press, Philadelphia, 2000.Google Scholar
  81. 81.
    Van der Pol, F., and Strutt, M. J. O., ‘On the Stability of the Solutions of Mathieu’s Equation’, Philos. Mag. J. Sci., 5, 1928, 18–38.Google Scholar
  82. 82.
    Wright, K., ‘Chebyshev collocation methods for ordinary differential equations’, Computer Journal 6, 1964, 358–363.MATHMathSciNetGoogle Scholar
  83. 83.
    Zhang, J., and Sun, J.-Q., ‘Robustness analysis of optimally designed feedback control of linear periodic systems with time-delay’, proceedings of 6th International Conference on Multi-body Systems, Nonlinear Dynamics, and Control, ASME DETC07, Las Vegas, NV, Sept. 4–7, 2007.Google Scholar
  84. 84.
    Zhao, M.-X., and Balachandran, B., ‘Dynamics and Stability of the Milling Process’, Int. J. Solids Struct. 38, 2001, 2233–2248.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringNew Mexico State UniversityLas CrucesUSA
  2. 2.McAfee, Inc.Santa Clara

Personalised recommendations