Physico-chemical Properties of Milk

  • O. J. McCarthy
  • H. Singh
Chapter

Abstract

Milk is a complex colloidal dispersion containing fat globules, casein micelles and whey proteins in an aqueous solution of lactose, minerals and a few other minor compounds. Its physical and chemical properties depend on intrinsic compositional and structural factors, extrinsic factors such as temperature and post-milking treatments. An understanding of these properties is important in the technological and engineering design and operation of milk processes and processing equipment, the design of modern methods of milk analysis, the determination of milk microstructures and the elucidation of complex chemical reactions that occur in milk. Measurement of some of the physico-chemical properties is used to assess milk quality. Various physical and chemical properties of milk have been reviewed previously (Jenness and Patton, 1959; Jenness et al., 1974; Walstra and Jenness, 1984; Lewis, 1987; Sherbon, 1988; Singh et al., 1997).

References

  1. Adda, J., Blanc-Platin, E., Jeunet, R., Grappin, R., Mocquot, G., Poujardieu, B., Ricordeau, G. 1968. Trial of the infrared analyzer. Lait. 48, 145–154.CrossRefGoogle Scholar
  2. Anon. 1996. Physical Properties of Dairy Products. 3rd edn. MAF Quality Management, Hamilton, New Zealand.Google Scholar
  3. AOAC. 1995a. AOAC Official Method 972.16. Fat, lactose, protein, and solids in milk. Mid-infrared spectroscopic method. Official Methods of Analysis of the Association of Official Analytical Chemists. 16th edn. Vol. 2. AOAC, Arlington, VA, 33, pp. 23–26.Google Scholar
  4. AOAC. 1995b. AOAC Official Method 990.22. Freezing point of milk. Thermistor cryoscope method. Official Methods of Analysis of the Association of Official Analytical Chemists. 16th edn. Vol. 2. AOAC, Arlington, VA, 33, pp. 5–7.Google Scholar
  5. Aschaffenburg, R. 1945. Surface activity and proteins of milk. J. Dairy Res. 14, 316–329.CrossRefGoogle Scholar
  6. Bakalor, S. 1965. The estimation of protein in milk from its fluorescence in the ultraviolet region. Aust. J. Dairy Technol. 20, 151–153.Google Scholar
  7. Bakshi, A.S., Smith, D.E. 1984. Effect of fat content and temperature on viscosity in relation of pumping requirements of fluid milk products. J. Dairy Sci., 67, 1157–1160.CrossRefGoogle Scholar
  8. Bertsch, A.J. 1982. La chaleur massique du lait entier et ecreme de 50°C a 140°C. Lait. 62, 265–275.CrossRefGoogle Scholar
  9. Bertsch, A.J. 1983. Surface tension of whole and skim milk between 18 and 135°C. J. Dairy Res., 50, 259–267.CrossRefGoogle Scholar
  10. Bertsch, A.J., Cerf, O. 1983. Dynamic viscosities of milk and cream from 70 to 135°C. J. Dairy Res. 50, 193–200.CrossRefGoogle Scholar
  11. Bertsch, A.J., Bimbenet, J.J., Cerf, O. 1982. La masse volumique du lait et de cremes de 65°C a 140°C. Lait. 62, 250–64.CrossRefGoogle Scholar
  12. Bhandari, V., Singh, H. 2003. Analysis of milk and milk products; physical methods. In: Encyclopaedia of Dairy Sciences, Vol. 1 (H. Roginski, J.W. Fuquay, P.F. Fox, eds.), pp. 93–101, Academic Press, London.Google Scholar
  13. Bienvenue, A., Jiménez-Flores, R., Singh, H. 2003a. Rheological properties of concentrated skim milk: importance of soluble minerals in the changes in viscosity during storage. J. Dairy Sci. 86, 3813–3821.Google Scholar
  14. Bienvenue, A., Jiménez-Flores, R., Singh, H. 2003b. Rheological properties of concentrated skim milk: influence of heat treatment and genetic variants on the changes in viscosity during storage. J. Agric. Food Chem. 51, 6488–6494.Google Scholar
  15. Biggs, D.A. 1964. Infra-red analysis of milk for fat, protein, lactose and solids-not-fat. Conv. Proc. Milk Ind. Found. 1964, 28–34.Google Scholar
  16. Biggs, D.A. 1979a. Infrared estimation of fat, protein and lactose in milk: collaborative study. J. Assoc. Off. Anal. Chem. 61, 1015–1034.Google Scholar
  17. Biggs, D.A. 1979b. Performance specifications for infrared milk analysis. J. Assoc. Off. Anal. Chem. 62, 1211–1214.Google Scholar
  18. Binh T., Haisman, D., Khanh T.T. 2007a. Rheological characterization of age thickening with special reference to milk concentrates. J. Dairy Res. 74, 106–115.Google Scholar
  19. Binh T., Haisman, D., Khanh T.T. 2007b. Effect of total solids content and temperature on the rheological behaviour of reconstituted whole milk concentrates. J. Dairy Res. 74, 116–123.Google Scholar
  20. Brathen, G. 1983. Factors Affecting the Freezing Point of Genuine Cow's Milk. Bulletin 154, pp. 6– 11, International Dairy Federation, Brussels.Google Scholar
  21. Buchanan, J.H., Peterson, E.E. 1927. Buffers of milk and buffer value. J. Dairy Sci. 10, 224–231.CrossRefGoogle Scholar
  22. Calandron, A., Grillet, L. 1964. Measurement of the surface tension of certain milks with a Nouy tensiometer. Lait. 44, 505–509.CrossRefGoogle Scholar
  23. Chatelain, Y., Aloui, J, Guggisberg, D., Bosset, J.O. 2003. La couleur du lait et des produits laitiers et sa mesure – un article de synthese [The colour of milk and dairy products and its measurement – a review article]. Mitteil. Lebensmittel. Hygiene 94, 461–488.Google Scholar
  24. Clemmensen, K. 1980. Modified fat determination. Dairy Field, 163 (12), 51–52, 54.Google Scholar
  25. Cooper, J.R., Le Fevre, E.J. 1979. Thermophysical Properties of Water Substance, Edward Arnold Publishers Ltd., London.Google Scholar
  26. Cuevas, R., Cheryan, M. 1978. Thermal conductivity of liquid foods -a review. J. Food Process Eng. 2, 283–306.CrossRefGoogle Scholar
  27. Culioli, J., Bon, J.P., Maubois, J.L. 1974. Etudes de la viscosité des ‘rétentats’ et des ‘préfromages’ obtenus après traitment du lait par ultrafiltration sur membrane [Viscosity of ‘retentates’ and ‘pre-cheeses’ obtained by ultrafiltration of milk]. Lait. 54, 481–500.CrossRefGoogle Scholar
  28. Datta, N., Deeth, H.C. 2001. Age gelation of UHT milk – a review. Food Bioprod. Proc. 79(Part C), 197–210.CrossRefGoogle Scholar
  29. Davis, J.G., MacDonald, F.J. 1953. Richmond's Dairy Chemistry. 5th edn, Charles Griffin & Co., London.Google Scholar
  30. de Jong, P., van der Linden, H.J.L.J. 1998. Polymerization model for prediction of heat-induced protein denaturation and viscosity changes in milk. J. Agric. Food Chem. 46, 2136–2142.CrossRefGoogle Scholar
  31. de Kruif, C.G. 1998. Supra-aggregates of casein micelles as a prelude to coagulation. J. Dairy Sci. 81, 3019–3028.CrossRefGoogle Scholar
  32. de Kruif, C.G., Jeurnink, Th.J.M., Zoon, P. 1992. The viscosity of milk during the early stages of renneting. Neth. Milk Dairy J. 46, 123–137.Google Scholar
  33. Demott, B. 1967. The influence of vacuum pasteurisation upon the freezing point and specific gravity of milk. Milk Food Techno/. 30, 253–255.Google Scholar
  34. Dunkley, W.L. 1951. Hydrolytic rancidity in milk. 1. Surface tension and fat acidity as measures of rancidity. J. Dairy Sci. 34, 515–520.CrossRefGoogle Scholar
  35. Edsall, J.L., Wyman, J. 1958. Acid-base equilibria. In: Biophysical Chemistry, pp. 406–549, Academic Press, New York.Google Scholar
  36. Eilers, H., Saal, R.H.J., van den Waarden, M. 1947. Chemical and Physical Investigations on Dairy Products, Elsevier Publishing Co., New York.Google Scholar
  37. Eisses, J., Zee, B. 1980. The freezing point of authentic cow’s milk and farm tank milk in the Netherlands. Neth. Milk Dairy J., 34, 162–180.Google Scholar
  38. Fernández-Martin, F. 1972a. Influence of temperature and composition on some physical properties of milk and milk concentrates. I. Heat capacity. J. Dairy Res., 39, 65–73.Google Scholar
  39. Fernández-Martin, F. 1972b. Influence of temperature and composition on some physical properties of milk and milk concentrates. II. Viscosity. J. Dairy Res., 39, 75–82.Google Scholar
  40. Fernández-Martin, F. 1975. Influence of temperature and composition on some physical properties of milk and milk concentrates. IV. Thermal expansion. Z. Lebensm. Unters.-Forsch., 157, 14–18.CrossRefGoogle Scholar
  41. Fernández-Martin, F., Montes, F. 1972. Influence of temperature and composition on some physical properties of milk and milk concentrates. III. Thermal conductivity. Milchwissenschaft, 27, 772–776.Google Scholar
  42. Fernández-Martin, F., Montes, F. 1977. Thermal conductivity of creams. J. Dairy Res., 44, 103–109.CrossRefGoogle Scholar
  43. Fernández-Martin, F., Sanz, P.D. 1985. Influence of temperature and composition on some physical properties of milk and milk concentrates: V. Electrical conductivity. Int. Agrophy. 1 (1), 41–54.Google Scholar
  44. Figura, L.O., Teixeira, A.A. 2007. Food Physics. Physical Properties – Measurement and Applications. Springer, Berlin.Google Scholar
  45. Fitzgerald, J.W., Ringo, G.R., Winder, W.C. 1961. An ultrasonic method for measurement of solids-not-fat and milk fat in fluid milk. I. Acoustic properties. J. Dairy Sci. 44, 1165.Google Scholar
  46. Fox, K.K., Holsinger, V.H., Pallansch, M.J. 1963. Fluorimetry as a method of determining protein content of milk. J. Dairy Sci. 46, 302–309.CrossRefGoogle Scholar
  47. Gillickson, I.S. 1983. Applications of infrared to the analysis of milk and milk products. J. Sci. Food Agric. 34, 1026–1027.Google Scholar
  48. Goulden, J.D.S. 1963. Determination of SNF of milk and unsweetened condensed milk from refractive index measurements. J. Dairy Res. 30, 411–417.CrossRefGoogle Scholar
  49. Goulden, J.D.S., Sherman, P. 1962. A simple spectroturbimetric method for the determination of the fat content of homogenized ice cream mixes. J. Dairy Res. 29, 47–53.CrossRefGoogle Scholar
  50. Goulden, J.D.S., Shields, J., Haswell, R. 1964. The infrared milk analyser. J. Soc. Dairy Technol. 17, 28–33.CrossRefGoogle Scholar
  51. Grappin, R., Jeunet, R. 1970. The 'Milko-Tester Automatic' for routine determination of fat in milk. Lait. 50, 233–256.CrossRefGoogle Scholar
  52. Greenbank, G.R., Wright, P.A. 1951. The deaeration of raw whole milk before heat treatment as a factor in retarding the development of the tallowy flavor in its dried product. J. Dairy Sci. 34, 815–818.CrossRefGoogle Scholar
  53. Grikshtas, R., Motekaitis, P. 1990. Cream rheological properties investigation. Brief Communications of the XXIII International Dairy Congress, Montreal, 8–12 October, Vol. II, p. 506.Google Scholar
  54. Gustavsson, M., Gustafsson, S.E. 2006. Thermal conductivity as an indicator of fat content in milk. Thermochim. Acta. 442, 1–5.CrossRefGoogle Scholar
  55. Hallström, M., Dejmek, P. 1988a. Rheological properties of ultrafiltered milk. I. Effects of pH, temperature and heat treatment. Milchwissenschaft, 43, 31–33.Google Scholar
  56. Hallström, M., Dejmek, P. 1988b. Rheological properties of ultrafiltered skim milk. II. Protein voluminosity. Milchwissenschaft, 43, 95–97.Google Scholar
  57. Hamann, J., Zecconi, A. 1998. Evaluation of the electrical conductivity of milk as a mastitis indicator. Bulletin, No. 334. International Dairy Federation, Brussels.Google Scholar
  58. Harding, F. 1983. Measurement of extraneous water by the freezing point test. Bulletin, No. 154. International Dairy Federation, Brussels.Google Scholar
  59. Harkins, W.D. 1952. The Physical Chemistry of Surface Films, Reinhold Publishing Corp., New York.Google Scholar
  60. Harland, H.A., Coulter, S.T., Jenness, R. 1952. The interrelationship of processing treatments and oxidation-reduction systems as factors affecting the keeping quality of dry whole milk. J. Dairy Sci. 34, 643–654.CrossRefGoogle Scholar
  61. Haugaard, G., Pettinati, J.D. 1959. Photometric milk fat determination. J. Dairy Sci. 42, 1255–1275.CrossRefGoogle Scholar
  62. Henningson, R.W. 1963. The variability of the freezing point of fresh raw milk. J. Assoc. Off. Anal. Chem. 46, 1036–1042.Google Scholar
  63. Henningson, R.W. 1969. Thermistor cryoscopic determination of the freezing point value of milk produced in North America. J. Assoc. Off. Anal. Chem. 52, 142–151.Google Scholar
  64. Herrington, B.L., Sherbon, J.W., Ledford, R.A., Houghton, G.E. 1972. Composition of milk in New York State. New York’s Food and Life Sciences Bulletin, Issue No 18, Cornell University, Ithaca.Google Scholar
  65. Higginbottom, C., Taylor, M.M. 1960. The oxidation-reduction potential of sterilized milk. J. Dairy Res. 27, 245–257.CrossRefGoogle Scholar
  66. Hinrichs, J. 1999. Influence of volume fraction of constituents on rheological properties and heat stability of concentrated milk. Milchwissenschaft, 54, 450–454.Google Scholar
  67. Hogeveen, H., Ouweltjes, W. 2003. Automatic on-line detection of abnormal milk. In: Encyclopedia of Dairy Sciences (H. Roginski, J.W. Fuquay, P.F. Fox eds.), pp. 1735–1740, Academic Press, London.Google Scholar
  68. Holt, C. 1975. Casein micelle size from elastic and quasi-elastic light scattering measurements. Biochim. Biophys. Acta. 400, 293–301.CrossRefGoogle Scholar
  69. Horne, D.S. 1993. Viscosity of milk and its concentrates. In: Food Colloids and Polymers: Stability and Mechanical Properties (E. Dickinson, P. Walstra, eds.), pp. 260–265, Royal Society of Chemistry, Cambridge.Google Scholar
  70. Houška, M., Adam, M., Celba, J., Havlíček, Z., Jeschke, J., Kubešová, A., Neumannová, J., Pokorný, D., Šesták, J., Šrámek, P. 1994. Milk, Milk Products and Semiproducts: Thermophysical and Rheological Properties of Foods, Institute of Agricultural and Food Information, Prague.Google Scholar
  71. IDF 1990. International Standard for the Determination of the Milkfat, Protein and Lactose Content of Milk. Guide for the Operation of Mid-Infra-Red Instruments. Standard 141A, International Dairy Federation, Brussels.Google Scholar
  72. International Organization for Standardization 1974. Milk and liquid milk products -density hydrometers for use in products with a surface tension of approximately 45 mN/m. ISO 2449-1974 (cited in Dairy Sci. Abst. 1974, 36, p. 514).Google Scholar
  73. Jackson, J. 1936. Factors in the reduction of methylene blue in milk. J. Dairy Res., 7, 31–40.CrossRefGoogle Scholar
  74. Janal, R., Blahovec, J. 1974. Thermal hysteresis of milk viscosity. Proc. 19th Int. Dairy Cong. (New Delhi), 1E, 170–172.Google Scholar
  75. Jenness, R. 1988. Composition of milk. In: Fundamentals of Dairy Chemistry (N.P. Wong, R. Jenness, M. Keanny, E.H. Marth, eds.), pp. 1–38, Van Nostrand Reinhold, New York.CrossRefGoogle Scholar
  76. Jenness, R., Patton, S. 1959. Principles of Dairy Chemistry, John Wiley, New York.Google Scholar
  77. Jenness, R., Shipe, W.F., Sherbon, J.W. 1974. Physical properties of milk. In: Fundamentals of Dairy Chemistry, 2nd edn. (B.H. Webb, A.H. Johnson, J.A. Alford, eds.), pp. 402–441, AVI Publishing Company, Inc., Westport, CT.Google Scholar
  78. Jeurnink, T.J.M., de Kruif, K.G. 1993. Changes in milk on heating: viscosity measurements. J. Dairy Res. 60, 139–150.CrossRefGoogle Scholar
  79. Josephson, D.V., Doan, F.J. 1939. Observations on cooked flavor in milk: its source and significance. Milk Dealer 29 (2), 35–36, 54, 56, 58–60, 62.Google Scholar
  80. Kessler, H.G. 1981. Food Engineering and Dairy Technology. Verlag A. Kessler, Freising, Germany.Google Scholar
  81. Kessler, H.G. 1984. Effects of technological processes on the freezing point of milk. Milchwissenschaft 39, 339–341.Google Scholar
  82. King, R.L., Dunkley, W.L. 1959. Relation of natural copper in milk to incidence of spontaneous oxidized flavor. J. Dairy Sci. 42, 420–427.CrossRefGoogle Scholar
  83. Kirchmeier, O. 1979. Titrimetric studies on milk and milk products. J. Dairy Res. 46, 397–400.CrossRefGoogle Scholar
  84. Kirchmeier, O. 1980. Pufferkapzitaten und puffergleichgewichte der milch. Milchwissenschaft 35, 667–670.Google Scholar
  85. Kneifel, W., Ulberth, F., Schaffer, E. 1992. Tristimulus colour reflectance measurement of milk and dairy products. Lait. 72, 383–391.CrossRefGoogle Scholar
  86. Knorr, D., Zenker, M., Heinz, V., Lee, D-U. 2004. Applications and potential of ultrasonics in food processing. Trends Food Sci. Technol. 15, 261–266.CrossRefGoogle Scholar
  87. Konev, S.V., Kozunin, 1.1. 1961. Fluorescence method for the determination of protein in milk. Dairy Sci. Abstr. 23, 103–105.Google Scholar
  88. Konrad, H., Rambke, K. 1971. Physikalische Eigenschaften flüssiger Milchprodukte. 4. Mitt. Wärmeleitfähigheit von Milch, Rahm und Milchkonzentraten [Physical properties of fluid milk products. Part IV. Heat conductivity of milk, cream and milk concentrates]. Die Nahrung 15, 269–277.CrossRefGoogle Scholar
  89. Kostaropoulos, A.E., Speiss, W.E.L., Wolf, W. 1975. Anhaltswerte für die Temperaturleitnihigkeit von Lebensmitteln. Lebensm. Wiss. Technol. 8, 108–110.Google Scholar
  90. Kristensen, D., Jensen, P.Y., Madsen, F., Birdi, K.S. 1997. Rheology and surface tension of selected processed dairy fluids: influence of temperature. J. Dairy Sci. 80, 2282–2290.CrossRefGoogle Scholar
  91. Kudra, T., Raghavan, V., Akyel, C., Bosisio, R., van de Voort, F. 1992. Electromagnetic properties of milk and its constituents at 2.45 GHz. J. Microw. Power Electromagne. Energy 27 (4), 199–204.Google Scholar
  92. Kuttruff, H. 2007. Acoustics An Introduction, Taylor & Francis, London.Google Scholar
  93. Kyazze, G., Starov, V. 2004. Viscosity of milk: influence of cluster formation. Colloid J. 66, 316–321.CrossRefGoogle Scholar
  94. Langley, K.R., Temple, D.M. 1985. Viscosity of heated skim milk. J. Dairy Res. 52, 223–227.CrossRefGoogle Scholar
  95. Lawton, B.A., Pethig, R. 1993. Determining the fat content of milk and cream using AC conductivity measurements. Meas. Sci. Technol. 4 38–41.CrossRefGoogle Scholar
  96. Lewis, M.J. 1987. Physical Properties of Foods and Food Processing Systems, Ellis Horwood, Chichester, England.Google Scholar
  97. Lide, D.R., Frederikse, H.P.R. 1996. CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton.Google Scholar
  98. Lindqvist, B. 1976. The air content of milk. An instrument for determining the content of dispersed gas in flowing milk. Nordisk Mejeriindust. 3, 317–320 (cited in Dairy Sci. Abstr., 1977, 39, p. 78).Google Scholar
  99. Lucey, J.A. 1992. Acid-base Buffering and Rennet Coagulation Properties of Milk Systems, PhD Thesis, National University of Ireland, Cork.Google Scholar
  100. Lucey, J.A., Hauth, B., Gorry, C., Fox, P.F. 1993. Acid-base buffering of milk. Milchwissenschaft, 48, 268–272.Google Scholar
  101. Mabrook, M.F., Petty, M.C. 2002. Application of electrical admittance measurements to the quality of milk. Sens. Actuators B, 84, 136–141.CrossRefGoogle Scholar
  102. Mabrook, M.F., Petty, M.C. 2003. effect of composition on the electrical conductance of milk. J. Food Eng., 60, 321–325.CrossRefGoogle Scholar
  103. McCarthy, O.J. 2006. Physical characterization of milk fat and milk fat-based products. In: Advanced Dairy Chemistry Volume 2 Lipids (P.F. Fox, P.L.H. McSweeney, eds.), pp. 725–778, Springer, New York.CrossRefGoogle Scholar
  104. McMahon, D.J. 1996. Age-gelation of UHT milk: changes that occur during storage, their effect on shelf life and the mechanism by which age-gelation occurs. In: Heat Treatments and Alternative Methods, IDF symposium, Vienna, pp. 315–326, International Dairy Federation, Brussels.Google Scholar
  105. Mason, T.J., Riera, E., Vercet, A., Lopez-Buesa, P. 2005. Application of ultrasound. In: Emerging Technologies for Food Processing (Da-Wen Sun ed.), pp. 323–351, Elsevier, Amsterdam.Google Scholar
  106. McIntyre, RT., Parrish, D.B., Fountain, F.E. 1952. Properties of the colostrum of the dairy cow. VII. pH, buffer capacity and osmotic pressure. J. Dairy Sci. 23, 405–22.Google Scholar
  107. McClements, D.J. 1995. Advances in the application of ultrasound in food analysis and processing. Trends Food Sci. Technol. 6, 293–299.CrossRefGoogle Scholar
  108. McClements, D.J. 1997. Ultrasonic characterization of foods and drinks: principles, methods, and applications. Crit. Rev. Food Sci. Nutr. 37, 1–46.CrossRefGoogle Scholar
  109. McClements, D.J. 1998. Particle sizing of food emulsions using ultrasonic spectrometry: principles, techniques and applications. In: Ultrasound in Food Processing (M.J.W. Povey, Mason, T.J. eds.), pp. 85–104, Blackie Academic & Professional, London.Google Scholar
  110. Michalski, M.C., Briard, V. 2003. Fat-related surface tension and wetting properties of milk. Milchwissenschaft 58, 26–29.Google Scholar
  111. Miles, C.A., van Beek, G., Veerkamp, E.H. 1983. Calculation of thermophysical properties of foods. In: Physical Properties of Foods (R. Jowitt, F. Escher, B. Hallström, H.F.T. Meffert, W.E.L. Speiss, G. Vos, eds.), pp. 269–312, Applied Science Publishers, London.Google Scholar
  112. Mills, B.L., van de Voort, F.R. 1982. Evaluation of CH stretch measurement for estimation of fat in aqueous fat emulsions using infrared spectroscopy. J. Assoc. Off. Anal. Chem. 65, 1357–1361.Google Scholar
  113. Miyagawa, K., Namba, A. 1988. Buffer capacity of cow’s milk. Nippon Shokuhin kogyo gakkaiski 35, 417–422.CrossRefGoogle Scholar
  114. Mohr, W., Brockmann, C. 1930. Surface tension measurements of milk. Milchwiss. Forsch. 10, 72–95.Google Scholar
  115. More, G.R., Prasad, S. 1988. Thermal conductivity of concentrated whole milk. J. Food Proc. Eng. 10, 105–112.CrossRefGoogle Scholar
  116. Moy, C.F., Winder, W.C. 1971. Development of an ultrasonic method for continuously monitoring the fat and solids-not-fat content of fluid milk. J. Dairy Sci. 54, 757(abstr.).Google Scholar
  117. Mucchetti, G., Gatti, M., Neviana, E. 1994. Electrical conductivity changes in milk caused by acidification: determining factors. J. Dairy Sci. 77 940–944.CrossRefGoogle Scholar
  118. Mudgett, R.E., Smith, A.C., Wang, D.I.C., Goldblith, S.A. 1974. Prediction of dielectric properties in nonfat milk at frequencies and temperatures of interest in microwave processing. J. Food Sci. 39, 52–54.CrossRefGoogle Scholar
  119. Mulder, H., Walstra, P. 1974. The Milk Fat Globule, Commonwealth Agricultural Bureaux, Farnham Royal, Bucks., England.Google Scholar
  120. Nakai, S., Le, A.C. 1970. Spectrophotometric determination of protein and fat in milk simultaneously. J. Dairy Sci. 53, 276–278.CrossRefGoogle Scholar
  121. Nelson, V. 1949. The physical properties of evaporated milk with respect to surface tension, grain formation and color. J. Dairy Sci. 32, 775–785.CrossRefGoogle Scholar
  122. Norberg, E. 2005. Electrical conductivity of milk as a phenotypic and genetic indicator of bovine mastitis: a review. Livest. Prod. Sci. 96, 129–139.CrossRefGoogle Scholar
  123. Norberg, E., Hogeveen, H., Korsgaard, I.R., Friggens, N.C., Sloth, K.H.M.N., Løvendahl, P. 2004. Electrical conductivity of milk: ability to predict mastitis status. J. Dairy Sci. 87, 1099–1107.CrossRefGoogle Scholar
  124. Nunes, A.C., Bohigas, X., Tejada, J. 2006. Dielectric study of milk for frequencies between 1 and 20 GHz. J. Food Eng. 76, 250–255.CrossRefGoogle Scholar
  125. O'Brien, J. 1995. Heat-induced changes in lactose: isomerization, degradation, Maillard browning. In: Heat-Induced Changes in Milk, 2nd edn. (P.F. Fox, ed.), pp. 134–170, Special Issue 9501, International Dairy Federation, Brussels.Google Scholar
  126. Ohlsson, T. 1983. The measurement of thermal properties. In: Physical Properties of Foods (R. Jowitt, F. Escher, B. Hallstrom, et al., eds.), pp. 313–328, Applied Science Publishers, London.Google Scholar
  127. Parkash, S. 1963. Studies in physico-chemical properties of milk. XIV. Surface tension of milk. Indian J. Dairy Sci. 16, 98–100.Google Scholar
  128. Phipps, L.W. 1957. A calorimetric study of milk, cream and the fat in cream. J. Dairy Res. 24, 51–67.CrossRefGoogle Scholar
  129. Phipps, L.W. 1969. The interrelationship of the viscosity, fat content and temperature of cream between 40° and 80°C. J. Dairy Res. 36, 417–426.CrossRefGoogle Scholar
  130. Porter, R.M. 1965. Fluorometric determination of protein in whole milk, skim milk and milk serum. J. Dairy Sci. 48, 99–100.CrossRefGoogle Scholar
  131. Povey, M.J.W. 1998. Rapid determination of food material properties. In: Ultrasound in Food Processing (M.J.W. Povey, Mason, T.J. eds.), pp. 30–65, Blackie Academic & Professional, London.Google Scholar
  132. Prentice, J.H. 1962. The conductivity of milk – the effect of the volume and the degree of dispersion of the fat. J. Dairy Res. 29, 131–139.Google Scholar
  133. Prentice, J.H. 1972. The temperature coefficient of electrolytic conductivity of milk. J. Dairy Res. 39, 275–278.CrossRefGoogle Scholar
  134. Prentice, J.H. 1992. Dairy Rheology, VCH Publishers, Cambridge, England.Google Scholar
  135. Prouty, C.C. 1940. Observations on the growth responses of Streptococcus lactis in mastitic milk. J. Dairy Sci. 23, 899–904.CrossRefGoogle Scholar
  136. Pyne, G.T., McGann, T.C.A. 1960. The colloidal calcium phosphate of milk. II. Influence of citrate. J. Dairy Res. 27, 9–17.CrossRefGoogle Scholar
  137. Rahman, S. 1995. Food Properties Handbook. CRC Press, Boca Raton, FL.Google Scholar
  138. Rambke, K., Konrad, H. 1970. Physikalische Eigenschaften flüssiger Milchprodukte. 3. Mitt. Spezifische Wärmekapazität von Milch, Rahm und Milchkonzentraten [Physical properties of fluid milk products. Part III. Specific heat of milk, cream and milk concentrates]. Die Nahrung 14, 475–483.CrossRefGoogle Scholar
  139. Randhahn, H. 1973. Beitrag zum Fließverhalten von Milch- und Milchkonzebtraten [Flow properties of milk and milk concentrates]. Milchwissenschaft 28, 620–628.Google Scholar
  140. Randhahn, H. 1974. Contribution to the rheology of milk. Proc. 19th Int. Dairy Congr. (New Delhi), IE, 202.Google Scholar
  141. Randhahn, H. 1976. The flow properties of skim milk concentrates obtained by ultrafiltration. J. Text. Studies 7, 205–217.CrossRefGoogle Scholar
  142. Randhahn, H., Reuter, H. 1978. The rheological behaviour of raw milk cream. Proc. 20th Int. Dairy Congr. (Paris), pp. 854–855, Congrilait, Paris.Google Scholar
  143. Rao, D., Pantulu, P.C., Sudheendranath, C.S., Rao, M.B., Anantakrishnan, C.P. 1989. The inter relationship of electrical conductivity, relative viscosity and absolute temperature of skim milk. Indian J. Dairy Sci. 42, 543–546.Google Scholar
  144. Raoult, F.M. 1884. The general law on the freezing of solvents. Ann. Chem. Phys. 2, 66–93.Google Scholar
  145. Reuter, H., Randhahn, H. 1978. Relation between fat globule size distribution and viscosity of raw milk. Proc. 20th Int. Dairy Congr (Paris), pp. 281–287, Congrilait, Paris.Google Scholar
  146. Riedel, L. 1949. Warmeleitfiihigkeitmessungen an Zuckerlosungen. Fruchtsafen Milch. Chem. Ing. Technik 21, 340–341.CrossRefGoogle Scholar
  147. Riedel, L. 1955. Kalorimetrische Untersuchungen tiber das Schmelzverhalten von Fetten und Olen. Fette Seifen Anstrichm. 57, 771–782.CrossRefGoogle Scholar
  148. Riedel, L. 1976. Kalorimetrische Untersuchungen an Milch und Milchprodukten [Calorimetric measurements on milk and milk products]. Chem. Milkrobiol. Technol. Lebensm. 4, 177–185Google Scholar
  149. Robin, O., Britten, M., Paquin, P. 1994. Influence of the dispersed phase distribution on the electrical conductivity of liquid O/W model and dairy emulsions. J. Colloid Interface Sci. 167, 401–413.CrossRefGoogle Scholar
  150. Rohm, H., Müller, A., Hend-Milnera, I. 1996. Effects of composition on raw milk viscosity. Milchwissenschaft 51, 259–261.Google Scholar
  151. Rudzik, L., Wöbbecke, R. 1982. Notwendigkeit der homogenisierung dei infrarot-messungen in milch. Moklerei-Zeitung Welt Milch 36, 298, 307 (cited in Dairy Sci. Abstr., 1982, 44, p. 949).Google Scholar
  152. Ruegg, M., Moor, U. 1985. Effect of temperature between 15 and 25°C on the density of milk. Schweiz. Milchwirtsch. Forsch. 14 (3), 7–10 (cited in Dairy Sci. Abstr., 1988, 50, p. 300).Google Scholar
  153. Rutz, W.D, Whitnah, C.H., Baetz, G.D. 1955. Some physical properties of milk. I. Density. J. Dairy Sci. 38, 1312–1318.CrossRefGoogle Scholar
  154. Sadowska, J., Gryzowska, A., Wodecki, E. 1990. Rheological characteristic of cream with high fat content. In: Engineering and Food. Vol 1. Physical Properties and Process Control (W.E.L. Speiss, H. Schubert, eds.), pp. 169–175, Elsevier, London.Google Scholar
  155. Sahin, S., Sumnu, S. G. 2006. Physical Properties of Foods. Springer, New York.Google Scholar
  156. Salaün, F., Mietton, B., Gaucheron, F. 2005. Buffering capacity of dairy products. Int. Dairy J. 15, 95–109.CrossRefGoogle Scholar
  157. Savaroglu, G., Aral, E. 2007. Acoustic parameters of cow’s milk added hydrogen peroxide [sic] and sodium bicarbonate at different temperatures. J. Food Eng. 79, 287–292CrossRefGoogle Scholar
  158. Sharma, R.R. 1963. Determination of surface tension of milk by the drop method and the ring method. Indian J. Dairy Sci. 16, 101–108.Google Scholar
  159. Sharma, G.S., Roy, N.K. 1976. Influence of temperature on the electrical conductivity of buffalo milk. J. Dairy Res. 43, 321–323.CrossRefGoogle Scholar
  160. Sharp, P.F., Krukovsky, V.N. 1939. Differences in absorption of solid and liquid fat globules as influencing the surface tension and creaming of milk. J. Dairy Sci. 22, 743–751.CrossRefGoogle Scholar
  161. Sherbon, J.W. 1988. Physical properties of milk, in Fundamentals of Dairy Chemistry, 3rd edn. (N.P. Wong, R. Jenness, M. Kenny, E.H. Marth, eds.), pp. 410–414, Van Nostrand Reinhold, New York.Google Scholar
  162. Shipe, W.F. 1959. The freezing point of milk. A review. J. Dairy Sci. 42, 1745–1762.CrossRefGoogle Scholar
  163. Shipe, W.F. 1964. Effect of vacuum treatment on freezing point of milk. J. Assoc. Off. Agric. Chem. 47, 570–572.Google Scholar
  164. Shipe, W.F., Senyk, G.F. 1973. Collaborative study of the Foss Milko-Tester method for measuring fat in milk. J. Assoc. Off. Anal. Chem. 56, 538–540.Google Scholar
  165. Shipe, W.F., Senyk, G.F. 1975. Collaborative study of the Milko-Tester method for measuring fat in homogenized and unhomogenized milk. J. Assoc. Off. Anal. Chem. 58, 572–575.Google Scholar
  166. Shipe, W.F., Senyk, G.F. 1980. Evaluation of Milko-Tester Minor for determining fat in milk. J. Assoc. Off. Anal. Chem. 63, 716–719.Google Scholar
  167. Sierzant, R., Smith, D.E. 1993. Flow behaviour properties and density of whole milk retentates as affected by temperature. Milchwissenschaft 48, 6–10.Google Scholar
  168. Singh, H., McCarthy, O.J., Lucey, J.A. 1997. Physico-chemical properties of milk. In: Advanced Dairy Chemistry, Volume 3, Lactose, Water, Salts and Vitamins, 2nd edn. (P.F. Fox ed.), pp. 469–518, Chapman and Hall, London.Google Scholar
  169. Singh, R.R.B., Patil, G.R. 1990. Kinetics of whitening of milk during UHT processing. Milchwissenschaft 45, 367–369.Google Scholar
  170. Smith, J.M., Van Ness, H.C. 1987. Introduction to Chemical Engineering Thermodynamics, 4th edn. McGraw-Hill, New York.Google Scholar
  171. Snoeren, T.H.M., Damman, A.J., Klok, H.J. 1982. The viscosity of skim-milk concentrates. Neth. Milk Dairy J. 36, 305–316.Google Scholar
  172. Snoeren, T.H.M., Damman, A.J., Klok, H.J. 1983. The viscosity of whole milk concentrate and its effect on the properties of dried whole milk. Zuivelzicht 75, 847–849.Google Scholar
  173. Snoeren, T.H.M., Brinkhuis, J.A., Damman, A.J., Klok, H.J. 1984. Viscosity and age-thickening of skim-milk concentrate. Neth. Milk Dairy J. 38, 43–53.Google Scholar
  174. Srilaorkul, S., Ozimek, L., Wolfe, F., Dziuba, J. 1989. The effect of ultrafiltration on physicochemical properties of retentate. Can. Inst. Food Sci. Technol. J. 5, 56–62.Google Scholar
  175. Starov, V.M., Zhdanov, V.G. 2003. Viscosity of emulsions: influence of flocculation. J. Colloid Interface Sci. 258, 404–414.CrossRefGoogle Scholar
  176. Stepp, B.L., Smith, D.E. 1991. Effect of concentration and temperature on the density and viscosity of skim milk retentates. Milchwissenschaft 46, 484–487.Google Scholar
  177. Tanford, C. 1962. The interpretation of hydrogen ion titration curves of proteins. Adv. Protein Chem. 17, 69–165.CrossRefGoogle Scholar
  178. Toenjes, D.A., Strasser, S., Bath, D.L. 1991. Specific gravity: a better test of first-milk quality. Calif. Agric. 45 (3), 23–24.Google Scholar
  179. Unnikrishnan, V., Doss, K.D.V.V. 1982. Effect of citrate and calcium contents on buffer capacity of cow’s milk. Asian J. Dairy Res. 1, 83–87.Google Scholar
  180. Vahcic, N., Palic, A., Ritz, M. 1992. Mathematical evaluation of relationships between copper, iron, ascorbic acid and redox potential of milk. Milchwissenschaft, 47, 228–230.Google Scholar
  181. van der Have, A.J., Deen, J.R., Mulder, H. 1979. The composition of cow's milk. 4. The calculation of the titratable acidity studied with separate milkings of individual cows. Neth. Milk Dairy J. 33, 164–171.Google Scholar
  182. van Vliet, T., Walstra, P. 1980. Relationship between viscosity and fat content of milk and cream. J. Text. Stud. 11, 65–68.CrossRefGoogle Scholar
  183. Vélez-Ruiz, J.F., Barbosa-Cánovas, G.V. 1997. Rheological properties of selected dairy products. Crit. Rev. Food Sci. Nutr. 37, 311–359.CrossRefGoogle Scholar
  184. Vélez-Ruiz, J.F., Barbosa-Cánovas, G.V. 1998. Rheological properties of concentrated milk as a function of concentration, temperature and storage time. J. Food Eng. 35, 177–190.CrossRefGoogle Scholar
  185. Walstra, P. 1965. Light scattering by milk fat globules. Neth. Milk Dairy J. 19, 93–109.Google Scholar
  186. Walstra, P., de Roos, A.L. 1993. Proteins at air-water and oil-water interfaces: static and dynamic aspects. Food Rev. Int. 9, 503–525.CrossRefGoogle Scholar
  187. Walstra, P., Jenness, R. 1984. Dairy Chemistry and Physics, John Wiley, New York.Google Scholar
  188. Watson, P.D. 1958. Effect of variations in fat and temperature on the surface tension of various milks. J. Dairy Sci. 41, 1693–1698.CrossRefGoogle Scholar
  189. Watson, P.D., Tittsler, R.P. 1961. The density of milk at low temperatures. J. Dairy Sci. 44, 416–424.CrossRefGoogle Scholar
  190. Wayne, J.E.B., Shoemaker, C.F. 1988. Rheological characterization of commercially processed fluid milks. J. Text. Studies 19, 143–152.CrossRefGoogle Scholar
  191. Webb, RH. 1933. A note on the surface tension of homogenized cream. J. Dairy Sci. 16, 369–373.CrossRefGoogle Scholar
  192. White, J.C.D., Davies, DT. 1958. The relation between the chemical composition of milk and the stability of the caseinate complex. I. General considerations, description of samples, methods and chemical composition of samples. J. Dairy Res. 25, 236–55.CrossRefGoogle Scholar
  193. Whitnah, C.H. 1956. Some physical properties of milk. II. Effects of age upon the viscosity of pasteurized whole milk. J. Dairy Sci. 39, 356–363.CrossRefGoogle Scholar
  194. Whitnah, C.H. 1959. The surface tension of milk. A review. J. Dairy Sci. 42, 1437–1449.CrossRefGoogle Scholar
  195. Whitnah, C.H., Medved, T.M., Rutz, W.D. 1957. Some physical properties of milk. IV. Maximum density of milk. J. Dairy Sci. 40, 856–861.CrossRefGoogle Scholar
  196. Whittier, E.O. 1929. Buffer intensities of milk and milk constituents. I. Buffer action of casein in milk. J. BioI. Chem. 83, 79–88.Google Scholar
  197. Whittier, E.O. 1933. Buffer intensities of milk and milk constituents. 2. Buffer action of calcium phosphate. J. BioI. Chem. 102, 733–47.Google Scholar
  198. Wiley, W.J. 1935a. A study of the titratable acidity of milk. 1. The influence of the various milk buffers on the titration curves of fresh and sour milk. J. Dairy Res. 6, 71–85.Google Scholar
  199. Wiley, W.J. 1935b. A study of the titratable acidity of milk. 2. The buffer curves of milk. J. Dairy Res. 6, 86–90.Google Scholar
  200. Winder, W.C., Consigny, N.C., Rodriguez-Lopez, B. 1961. An ultrasonic method for measurement of solids-not-fat and milk fat in fluid milk. II. An evaluation of the method. J. Dairy Sci. 44, 1165.Google Scholar
  201. Wunderlich, B. 1990. Thermal Analysis, Academic Press, New York.Google Scholar
  202. Żywica, R., Budny, J. 2000. Changes of selected physical and chemical parameters of raw milk during storage. Czech J. Food Sci. 18(Special Issue), 241–242.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • O. J. McCarthy
    • 1
  • H. Singh
    • 2
  1. 1.Institute of Food, Nutrition and Human Health, Massey UniversityPalmerston NorthNew Zealand
  2. 2.Riddet Institute, Massey UniversityPalmerston NorthNew Zealand

Personalised recommendations