New Concepts and Emerging Issues in Sepsis

Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)

Severe sepsis and septic shock are manifestations of the host's immune uncontrolled response to infection. The term sepsis is a poorly defined, but commonly used term in the medical literature, and it is derived from the Greek word “Sépsis” meaning decay. Sepsis is best defined as a life-threatening condition or complex caused by overwhelming inflammatory response to infection associated with dysregulation of the body's immune mechanism. Sepsis is the leading cause of death in critically ill patients in most intensive care units (ICUs). It has been estimated that in the United States sepsis develops in 750,000 people annually, and more then 210,000 of those die1,2! Infants and children in >42,000 cases of severe sepsis occur annually in the United States and millions worldwide.2 The incidence of septicemia and sepsis have been increasing in the past 3 decades in many countries because of several factors, including longer lifespan with a greater population of the elderly; treatment with immunosuppressives with a greater number of subjects with organ transplantations and cancers; use of invasive and novel treatment with prosthesis, long-term or permanent catheters; and the expanding acquired immunodeficiency syndrome (AIDS) epidemic. In national hospital discharge surveys in the United States, the incidence of septicemia had increased from 73.6 per 100,000 patients in 1979 to 175.9 per 100,000 patients in 1987.3 Surveys in the United States and Europe have estimated that severe sepsis accounts for 2–11& of all admission to hospital or ICUs.1 Observational studies indicate that 30–50& of the cases are admitted through the emergency department, rather than developing in hospitals.4,5 The incidence of sepsis appears to continue to increase by 8.7& annually (with an adjusted rate of increase of nearly 300& from 1979 to 2000),6 but may be greater in the United States (US) with an incidence of 240–300 per 100,000 populations, compared to some European countries (Austria, Germany) with rates of 54–116 per 100,000 population.7

Despite progress in our understanding of the pathophysiology of sepsis, the mortality rate is still high (in those with severe sepsis and septic shock). Although the mortality rate overall has fallen in the United States from 27.8& to 17.9& in septic patients over 2 decades, the mortality rate was 30& in those with any organ failure and 70& in those with multiple organ failure.6 Patients with infections and severe sepsis require prolonged stay in ICU and hospital, resulting in increase health care costs. Estimates of direct costs per sepsis patient in the United States are about $50,000 whereas European costs are lower, $26,450–33,350.7 Thus a crude estimate of the direct annual cost of severe sepsis in the United States is about $17.0 billion.1


Septic Shock Severe Sepsis Acute Respiratory Distress Syndrome Septic Patient Disseminate Intravascular Coagulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Angus, D.C., Linde-Zwirble, W.T., Lidicker, J., Clermont, G., Carcillo, J., Pinsky, M.R., (2001), Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29: 1303–1310.PubMedGoogle Scholar
  2. 2.
    Murphy, S.L., (2000), Deaths: final statistics for 1998. National vital statistics report. Vol. 48., No 11. National Center for Helath Statistics: Hyattsville, MD (DHHS publication no. (PH5) 2000–11200–0487).Google Scholar
  3. 3.
    Center for Disease Control, (1990), Increase in national hospital discharge survey rates for septicemia – United States, 1979–1987. JAMA 269: 937–938.Google Scholar
  4. 4.
    Rivers, E.P., Nguyen, H.B., Huang, D.T., Donnino, M.W., (2002), Critical care and emergency medicine. Curr. Opin. Crit. Care 8: 600–606.PubMedGoogle Scholar
  5. 5.
    McIntyre, L.A., Herbert, P.C., Cook, D.J., Magder, S., Dhingra, V., Bell, D.R., (2003), Are delays in the recognition and initial management of patients with severe sepsis associated with hospital mortality? Crit. Care Med. 31 (12 Suppl.): A75.Google Scholar
  6. 6.
    Martin, G.S., Mannino, D.M., Eaton, S., Moss, M., (2003), The epidemiology of sepsis in the United States from 1979 through 2000. NEJM 348: 1546–1654.PubMedGoogle Scholar
  7. 7.
    Burchardi, H., Schneider, H., (2004), Economic aspects of severe sepsis. A review of intensive care unit costs, cost of illness and cost effectiveness of therapy. Pharmacoeconomics 22: 793–813.PubMedGoogle Scholar
  8. 8.
    Bone, R.C., Balk, R.A., Cerra, F.B., Dellinger, R.P., Fein, A.M., Krans, W.A., Schein, R.M., Sibba Ld, W.J., (1992), Definition for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM consensus conference committee, American College of Chest Physicians/Society of Critical Care Medicine. Chest 101: 1656–1662.Google Scholar
  9. 9.
    Levy, M.M., Fink, M.P., Marshall, J.C., Abraham, E., Angus, D., Cook, D., Cohen, J., Opal, S. M., Vincent, J.L., Ramsey, G., International Sepsis Definition Conference, (2003), 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definition Conference. Int. Care Med. 29: 530–538.Google Scholar
  10. 10.
    Medzhitov, R., Janeway, C. Jr., (2000), Innate Immunity (Advances in Immunology). N. Engl. J. Med 343: 338–344.PubMedGoogle Scholar
  11. 11.
    Epstein, J., Eichbaum, Q., Sheriff, S., Ezckowitz, R.A., (1996), The collectins in innate immunity. Curr. Opin. Immunol. 8: 29–35.PubMedGoogle Scholar
  12. 12.
    Fraser, I.P., Koziel, H., Ezekowitz, R.A., (1998), The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin. Immunol. 10: 363–372.PubMedGoogle Scholar
  13. 13.
    Thomas, C.A., Li, Y., Kodama, T., Suzuki, H., Silverstein, S.C., EL Khoury, J., (2000), Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J. Exp. Med. 191: 147–156.PubMedGoogle Scholar
  14. 14.
    Mizgerd, J.P., (2008), (Mechanisms of disease) Acute lower respiratory tract infection. NEJM 358: 716–727.PubMedGoogle Scholar
  15. 15.
    Bochud, P.Y., Calandra, T., (2003), Pathogenesis of sepsis. New concepts and implications for future treatment. BMJ 326: 262–264.PubMedGoogle Scholar
  16. 16.
    Dessing, M.C., Schoiuten, M., Draing, C., Levi, M., von Aulock, S., van der Poll, T., (2008), Role played by toll-like receptors 2 and 4 in lipoteichoic acid-induced lung inflammation and coagulation. J. Infect. Dis. 197: 245–252.PubMedGoogle Scholar
  17. 17.
    Drenth, J.P.H., van der Meer, J.W.M., (2006), The inflammasome a linebacker of innate defence. N. Engl. J. Med. 355: 730–732.PubMedGoogle Scholar
  18. 18.
    Mariathasan, S., Weiss, D.S., Newton, K., McBride, J., O'Rourke, K., Roose-Girma, M., Lee, W.P., Weinrauch,Y., Monack, D.M., Dixit, V.M., (2006), Cryopyrin activates inflammasome in response to toxins and ATP. Nature 440: 228–232.PubMedGoogle Scholar
  19. 19.
    Abraham, E., (2003), Nuclear factor-κB and its role in sepsis associated organ failure. J. Infect. Dis. 187(Suppl. 2): s364–s369.PubMedGoogle Scholar
  20. 20.
    Liu, S.F., Ye, X., Malik, A.B., (1997), In vivo inhibition of nuclear factor-κB activation prevents inducible nitric oxide synthase expression and systemic hypotension in a rat model of septic shock. J. Immunol. 159: 3976–3983.PubMedGoogle Scholar
  21. 21.
    Rebe, C., Cathelin, S., Launay, S., Filomenko, Prévotat, L., L'OLlivier, C., Gyan, E., Michaeu, O., Grant, S., Dupart-Kupperschmitt, A., Fontenay, M., Solary, E., (2007), Caspase-8 prevents sustained activation of NF-κB in monocytes undergoing macrophage differentiation. Blood 109: 1442–1450.PubMedGoogle Scholar
  22. 22.
    Dinarello, C.A., Fantuzzi, G., (2003), Interleuken-18 and host defence against infection. J. Infect. Dis. 187(Suppl 2): s370–s380.PubMedGoogle Scholar
  23. 23.
    Calendra, T., Froidevaux, C., Martin, C., Roger, T., (2003), Macrophage migration inhibitory factor and host immune defenses against bacterial sepsis. J. Infect. Dis. 187(Suppl 2): s385– s390.Google Scholar
  24. 24.
    Emonts, M., Sweep, F.C.G.J., Grebenchtchikov, N., Geurts-Moespot, Knaup, M., Chonson, A. L., Erard, V., Renner, P., Hermans, P.W.M., Hazelzet, J.A., Calandra, T., (2007), Association between high levels of blood macrophage migration inhibitory factor, inappropriate adrenal response, and early death in patients with severe sepsis. Clin. Infect. Dis. 44: 1321–1328.PubMedGoogle Scholar
  25. 25.
    Wang, H., Yang, H., Czura, C.J., Sama, A.E., Tracey, K.J., (2001), HMGB1 as a late mediator of lethal systemic inflammation. Am. J. Respir. Crit. Care Med. 164: 1768–1773.PubMedGoogle Scholar
  26. 26.
    Czura, C.J., Yang, H., Tracey, K.J., (2003), High mobility group box-1 as a therapeutic target downstream of tumor necrosis factor. J. Infect. Dis. 187(Suppl 2): s391–s396.PubMedGoogle Scholar
  27. 27.
    Abraham, E., Arcaroli, J., Carmody, A., Wang, H., Tracey, K.J., (2000) HMG-1 as a mediator of acute lung inflammation. J. Immunol. 165: 2950–2954.PubMedGoogle Scholar
  28. 28.
    Colonna, M., Facchetta, F., (2003) TREM-1 (triggering receptor expressed on myeloid cells): a new player in acute inflammatory response. J. Infect. Dis. 187(Suppl 2): s397–s401.PubMedGoogle Scholar
  29. 29.
    Bouchon, A., Facchetti, F., Weigand, MA, Colonna, M, (2001) TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410: 1103–1107.PubMedGoogle Scholar
  30. 30.
    Brown, K.A., Brain, S.P., Pearson, J.D., Edgeworth, J.D., Lewis, S.M., Treacher, D.F., (2006), Neutrophils in development of multiple organ failure in sepsis. Lancet 368: 157–168.PubMedGoogle Scholar
  31. 31.
    Astiz, M.E., DeGent, G.E., Lin, R.Y., Rackow, E.C., (1996), Microvascular function and rheologic changes in hyperdynamic sepsis. Crit. Care Med. 23: 265–271.Google Scholar
  32. 32.
    Sato, T., Shinzawa, H., Abe, Y, Takahashi, T., Arai, S., Sendo, F., (1993), Inhibition ofCorynebacterium parvum-primed and lipopolysaccharide-induced hepatic necrosis in rats by selective depletion of neutrophils using monoclonal antibody, J. Leukoc. Biol. 53: 144–150.PubMedGoogle Scholar
  33. 33.
    Van eden, S.F., Kitigawa, Y., Klut, M.E., Lawrence, E., Hogg, J.C., (1997), Polymorphonuclear leucocytes released from the bone marrow preferentially sequester in lung microvessels. Microcirc. 4: 369–380.Google Scholar
  34. 34.
    Zhang, H., Porro, G., Orzech, N., Muller, B., Liu, M., Slutsky, A.S., (2001), Neutrophil defensins mediate acute inflammatory response and lung dysfunction in dose-related fashion. Am .J. Physiol. Lung Cell Mol. Physiol. 80: 947–954.Google Scholar
  35. 35.
    Parrillo, J.E., (1993) Pathogenetic mechanisms of septic shock. N. Engl. J. Med. 328: 1471– 1477.PubMedGoogle Scholar
  36. 36.
    Landry, D.W., Oliver, J.A., (2004), The pathogenesis of vasodilatory shock. N. Engl. J. Med 345: 588–595.Google Scholar
  37. 37.
    Schrier, R.W., Wang, W., (2004), Acute renal failure and sepsis. N. Engl. J. Med. 351: 159– 169.PubMedGoogle Scholar
  38. 38.
    Landry, D.W., Levin, H.R., Gallant, G.M., Ashton, R.C. Jr., Seo, S., D'Alessandro, D., Oz, M. C., Oliver, J.A., (1997) Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation 95: 1122–1125.PubMedGoogle Scholar
  39. 39.
    Zeni, F., Freeman, B.F., Natanson, C, (1997), Antiinflammatory therapies to treat sepsis and septic shock: a reassessment. Crit. Care. Med. 25: 1095–1000.PubMedGoogle Scholar
  40. 40.
    Hotchkiss, R.S, Karl, I.E., (2003), The pathophysiology and treatment of sepsis. NEJM 348: 138–150.PubMedGoogle Scholar
  41. 41.
    Opal, S.M., DePalo, V.A., (2000), Anti-inflammatory cytokines. Chest 117: 1162–1172.PubMedGoogle Scholar
  42. 42.
    Gogos, C.A., Drosou, E., Bassaris, H.P., Skoutelis, A., (2000), Pro-versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J. Infect. Dis. 181: 176–180.PubMedGoogle Scholar
  43. 43.
    Hotchkiss, R.S., Swanson, P.E., Freeman, B.D., Tinsley, K.W., Cobb, J.P., Matuschak, G.M., Buchman, T.G., Karl, I.E., (1999), Apoptotic cell death in patients with sepsis, shock and multiple organ dysfunction. Crit. Care Med. 27: 1230–1251.PubMedGoogle Scholar
  44. 44.
    Hotchkiss, R.S., Tinsley, K.W., Swanson P.E., Schmieg, R.E. Jr., Hui, J.J., Chang, K.C., Osborne, D.F., Freeman, B.D., Cobb, J.P., Buchman, T.G., Karl, I.E. (2001), Sepsis-induced apoptosis causes profound depletion of B and CD4+ T Lymphocytes in humans. J. Immunol. 166: 6952–6963.PubMedGoogle Scholar
  45. 45.
    Hotchkiss, R.S., Tinsley, K.W., Swanson, P.E., Grayson, M.H., Osborne, D.F., Wagner, T.H., Cobb, J.P., Coppersmith, C., Karl, I.E., (2002), Depletion of dendritic cells but not macrophages in patients with sepsis. J. Immunol. 168: 2493–2450.PubMedGoogle Scholar
  46. 46.
    Aliprantis, A.O., Yang, R.-B., Mark, M.R., Suggett, S., Devaux, B., Radolf, J.D., Klimpel, G. R., Godowski, P., Zychlinsky, A., (1999), Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285: 736–739.PubMedGoogle Scholar
  47. 47.
    Voll, R.E., Herrmann, M., Roth, E.A., Stach, C., Kalden, J.R., Girkontaite, I., (1997), Immunosuppressive effects of apoptotic cells. Nature 390: 350–351.PubMedGoogle Scholar
  48. 48.
    Ayala, A., Herdon, C.D., Lehman, D.L., Demaso, C.M., Ayala, C.A., Chaudry, I.H., (1995), The induction of accelerated thymic programmed cell death during polymicrobial sepsis: control by corticosteroids but not tumour necrosis factor. Shock 3: 259–267.PubMedGoogle Scholar
  49. 49.
    Taneja, R., Parodo, J., Jia, S.H., Kapus, A., Rotstein, O., Marshall, J.C., (2004), Delayed neutrophil apoptosis in sepsis is associated with maintenance of mitochondrial transmembrane potential and reduced caspase-9 activity, Crit. Care Med. 32: 1460–1469.PubMedGoogle Scholar
  50. 50.
    Mahidara, R., Billiar, T.R., (2000), Apoptosis in sepsis. Crit. Care Med. 28 (Suppl): N105– 113.Google Scholar
  51. 51.
    Watson, G., Rotstein, O.D., Parodo, J., Bitar, R., Marshall, J.C., (1998), The 1L-1 converting enzyme (caspase-1) inhibits apoptosis of inflammatory neutophils through activation of 1L-1. J. Immunol. 161: 957–962.PubMedGoogle Scholar
  52. 52.
    Jia, S.H., Li, Y., Parodo, J., Kapus, A., Fan, L., Rotstein, O.D., (2004), Pre-B cell colony-stimulating factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J. Clin. Invest. 113: 1318–1327.PubMedGoogle Scholar
  53. 53.
    Hotchkiss, R.S., Schmieg, R.E., Swanson, P.E., Freeman, B.D., Tinsley, K.W., Cobb, J.P., Karl, I.E., Buchman, T.G., (2000), Rapid onset of intestinal epithelial and lymphocyte apoptotic cell death in patients with trauma and shock. Crit. Care Med. 28: 3207–3217.PubMedGoogle Scholar
  54. 54.
    Volk, H.D., Reinke, P., Docke, W.D., (2000) Clinical aspects from systemic inflammation to “immunoparalysis”. Chem. Immunol. 74: 162–177.PubMedGoogle Scholar
  55. 55.
    Van der Poll, T., (2001), Immunotherapy of sepsis. Lancet Infect. Dis. 1: 165–174.PubMedGoogle Scholar
  56. 56.
    Ayald, A., Knotts, J.B., Ertel, W., Perrin, M.M., Morrison, M.H., Chaudry, I.H., (1993), Role of interleukin 6 and transforming growth factor-beta in the induction of depressed splenocyte responses following sepsis. Arch. Surg. 128: 89–94.Google Scholar
  57. 57.
    Brandtzaeg, P., Osnes, L., Ovstebo, R., Joo, G.B., Westwik, A.B., Kierulf, P., (1996), Net inflammatory capacity of human septic shock plasma evaluated by a monocyte-based target cell assay: identification of interleukin-10 as a major functional deactivator of human monocytes. J. Exp. Med. 184: 51–60.PubMedGoogle Scholar
  58. 58.
    Döcke, W.D., Randow, F., Syrbe, U., Krausch, D., Asadullah, K., Reinke, P., Volk, H.D., Kox, W., (1997), Monocyte deactivation in septic patients: restoration by IFN-γ treatment. Nat. Med. 3: 678–681.PubMedGoogle Scholar
  59. 59.
    Kalden, J.R., Girkontaite, I., (1997), Immunosuppressive effects of apoptotic cells. Nature 390: 350–351.PubMedGoogle Scholar
  60. 60.
    Mokart, D., Merlin, M., Santinnini, A., Brun, J.P., Delpero, J.R., Houvenaeghel, G., Moutardier, V., Blache, J.L., (2005), Procalcitocin, interleuken 6 and systemic inflammatory response syndrome (SIRS): early markers of postoperative sepsis after major surgery. Br. J. Anaesh. 94: 767–773.Google Scholar
  61. 61.
    Osuchowski, M.F., Welch, K., Siddiqui, J., Remick, D.G., (2006), Circulatory cytokine/ inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J. Immunology 177: 1967–1974.Google Scholar
  62. 62.
    Xiao, H., Siddqui Remick, D.G., (2006), Mechanisms of mortality in early and late sepsis, Infect. Immun. 74: 5227–5235.PubMedGoogle Scholar
  63. 63.
    Rosser, D.M., Stidwill, R.P., Jacobson, D., Singer, M., (1995), Oxygen tension in the bladder epithelium increases in both high and low output endotoxemic sepsis. J. Appl. Physiol. 79: 1878–1882.PubMedGoogle Scholar
  64. 64.
    Boekstegers, P., Weidenhofer, S., Pilz, G., Werdan, K., (1991), Peripheral oxygen availability within skeletal muscle in sepsis and septic shock: comparison of limited infection and cardiogenic shock. Infection 19: 317–323.PubMedGoogle Scholar
  65. 65.
    Brealey, D., Brand, M., Hargreaves, I., Heales, S., Land, J., Smolenski, R., Davies, N.A., Cooper, C.E., Singer, M., (2002), Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–223.PubMedGoogle Scholar
  66. 66.
    Veruloet, M.G., Thijs, L.G., Hack, C.E., (1998), Derangements of coagulation and fibrinolysis in critically ill patients with sepsis and septic shock. Semin. Thromb. Hemost. 24: 33–44.Google Scholar
  67. 67.
    Suffredini, A.F., Harpel, P.C., Parrillo, J.E., (1989), Promotion and subsequent inhibition of plasminogen activation after administration of intravenous endotoxin to normal subjects. N. Engl. J. Med 320: 1165–1172.PubMedGoogle Scholar
  68. 68.
    Esmon, C.T., (2005), The interactions between inflammation and coagulation. Br. J. Haematol. 131: 417–430.PubMedGoogle Scholar
  69. 69.
    Mason, J.W., Colman, R.W., (1971), The role of Hageman factor is disseminated intravascular coagulation induced by septicemia, neoplasia or liver disease. Thromb. Diath. Haemorrh. 26: 325–331.PubMedGoogle Scholar
  70. 70.
    Moore, K.L., Andreoli, S.P., Esmon, N.L., Esmon, C.T., Bang, Nu., (1987), Endotoxin enhances tissue factor and suppresses thrombomodulin expression of human vascular endothelium in vitro. J. Clin. Invest. 79: 124–130.PubMedGoogle Scholar
  71. 71.
    Esmon, C.T., Xu, J., Gu, J.M., Qu, D., Laszik, Z., Ferrall, G., Steams-Kurosawa, D.J., Kurosawa, S., Taylor, F.B., Esmon, N.L., (1999), Endothelial protein receptor. Thromb. Haemostat. 82: 251–258.Google Scholar
  72. 72.
    Raaphorst, J., Johan Groenveld, A.B., Bossick, A.W., Erik Hack, C., (2001), Early inhibition of activated fibrinolysis predicts microbial infection, shock and mortality in febrile medical patients. Thromb. Haemostat. 86: 543–549.Google Scholar
  73. 73.
    Hermans, P.W., Hazelzet, J.A., (2005), Plasminogen activator inhibitor type I gene polymorphism and sepsis. Clin. Infect. Dis; 41(Suppl. 7): s453–s458.PubMedGoogle Scholar
  74. 74.
    Renckens, R., Roelofs, J.T.H., Bonta, P.I., Florquin, S., de Vries, C.J.M., Levi, M., Carmeliet, P., van't Veer, C., van der Poll, T., (2007), Plasminogen activator inhibitor type I is protective during severe gram-negative pneumonia. Blood 109: 1593–1601.PubMedGoogle Scholar
  75. 75.
    Ward, P., (2004), The dark side of C5A in sepsis. Nature Rev. Immunol. 4: 133–142.Google Scholar
  76. 76.
    Goldstein, I.M., Weissmann, G., (1974), Generation of C5 – derived lysosomal enzyme releasing activity (C5A) by lysates of leucocyte lysosomes. J. Immunol. 113: 1583–1588.PubMedGoogle Scholar
  77. 77.
    Mollnes, T.E., Brekke, O.L., Fung, M., Fure, H., Christianseu, D., Bergseth, G., Videm, V., Lappegard, K.T., Köhl, J., Lambris, J.D., (2002), Essential role of the C5A receptor inE.coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood 100: 1869–1877.PubMedGoogle Scholar
  78. 78.
    Perianayagam, M.C., Balakrishnan, V.S., King, A.J., Pereira, B.J., Jaber, B.L., (2002), C5a delays apoptosis of human neutrophils by a phosphatidylinositol 3-kinase-signaling pathway, Kidney Internat. 61: 456–463.Google Scholar
  79. 79.
    Younger, J.G., Sasaki, N., Delgado, J., Ko, A.C., Ngheim, T., Waite, M.D., Till, G.O., Ward, P.A., (2001), Systemic and lung physiological changes in rats after intravascular activation of complement, J. Appl. Physiol. 90: 2289–2295.PubMedGoogle Scholar
  80. 80.
    Riedermann, N.C., Guo, R.F., Laudes, I.J., Keller, K., Sarma, V.J., Padgaonkar, V., Zetoune, F.S., Ward, P., (2002), C5a receptor and thymocyte apoptosis in sepsis. FASEB J. 16: 887–888.Google Scholar
  81. 81.
    Czermak, B.J., Sarma, V., Pierson, C.L., Warner, R.L., Huber-Lang, M., Bless, N.M., Schmal, H., Fried, H.P., Ward, P.A., (1999), Protective effects of C5a blockade in sepsis. Nature Med. 5: 788–792.PubMedGoogle Scholar
  82. 82.
    Ware, L.B., Matthay, M.A., (2000), The acute respiratory distress syndrome. N. Engl. J. Med 342: 1334–1349.PubMedGoogle Scholar
  83. 83.
    Nelson, S., Heyder, A.M., Stone, J., Bergeron, M.G., Daugherty, S., Peterson, G., Fotheringham, N., Welch, W., Milwee, S., Root, R., for the Multilobar Pneumonia Study Group, (2000), A randomized controlled trial of filgrastin for the treatment of hospitalized patients with multilobar pneumonia. J. Infect: Dis. 181: 970–973.Google Scholar
  84. 84.
    Miura, E., Procianoy, R.S., Bittar, C., Miura, C.S., Miura, M.S., Mello, C., Christensen, R.D., (2001), A randomized, doubled-masked placebo-controlled trial of recombinant granulocyte colony-stimulating factor administration to preterm, infants with the clinical diagnosis of early-onset sepsis. Pediatrics 107: 30–35.PubMedGoogle Scholar
  85. 85.
    Bernard, G.R., Luce, J.L., Sprung, C.L., Rinaldo, J.E., Tate, R.M., Sibbald, W.J., Kariman, K., Higgins, S., Bradley, R., Metz C.A., (1989), High-dose cortiosteroids in patients with the adult respiratory distress syndrome. N. Engl. J. Med. 317: 1565–1570.Google Scholar
  86. 86.
    The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, (2006), Efficacy and safety of corticosteroid for persistent acute respiratory distress syndrome. N. Engl. J. Med 354: 1671–1684.Google Scholar
  87. 87.
    Weiss, Y.G., Maloyan, A., Tazelaar, J., Raj, N., Deutschman, C.S., (2002), Adenoviral transfer of HSP-70 into pulmonary epithium ameliorates experimental acute respiratory distress syndrome. J. Clin. Invest. 110: 801–806.PubMedGoogle Scholar
  88. 88.
    Slutsky, A.S., (2002). Hot new therapy for sepsis and the acute respiratory distress syndrome. J. Clin. Invest. 110: 737–739.PubMedGoogle Scholar
  89. 89.
    Dellinger, R.P., Carlet, J.M., Masur, H., GerLach, H., Calandra, H., Cohen, J., Gea-Bana-cloche, J., Keh, D., Marchall, J.C., Parker, M.M., Ramsay, G., Zimmerman, J.C., Vincent, J.L., Levy, M.M., for the Surviving Sepsis Campaign Management Guidelines Committee, (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit. Care Med. 32: 858–873.PubMedGoogle Scholar
  90. 90.
    Poulton, B., (2006), Advances in management if sepsis: the randomized controlled trials behind the surviving sepsis campaign recommendations. Internat. J. Antimicrob. Agents 27: 97–101.Google Scholar
  91. 91.
    Gattinoni, L., Brazzi, L., Pelosi, P., Latini, R., Tognoni, G., Pesenti, A., Fumagelli, R., for the SVO2 Collaborative Group, (1995) A trial of goal-orientated hemodynamic therapy in critically ill patients. N. Engl. J. Med. 333: 1025–1032.PubMedGoogle Scholar
  92. 92.
    Hayes, M.A., Timmins, A.C., Yau, E.H., Pallazo, M., Hinds, C.J., Watson, D., (1994), Elevations of systemic oxygen delivery in the treatment of critically ill patients. N. Engl. J. Med 330: 1717–1722.PubMedGoogle Scholar
  93. 93.
    Rady, M.Y., Rivers, E.P., Nowak, R.M., (1996), Resuscitation of the critically ill in the ED: responses of blood pressure, heart rate, shock index, central venous oxygen saturation, and lactate, Am. J. Emerg. Med. 14: 218–225.PubMedGoogle Scholar
  94. 94.
    Cortez, A., Zito, J., Lucas, C.E., Gerrick, S.J., (1977), Mechanism of inappropriate polyuria in septic patients. Arch. Surg. 112: 471–476.PubMedGoogle Scholar
  95. 95.
    Rivers, E., Nguyen, B., Havstad, S., Ressler, J., Muzzin, A., Knoblich, B., Peterson, E., Tomlanovich, M., for the Early Goal-Directed Therapy Collaborative Group, (2001), Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 345: 1368–1377.PubMedGoogle Scholar
  96. 96.
    Corlbom, D.J., Rubenfeld, G.D., (2007), Barriers to implementing protocol-based sepsis resuscitation in the emergency department-results of a national survey. Crit. Care Med. 35: 2525–2532.Google Scholar
  97. 97.
    Sivayohan, N., (2007), Management of severe sepsis and septic shock in the emergency department: a survey of current practice in emergency departments in England. Emer. Med. J. 24: 422.Google Scholar
  98. 98.
    Llewelyn, M.J., Cohen, J., (2007), Tracking the microbes in sepsis: advancements in treatment bring challenges for microbial epidemiology. Clin. Infect. Dis. 44: 1343–1348.PubMedGoogle Scholar
  99. 99.
    Rello, J., Sa-Borges, M., Correa, H., Leal, S.R., Barraibar, J. (1999) Variations in etiology of ventilator – associated pneumonia across four treatment sites: implications for antimicrobial prescribing practices. Am. J. Respir. Crit. Care Med. 160: 608–613.PubMedGoogle Scholar
  100. 100.
    Bochud, P.-Y., Bonten, M., Marchetti, O., Calandra, T., (2004), Antimicrobial therapy for patients with severe sepsis and septic shock: an evidence-based review. Crit. Care Med. 32 (Suppl): s495–s511.PubMedGoogle Scholar
  101. 101.
    Harbarth, S., Garbino, J., Pugin, J., Romand, J.A., Lew, D., Pittet, D., (2003), Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am. J. Med. 115: 529–535.PubMedGoogle Scholar
  102. 102.
    Fraser, A., Paul, M., Almanasreh, N., Tacconelli, E., Frank, U., Cauda, R., Borok, S., Cohen, M., Andereassen, S., Nielson, A.D., Leibovici, L.: Treat Study Group, (2006), Benefit of appropriate empirical antibiotic treatment: thirty-day mortality and duration of hospital stay. Am. J. Med. 119: 970–976.PubMedGoogle Scholar
  103. 103.
    MacArthur, R.D., Miller, M., Albertson, T., Panacek, E., Johnson, D., Teoh, L., Barchuk, W., (2004), Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clin. Infect. Dis. 38: 284–288.PubMedGoogle Scholar
  104. 104.
    Wang, J.-L., Chen, S.-Y., Wang, J.-T., Wu, G.H.-M., Chiang, W.-C., Hsueh, P.-R., Chen, Y.-C., Chang, S.-C., (2008), Comparison of both clinical features and mortality risk associated with bacteremia due to community-acquired methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus. Clin. Infect. Dis. 46: 799–806.PubMedGoogle Scholar
  105. 105.
    Tam, V.H., Gamez, E.A., Weston, J.S., Gerard, L.N., LaRocco, M.T., Caeiro, J.P., Gentry, L. O., Garey, K.W., (2008), Outcomes of bacteremia due Pseudomonas aeruginosa with reduced susceptibility to piperacillin-tazobactam: implications on the appropriateness of the resistance breakpoint. Clin. Infect. Dis. 46: 862–867.PubMedGoogle Scholar
  106. 106.
    Kumar, A., Roberts, D., Wood, K.E., Light, B., Parrillo, J.E., Sharma, S., Suppes, R., Feinstein, D., Zanotti, S., Taiberg, L., Gurka, D., Kumar, A., Cheang, M., (2006), Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care. Med. 34: 1589–1596.PubMedGoogle Scholar
  107. 107.
    Marshall, J.C., Maier, R.V., Jimenez, M., Dellinger, E.P., (2004), Source control in management of severe sepsis and septic shock: an evidence-based review. Crit. Care. Med. 32: s513–s526.PubMedGoogle Scholar
  108. 108.
    Hoffman, J.N., Vollmar, B., Laschke, M.W., Fertmann, J.M., Jauch, K.-W., Menger, M.D., (2005), Microcirculatory alterations in ischemia-reperfusion injury and sepsis: effects of activated protein C and thrombin inhibition. Crit. Care: 9(Suppl 4): s33–s37.Google Scholar
  109. 109.
    Bernard, G.R., Vincent, J.-L., Laterre, P.-F., La Rosa, S.P., Dhainaut, J.-F., Lopez-Rodriguez, Steingrub, J.S., Garber, G.E., Helterbrand, J.D., Ely, E.W., Fisher, C.J. Jr., for the Recombinant Human Activated Protein C Worldwide Evaluation in Severe Sepsis (PROWESS) Study Group, (2001), Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 344: 699–709.PubMedGoogle Scholar
  110. 110.
    Abraham, E., Laterre, P.F., Garg, R., Levy, H., Talwar, D., Trzaskoma, B.L., Francois, B., Guy, J.S., Brückman, M., Reu-neto, A., Rossaint, R., Perrotin, D., Sablotzki, A., Arkins, N., Utterback, B.G., Macias, W.C., for the Administration of Drotreogin Alfa (Activated) in Early Stage Severe Sepsis (ADDRESS) Study Group, (2005), Drotreogin alfa (activated) for adults with severe sepsis and a low risk of death. N. Engl. J. Med. 353: 1332–1341.PubMedGoogle Scholar
  111. 111.
    Manns, B.J., Lee, H., Doig, C.J., Johnson, D., Donaldson, C., (2002), An economic evaluation of activated protein C treatment for severe sepsis. N. Engl. J. Med. 347: 993–1000.PubMedGoogle Scholar
  112. 112.
    Levi, M., Levy, M., Williams, D.I., Artigas, A., Antonelli, M., Wyncoll, D., James, J., Booth, F.V., Wang, D., Sundin, D.P., Macias, W.L., Xigris and Prophylactic Heparin Evaluation in Severe Sepsis (XPRESS) Study Group (2007), Heparin prophylaxis did not increase mortality and was beneficial in adults with sepsis receiving drotrecogin alfa. Am. J. Respir. Crit. Care. Med. 176: 483–490.Google Scholar
  113. 113.
    Sprung, C.L., Caralis, P.V., Marcial, E.H., Pierce, M., Gelbard, M.A., Long, W.M., Duncan, R.C., Tendler, M.D., Karpf, M., (1984), The effects of high-dose corticosteroids in patients with septic shock: a prospective controlled study. N. Engl. J. Med. 311: 1137–1143.PubMedCrossRefGoogle Scholar
  114. 114.
    Briegel, J., Forst, H., Haller, M., Schelling, G., Kilger, E., Kuprat, G., Hemmer, B., Hummel, T., Lenhart, A., Heyduck, M., Stoll, L., Peter, K., (1999), Stress doses of hydrocortisone reverses hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit. Care Med. 27: 723–732.PubMedGoogle Scholar
  115. 115.
    Annane, D., Bellissant, E., Bollaert, P.E., Briegel, J., Keh, D., Kupfer, Y., (2004), Corticos-teroids for severe sepsis and septic shock: a systematic review and meta-analysis. BMJ 329: 480 (online).PubMedGoogle Scholar
  116. 116.
    Annane, D., Sébille, V., Charpentier, C., Bollaert, P.E., Francois, B., Korach, J.M., Capellier, G., Cohen, Y., Azoulay, E., Troché, G., Chaumet-Riffaut, P., Bellissant, E., (2002), Effect of treatment with low doses of hydrocortisone on mortality in patient with septic shock. JAMA 288: 862–871.PubMedGoogle Scholar
  117. 117.
    Hamrahian, A.H., Oseni, T.S., Arafah, B.M., (2004), Measurements of serum free cortisol in critically ill patients. N. Engl. J. Med. 350: 1829–1638.Google Scholar
  118. 118.
    Sprung, C.L., Annane, D., Keh, D., Moreno, R., Singer, M., Freivogel, K., Weiss, Y.G., Benbenishty, J., Kalenka, A., Forst, H., Laterre, P.-F., Reinhart, K., Cuthbertson, B.H., Payen, D., Briegel, J., for the Corticus Study Group (2008), Hydrocortisone therapy for the patients with septic shock. N. Engl. J. Med. 358: 111–124.PubMedGoogle Scholar
  119. 119.
    Finfer, S., (2008), Corticosteroids in septic shock (Editorial). N. Engl. J. Med. 358: 188–190.PubMedGoogle Scholar
  120. 120.
    Van den Berghe, G., Wouters, P., Weekers, F., Verwaest, C., Bruyninckx, F., Schetz, M., Vlasselaers, D., Ferdinande, P., Lauwers, P., Bouillion, R., (2001), Intensive insulin therapy in critically ill patients. N. Engl. J. Med. 345: 1359–1367.PubMedGoogle Scholar
  121. 121.
    Brunkhorst, F.M., Engel, C., Blous, F., Meier-Hellmann, A., Regaller, M., Weiler, N., Moerer, O., Gruendling, M., Oppert, M., Grond, S., Olthoff, D., Jaschinski, U., John, S., Rossaint, R., Welte, T., Schaefer, M., Kern, P., Kuhnt, E., Kiehntopf, M., Hartog, C., Natanson, C., Loeffler, M., Reinhart, K., for the German Competence Network Sepsis (Sepnet), (2008), Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N. Engl. J. Med. 358: 125–139.PubMedGoogle Scholar
  122. 122.
    Mullner, M., Urbanek, B., Havel, C., Losert, H., Waechter, F., Gamper, G., (2004), Vasopressors for shock. [Review]. Cochrane Database Syst. Rev. CD003709.Google Scholar
  123. 123.
    Beale, R.J., Hollenberg, S.M., Vincent, J.L., Parrillo, J.E., (2004), Vasopressors and inotro-pic support in septic shock: an evidence-based review. Crit. Care. Med. 32(Suppl 11): s455–s465.PubMedGoogle Scholar
  124. 124.
    Russell, J.A., (2007), Vasopressin in septic shock. Crit. Care Med. 35(Suppl): s609–s615.PubMedGoogle Scholar
  125. 125.
    Luckner, G., Dunser, M.W., Jochberger, S., Mayr, V.D., Wenzel, V., Ulmer, H., Schmid, S., Knotzer, H., Pajk, W., Hasibeder, W., Mayr, A.J., Frieseneker, B., (2005), Arginine vasopressor in 316 patients with advanced vasodilatory shock. Crit. Care Med. 33: 2659–2566.PubMedGoogle Scholar
  126. 126.
    Russell, J.A., Walley, K.R., Singer, J., Gordon, A.C., Hebert, P.C., Cooper, J., Holmes, C.L., Mehta, S., Grnaton, J.T., Storms, M.M., Cook, D.J., Presnail, J.J., Ayers, D., for the VASST Investigators, (2008), Vasopressin versus norepinephrine infusion in patients with septic shock. N. Engl. J. Med. 358: 877–887.PubMedGoogle Scholar
  127. 127.
    Jelkmann, W., (1998), Proinflammatory cytokines lowering erythropoietin production. J. Interferon Cytokine Res. 18: 555–559.PubMedGoogle Scholar
  128. 128.
    Hebert, P.C., Wells, Blajchman, M.A., Marshall, J., Martin, C., Pagliarello, G., Tweeddale, M., Schweitzer, I., Yetisir, E., (1999), A multicenter, randomized, controlled trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N. Engl. J. Med. 340: 409–417.Google Scholar
  129. 129.
    Vincet, J.L., Sakr, Y., Sprung, C., Harboe, S., Damas, P., Sepsis Occurrence in Acutely Ill Patients (SOAP) Investigators, (2008), Are blood transfusion associated with a greater mortality rates? Results of the Sepsis Occurrence in Acutely Ill Patients Study. Anesthesiology 108: 31–39.Google Scholar
  130. 130.
    Corwin, H.L., Gettinger, A., Rodriguez, R.M., Pearl, R.G., Gubler, K.D., Enny, C., Colton, T., Corwin, M.J., (1999), Efficacy of recombinant human erythropoietin in the critically ill patient: a randomized, double-blind, placebo-controlled trial. Crit. Care Med. 27: 2346– 2350.PubMedGoogle Scholar
  131. 131.
    Warren, B.L., Eid, A., Singer, P., Pillay, S.S., Carl, P., Novak, I., Chalupa, P., Atherstone, A., Pénzes, I., Kübler, A., Knaubs, Keinecke, H.O., Heinrichs, H., Schindel, F., Juers, M., Bone, R.C., Opal, S.M., Kybersept Trial Study Group,2001), Caring for the critically ill patient; High dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 286: 1869– 1878.PubMedGoogle Scholar
  132. 132.
    Wiedermann, C.J., Hoffman, J.N., Juers, M., Ostermann, H., Kienast, J., Briegel, J., Strauss, R., Keinecke, H.O., Warren, B.C., Opal, S.M.; Kybersept Investigators, (2006), High-dose antithrombin III in the treatment of severe sepsis in patients with a high risk of death: efficacy and safety. Crit. Care Med. 34: 285–292.PubMedGoogle Scholar
  133. 133.
    The Acute Respiratory Distress Syndrome Network, (2000), Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342: 1301–1308.Google Scholar
  134. 134.
    Eisner, M.D., Thompson, T., Hudson, L.D., Luce, J.M., Hayden, D., Schoenfeld, D., Matthay, M.A.; Acute Respiratory Distress Syndrome Network, (2001), Efficacy of low tidal volume ventilation in patients with different clinical risk factors for acute lung injury and the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 164: 231–236.PubMedGoogle Scholar
  135. 135.
    Sevransky, J.E., Levy, M.M., Marini, J.J., (2004), Mechanical ventilation in sepsis-induced acute lung injury/acute respiratory distress syndrome: an evidence-based review. Crit. Care Med. 32 (Suppl 11): s548–s583.PubMedGoogle Scholar
  136. 136.
    Riedemann, N.C., Guo, R.F., Ward, P.A., (2003), The enigma of sepsis. J. Clin. Invest. 112: 460–467.PubMedGoogle Scholar
  137. 137.
    Rangel-Frausto, M.S., Pittet, D., Costigan, M., Hwang, T., Davis, C.S., Wenzel, R.P., (1995), The natural history of the systemic inflammatory response syndrome (SIRS): a prospective study. JAMA 273: 117–123.PubMedGoogle Scholar
  138. 138.
    Schiffl, H., Lang, S.M., Fischer, R., (2002), Daily hemodialysis and the outcome of acute renal failure. N. Engl. J. Med. 346: 305–310.PubMedGoogle Scholar
  139. 139.
    Ronco, C., Belloma, R., Homel, P., Brendolan, A., Dan, M., Piccinni, P., La Greca, G., (2000), Effects of different doses in continuous veno-venous hemofiltration on outcomes of acute renal failure: a prospective randomized trial. Lancet 356: 26–30.PubMedGoogle Scholar
  140. 140.
    Kazatchkine, M.D., Kaveri, S.V., (2001), Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N. Engl. J Med. 345: 747–755.PubMedGoogle Scholar
  141. 141.
    Pildal, J., Gotzche, P.C., (2004), Polyclonal immunoglobulin for treatment of bacterial sepsis: a systematic review. Clin. Infect. Dis. 39: 38–46.PubMedGoogle Scholar
  142. 142.
    Turgeon, A.F., Hutton, B., Ferguson, D.A., McIntyre, L., Tinmouth, A.A., Cameron, D.W., Hebert, P.C., (2007), Meta-analysis: intravenous immunoglobulin in critically ill adult patients with sepsis. Ann. Intern Med. 146: 193–203.PubMedGoogle Scholar
  143. 143.
    Alejandria, M.M., Lancing, M.A., Dans, L.F., Mantaring, J.B., (2002), Intravenous immunoglobulin for treating sepsis and septic shock. Cochrane Database Syst. Rev 1: CD001090.Google Scholar
  144. 144.
    Werdan, K., Pilz, G., Bujdoso, O., Fraunberger, P., Neeser, G., Schmieder, R.E., Viell, B., Marget, W., Seewald, M., Walger, P., Stuttmann, R., Speichermann, N., Peckelsen, C., Kurowski, V., Osterhues, H.H., Verner, L., Neumann, R., Muller-Werdan, U., Score-based Immunoglobulin Therapy of Sepsis (SBITS) Study Group, (2007), Score-based immuno-globulin G therapy of patients with sepsis: the SBITS study. Crit. Care Med. 35: 2693–2701.PubMedGoogle Scholar
  145. 145.
    Dahmer, M.K., Randolph, A., Vitali, S., Quasney, M.W., (2005), Genetic polymorphisms in sepsis (review). Pediatr. Crit. Care Med. 6 (3 Suppl): s61–s73.PubMedGoogle Scholar
  146. 146.
    Imahara, S.D., O'Keefe, G.E., (2004), Genetic determinants of the inflammatory response. (Review). Curr. Opin. Crit. Care 10: 318–324.PubMedGoogle Scholar
  147. 147.
    Texereau, J., Pene, F., Chiche, J.D., Rousseau, C., Mira, J.P., (2004), Importance of hemostatic gene polymorphisms for susceptibility to and outcome of severe sepsis. Crit. Care Med. 32(Suppl 5): s313–s319.PubMedGoogle Scholar
  148. 148.
    Yoshida, S., (2004), Monocyte HLA-DR expression as predictors of clinical outcome for patients with sepsis. Japan. J. Clin. Med. 62: 2281–2284.Google Scholar
  149. 149.
    Arcaroli, J., Fessler, M.B., Abraham, E., (2005), Genetic polymorphisms and sepsis. Shock 24: 300–312.PubMedGoogle Scholar
  150. 150.
    Terblanche, M., Almog, Y., Rosenson, R.S., Smith, T.S., Hackman, D.G., (2006), Statins: panacea for sepsis? Lancet Infect. Dis. 6:242–248.PubMedGoogle Scholar
  151. 151.
    Zingarelli, B., Cook, J.A., (2005), Peroxisome proliferators-activated receptor-gamma is a new therapeutic target in sepsis and inflammation. Shock 23: 393–399.PubMedGoogle Scholar
  152. 152.
    Marshall, J.C., (2000), Clinical trials of mediator-directed therapy in sepsis: what have we learned? Inten. Care Med. 26: 575–583.Google Scholar
  153. 153.
    Polderman, K.H., Girbes, A.R.J., (2004), Drug intervention trials in sepsis: divergent results. Lancet 363: 1721–1723.PubMedGoogle Scholar
  154. 154.
    Levin, M., Quint, P.A., Goldstein, B., Barton, P., Bradley, J.S., Shenie, S.D., Yeh, T., Kim, S. S., Cafaro, D.P., Scannon, P.J., Giroir, B.P., and the rBPI21 Meningococcal Sepsis Study Group, (2000), Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococccal sepsis: a randomized trial. Lancet: 356: 961–967.Google Scholar
  155. 155.
    Axtelle, T., Pribble, J., (2003), An overview of clinical studies in healthy subjects and patients with severe sepsis with IC14, a CD14-specific chimeric monoclonal antibody. J. Endoxin. Res. 9: 385–389.Google Scholar
  156. 156.
    Schwulst, S.J., Grayson, M.H., Di Pasco, P.J., Davis, C.G., Brahmbhatt, T.S., Ferguson, T. A., Holchkiss, R.S., (2006), Agonistic monoclonal antibody against CD40 receptor decreases lymphocyte apoptosis and improves survival in sepsis. J. Immunol. 177: 557–565.PubMedGoogle Scholar
  157. 157.
    Fink, M.P., (2004), Ethyl pyrurate: a novel treatment for sepsis and shock. Minerva Anestesiol. 70: 365–371.PubMedGoogle Scholar
  158. 158.
    Liu, D., Cai, S., Gu, X., Scafidi, J., Wu, X., Davis, A.E. 3rd, (2003), C1 inhibitor prevents endotoxin shock via a direct interaction with lipopolysaccharide. J. Immunol. 171: 2594– 2601.PubMedGoogle Scholar
  159. 159.
    Victor, V.M., Rocha, M., Esplugues, J.V., De La Fuente, M., (2005), Role of free radicals in sepsis: antioxidant therapy. Curr. Pharmaceut. Design. 11: 3141–3158.Google Scholar
  160. 160.
    Zhang, Y., Chen, H, Li, Y., Zheng, S., Chen, Y., Li, L., Zhou, L., Xie, H., Praseedom, R.K., (2008), Thymosin 1α and ulinastatin-based immunomodulatory strategy for sepsis arising from intra-abdominal infection due to carbapenem-resistant bacteria. J. Infect. Dis. 198: 723–730.PubMedGoogle Scholar
  161. 161.
    Giebelen, IAJ., Le Moine, A., van den Pangaart, P.S., Sadis, C., Goldman, M., Florquin, S., van der Poll, T., (2008), Deficiency of α 7 cholinergic receptors facilitates bacterial clearance in Escherichia coli peritonitis. J. Infect. Dis. 198: 750–757.PubMedGoogle Scholar
  162. 162.
    Opal, S.M., (2005), Concept of PIRO as a new conceptual framework to understand sepsis. Pediatr. Crit. Med. 6 (Suppl 3): s55–s60.Google Scholar
  163. 163.
    Ferrer, R., Antigas, A., Levy, M.M., Blanco, J., González-Diaz, G., Garnacho-Montero, J., Ibáñez, J., Palencia, E., Quintana, M., de la Torre-Prados, M.V.; for the Edusepsis Study Group, (2008), Improvement in process of care and outcome after a multicenter severe sepsis eduácational program in Spain. JAMA 299: 2294–2303.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations