Biosensors for Detecting Pathogenic Bacteria in the Meat Industry

  • Evangelyn C. Alocilja

Global meat production in 2006 increased 1.6% compared to 2005 (Food and Agriculture Organization [FAO], 2006). According to a September 2007 report by the U.S.Meat Export Federation, the U.S. beef and beef variety meat exports worldwide increased 27% in value to $1.42 billion with a volume of 425,394 metric tons (mt) while U.S. pork and pork variety meat exports were up 5% in value to $1.7 billion with a volume of 704,138 mt. However, with increasing production also comes increasing product recalls, averaging 4,536 mt of meat and poultry every year since 1997 (Teratanavat &Hooker, 2004). For example, in September 2007, a major meat processing company recalled up to 9,843 mt (21.7 million pounds) of ground beef due E. coli O157:H7 contamination, one of the largest meat recalls in U.S. history.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Hamid, Ivnitski, D., Atanasov, P., Wilkins, E. (1998). Flow-through immunofiltration assay system for rapid detection of E. coli O157:H7, Biosensors and Bioelectronics, 14, 309–316.Google Scholar
  2. Abel, A. P., Weller, M. G., Duveneck, G. L., Ehrat, M., & Widmer, H. M. (1996). Fiber-optic evanescent wave biosensor for the detection of oligonucleotides. Analytical Chemistry, 68, 2905–2912.Google Scholar
  3. Alocilja, E. C., & Radke, S. (2003). Market analysis of biosensors for food safety. Biosensors and Bioelectronics Journal, 18(5–6), 841–846.Google Scholar
  4. Alocilja, E. C., Ritchie, N., & Grooms, D. (2003). Protocol development using an electronic nose for differentiating E. coli strains. IEEE Sensors Journal, 3(6), 801–805.Google Scholar
  5. Babacan, S., Pivarnik, P., Letcher, S., & Rand, A. G. (2000). Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosensors and Bioelectronics, 15, 615–621.Google Scholar
  6. Baeumner, A. J., Cohen, R. N., Miksic, V., & Min, J. (2003). RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosensors and Bioelectronics, 18, 405–413.Google Scholar
  7. Baeumner, A. J., Pretz, J., & Fang, S. (2004). A universal nucleic acid sequence biosensor with nanomolar detection limits. Analytical Chemistry, 76, 888–894.Google Scholar
  8. Bao, L., Deng, L., Nie, L., Yao, S., & Wei, W. (1996). Determination of microorganisms with a quartz crystal microbalance sensor. Analytical Chemical Acta, 319, 97–101.Google Scholar
  9. Barbour, W. M., & George, T. (1997). Genetic and immunologic techniques for detecting foodborne pathogens and toxins. In T. J. Montville (Ed.), Food microbiology: Fundamentals and frontiers (pp. 30–65). Washington, DC: ASM Press.Google Scholar
  10. Berney, H., West, J., Haefele, E., Alderman, J., Lane, W., & Collins, J. K. (2000). A DNA diagnostic biosensor: Development, characterisation and performance. Sensors and Actuators B: Chemical, 68, 100–108.Google Scholar
  11. Bhatia, S. K., Shriver-Lake, L. C., Prior, K. J., Georger, J. H., Calvert, J. M., Bredehorst, R., et al. (1989). Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces. Analytical Biochemistry, 178, 408–413.Google Scholar
  12. Bianchi, N., Rutigliano, C., Tomassetti, M., Feriotto, G., Zorzato, F., & Gambari, R. (1997). Biosensor technology and surface plasmon resonance for real-time detection of HIV-1 genomic sequences amplified by polymerase chain reaction. Clinical and Diagnostic Virology, 8, 199–208.Google Scholar
  13. Blaser, M. J., & Newman, L. S. (1982). A review of human salmonellosis 1. Infective dose. Reviews of Infectious Diseases, 4, 1096–1106.Google Scholar
  14. Boltovets, P. M., Boyko, V. R., Kostikov, I. Y., Dyachenko, N. S., Snopok, B. A., & Shirshov, Y. M. (2002). Simple method for plant virus detection: Effect of antibody immobilization technique. Journal of Virological Methods, 105, 141–146.Google Scholar
  15. Bunde, R. L., Jarvi, E. J., & Rosentrerer, J. J. (1998). Piezoelectric quartz crystal biosensor. Talanta, 46, 1223–1229.Google Scholar
  16. Carlson, S. A., Bolton, L. F., Briggs, C. E., Hurd, H. S., Sharma, V. K., Fedorka Cray, P. J., et al. (1999). Detection of multiresistant Salmonella typhimurium DT104 using multiplex and fluorogenic PCR. Molecular and Cellular Probes, 13, 213–222.Google Scholar
  17. CDC. (2001a). Outbreaks caused by Shiga toxin-producing Escherichia coli-Summary of 2000 Surveillance Data. Centers for Disease Control and Prevention. From http://www. cdc.gov/foodborneoutbreaks/ecoli/2000_summaryLetter.pdf.
  18. CDC. (2002a). Notice to readers: Final 2001 reports of notifiable diseases. Morbidity and Mortality Weekly Report, 51, 710.Google Scholar
  19. CDC. (2002b). Preliminary FoodNet data on the incidence of foodborne illnesses – selected sites, United States, 2001. Morbidity and Mortality Weekly Report, 51, 325–329.Google Scholar
  20. CDC. (2002c). Report on the decline of foodborne illness. Centers for Disease Control and Prevention. From http://www.cdc.gov/foodborne/publications/201-nelson_2004.pdf.
  21. CHEMICON International. (2004). Introduction to antibodies. CHEMICON International, Inc. From http://www.chemicon.com/resource/ANT101/a1.asp.
  22. Chen, Z. Z., Wang, K. M., Yang, X. H., Huang, S. S., Huang, H. M., Li, D., et al. (2003). Determination of hepatitis B surface antigen by surface plasmon resonance biosensor. Acta Chimica Sinica, 61, 137–140.Google Scholar
  23. Cheung, J. H., Stockton, W. B., & Rubner, M. F. (1997). Molecular-level processing of conjugated polymers: Layer-by-layer manipulation of polyaniline via electrostatic interactions. Macromolecules, 30, 2712–2716.Google Scholar
  24. Cohn, G. E. (1998). Systems and technologies for clinical diagnostics and drug discovery. SPIE Proceedings, 3259, 11–17.Google Scholar
  25. Corry, B., Uilk, J., & Crawley, C. (2003). Analytica Chemica Acta, 496, 103–116.Google Scholar
  26. Cuireanu, M., Levadoux, W., & Goldstein, S. (1997). Electrical impedance studies on a culture of a newly discovered strain of Steptomyces. Enzyme and Microbial Technology, 21, 441–449.Google Scholar
  27. D’Aoust, J. Y. (1997). Salmonella species. In T. J. Montville (Ed.), Food microbiology: Fundamentals and frontiers (pp. 138–139). Washington, DC: ASM.Google Scholar
  28. DeMarco, D., & Lim, D. (2002). Detection of Escherichia coli O157:H7 in 10- and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides. Journal of Food Protection, 65, 596–602.Google Scholar
  29. Doyle, M. P., Zhao, T., Meng, J., & Zhao, S. (1997). Escherichia coli O157:H7. Food microbiology fundamentals and frontiers. Washington, D.C: American Society for Microbiology.Google Scholar
  30. D’Souza, S. F. (2001). Microbial biosensors (Review). Biosensors and Bioelectronics, 16, 337–353.Google Scholar
  31. Esch, M. B., Locascio, L. E., Tarlov, M. J., & Durst, R. A. (2001). Detection of viable Cryptosporidium parvum using DNA-modified liposomes in a microfluidic chip. Analytical Chemistry, 73, 2952–2958.Google Scholar
  32. FAO-Food and Agriculture Organization. (2006). Global market analysis. Food Outlook No. 1. Retrieved June 2006, from ftp://ftp.fao.org/docrep/fao/009/j7927e/j7927e00.pdf.Google Scholar
  33. FDA-Food and Drug Administration. (1998). Bacteriological analytical manual. Food and Drug Administration, Gaithersburg, MD.Google Scholar
  34. FDA-Food and Drug Administration. (2005). Bacteriological analytical manual. Rockville, MD, USA: Food and Drug Administration. From http://www.cfsan.fda.gov/ ebam/bam-toc.html.
  35. FDA-Food and Drug Administration. (2006). Foodborne pathogenic microorganisms and natural toxins handbook: The “Bad Bug Book”. FDA-CFSAN. From http://www.cfsan. fda.gov/ mow/intro.html.
  36. Feriotto, G., Borgatti, M., Mischiati, C., Bianchi, N., & Gambari, R. (2002). Biosensor technology and surface plasmon resonance for real-time detection of genetically modified roundup ready soybean gene sequences. Journal of Agricultural and Food Chemistry, 50, 955–962.Google Scholar
  37. Fratamico, P. M., Strobaugh, T. P., Medina, M. B., & Gehring, A. G. (1998). Detection of Escherichia coli O157:H7 using a surface plasmon resonance biosensor. Biotechnology Techniques, 12 (7), 571–576.Google Scholar
  38. Gao, Z. X., Fang, Y. J., Ren, J., Ning, B., Zhu, H. Z., & He, Y. H. (2004). Studies on biotin-avidin indirect conjugated technology for a piezoelectric DNA sensor. International Journal of Environmental Analytical Chemistry, 84, 599–606.Google Scholar
  39. Gau, J. -J., Lan, E. H., Dunn, B., Ho, C. -M., & Woo, J. C. S. (2001). A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosensors and Bioelectronics, 16, 745–755.Google Scholar
  40. Geng, T., Morgan, M. T., & Bhunia, A. K. (2004). Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor. Applied and Environmental Microbiology, 70, 6138–6146.Google Scholar
  41. Ghindilis, A., Atanasov, P., Wilkins, M., & Wilkins, E. (1998). Immunosensors: Electrochemical sensing and other engineering approaches. Biosensors and Bioelectronics, 13, 113–131.Google Scholar
  42. Gomez, R., Bashir, R., Sarikaya, A., Ladisch, M., Sturgis, J., Robinson, J., et al. (2001). Microfluidic biochip for impedance spectroscopy of biological species. Biomedical Microdevices, 3, 201–209.Google Scholar
  43. Gore, A., Chakrabartty, S., Pal, S., & Alocilja, E. C. (2006). A multi-channel femtoampere-sensitivity potentiostat array for biosensing applications. IEEE Transactions on Circuits and Systems, 53(11), 2357–2363.Google Scholar
  44. Graham, C. R., Leslie, D., & Squirrell, D. J. (1992). Gene probe assays on a fibre-optic evanescent wave biosensor. Biosensors and Bioelectronics, 7, 487–493.Google Scholar
  45. Hartley, H. A., & Baeumner, A. J. (2003). Biosensor for the specific detection of a single viable B. anthracis spore. Analytical Bioanalytical Chemistry, 376, 319–327.Google Scholar
  46. He, F. J., & Liu, S. Q. (2004). Detection of P. aeruginosa using nano-structured electrode-separated piezoelectric DNA biosensor. Talanta, 62, 271–277.Google Scholar
  47. Ho, J. A., Hsu, H. W., & Huang, M. R. (2004). Liposome-based microcapillary immunosensor for detection of Escherichia coli O157:H7. Analytical Biochemistry, 330, 342–349.Google Scholar
  48. Hoyle, B. (2001). High-tech biosensor speeds bacteria detection. ASM News, 67, 434–435.Google Scholar
  49. Huang, T. S., Tzeng, Y., Liu, Y. K., Chen, Y. K., Walker, K. R., Guntupalli, R., et al. (2004). Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diamond and Related Materials, 13, 1098–1102.Google Scholar
  50. Jiang, H., Adams, C., Graziano, N., Roberson, A., McGuire, M., & Khiari, D. (2006). Enzyme-linked immunosorbent analysis (ELISA) of atrazine in raw and finished drinking water. Environmental Engineering Science, 23 (2), 357–366.Google Scholar
  51. Jordan, C. E., Frutos, A. G., Thiel, A. J., & Corn, R. M. (1997). Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Analytical Chemistry, 69, 4939–4947.Google Scholar
  52. Kalorama Information. (2000). MarketResearch.com, New York, p. 313.Google Scholar
  53. Kim, N., Park, I. S., & Kim, D. K. (2004). Characteristics of a label-free piezoelectric immunosensor detecting Pseudomonas aeruginosa. Sensors and Actuators B-Chemical, 100, 432–438.Google Scholar
  54. Ko, S., & Grant, S. A. (2006). A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium. Biosensors and Bioelectronics, 21, 1283–1290.Google Scholar
  55. Komarova, E., Aldissi, M., & Bogomolova, A. (2005). Direct electrochemical sensor for fast reagent-free DNA detection. Biosensors and Bioelectronics, 21, 182–189.Google Scholar
  56. Koppes, L., Woldringh, C., & Nanninga, N. (1978). Size variations and correlation of different cell cycle events in slow-growing Escherichia coli. Journal of Bacteriology, 134, 423–433.Google Scholar
  57. Koubova, V., Brynda, E., Karasova, L., Skvor, J., Homola, J., Dostalek, J., et al. (2001). Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensors and Actuators B-Chemical, 74, 100–105.Google Scholar
  58. Kukanskis, K., Elkind, J., Melendez, J., Murphy, T., Miller, G., & Garner, H. (1999). Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor. Analytical Biochemistry, 274, 7–17.Google Scholar
  59. Lazcka, O., Campo, F., Javier, D., Munoz, F., & Xavier, F. (2007). Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and Bioelectronics, 22, 1205–1217.Google Scholar
  60. Lee, J. S., Choi, Y.-K., Pio, M., Seo, J., & Lee, L. P. (2002). Nanogap capacitors for label free DNA analysis. BioMEMS and Bionanotechnology, 729, 185–190.Google Scholar
  61. Lin, H. C., & Tsai, W. C. (2003). Piezoelectric crystal immunosensor for the detection of staphylococcal enterotoxin B. Biosensors and Bioelectronics, 18, 1479–1483.Google Scholar
  62. Liu, X., Farmerie, W., Schuster, S., & Tan, W. (2000). Molecular beacons for DNA biosensors with micrometer to submicrometer dimensions. Analytical Biochemistry, 283, 56–63.Google Scholar
  63. Liu, X., & Tan, W. (1999). A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Analytical Chemistry, 71, 5054–5059.Google Scholar
  64. Lu, B., Smyth, M. R., and O’Kennedy, R. (1996). Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. Analyst, 121, 29R–32R.Google Scholar
  65. Maehashi, K., Matsumoto, K., Kerman, K., Takamura, Y., & Tamiya, E. (2004). Ultrasensitive detection of DNA hybridization using carbon nanotube field-effect transistors. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 43, L1558–L1560.Google Scholar
  66. Mariotti, E., Minunni, M., & Mascini, M. (2002). Surface plasmon resonance biosensor for genetically modified organisms detection. Analytica Chimica Acta, 453, 165–172.Google Scholar
  67. Markx, G., & Davey, C. (1999). The dielectric properties of biological cells at radiofrequencies: Applications in biotechnology. Enzyme and Microbial Technology, 25, 161–171.Google Scholar
  68. Mathew, F., Alagesan, D., & Alocilja, E. C. (2004). Chemiluminescence detection of Escherichia coli in fresh produce obtained from different sources. Luminescence Journal, 19, 193–198.Google Scholar
  69. Mathew, F., & Alocilja, E. C. (2004). Enzyme-based detection of Escherichia coli. Transactions of the ASAE, 47 (1), 357–362.Google Scholar
  70. Mathew, F., & Alocilja, E. C. (2005). Porous silicon-based biosensor for pathogen detection. Biosensors and Bioelectronics Journal, 20 (8),1656–1661.Google Scholar
  71. McClelland, R., & Pinder, A. (1994). Detection of Salmonella typhimurium in dairy products with flow cytometry and monoclonal antibodies. Applied Environmental Microbiology A, 60, 4255–4262.Google Scholar
  72. McGown, L. B., Joseph, M. J., Pitner, J. B., Vonk, G. P., & Linn, C. P. (1995). The nucleic-acid ligand – a new tool for molecular recognition. Analytical Chemistry, 67, A663–A668.Google Scholar
  73. Mead, P. S., Slutsker, L., Dietz, V., McGaig, L., Bresee, J., Shapiro, C., et al. (1999). Food-related illnesses and death in the United States. Emerging Infectious Disease, 5, 607–625.Google Scholar
  74. Meeusen, C., Alocilja, E. C., & Osburn, W. (2005). Detection of E. coli O157:H7 using a miniaturized surface plasmon resonance biosensor. Transactions of the ASAE, 48(6), 2409–2416.Google Scholar
  75. Meng, J., Zhao, S., Doyle, M., & Kresovich, S. (1996). Polymerase chain reaction for detection E. coli O157:H7. International Journal of Food Microbiology, 32, 103–113.Google Scholar
  76. Mir, M., & Katakis, I. (2005). Towards a fast-responding, label-free electrochemical DNA biosensor. Analytical and Bioanalytical Chemistry, 381, 1033–1035.Google Scholar
  77. Mittelmann, A. S., Ron, E. Z., & Rishpon, J. (2002). Amperometric quantification of total coliforms and specific detection of Escherichia coli. Analytical Chemistry, 74(4), 903–907.Google Scholar
  78. Mo, X. T., Zhou, Y. P., Lei, H., & Deng, L. (2002). Microbalance-DNA probe method for the detection of specific bacteria in water. Enzyme and Microbial Technology, 30, 583–589.Google Scholar
  79. Muhammad-Tahir, Z., & Alocilja, E. (2004). A disposable biosensor for pathogen detection in fresh produce samples. Biosystems Engineering, 88, 145–151.Google Scholar
  80. Muhammad-Tahir, Z., & Alocilja, E. C. (2003a). A conductimetric biosensor for biosecurity. Biosensors and Bioelectronics, 18, 813–819.Google Scholar
  81. Muhammad-Tahir, Z., & Alocilja, E. C. (2003b). Fabrication of a disposable biosensor for Escherichia coli O157:H7 detection. IEEE Sensors Journal, 3, 345–351.Google Scholar
  82. Muhammad-Tahir, Z., Alocilja, E. C., & Grooms, D. L. (2005a). Polyaniline synthesis and its biosensor application. Biosensors and Bioelectronics, 20, 1690–1695.Google Scholar
  83. Muhammad-Tahir, Z., Alocilja, E. C., & Grooms, D. L. (2005b). Rapid detection of Bovine Viral Diarrhea Virus as surrogate of bioterrorism agents. IEEE Sensors Journal, 5, 757–762.Google Scholar
  84. Muhammad-Tahir, Z., Alocilja, E. C., & Grooms, D. L. (2007). Indium tin oxide-polyaniline biosensor: Fabrication and characterization. Sensors Journal, 7, 1123–1140.CrossRefGoogle Scholar
  85. Nagai, H., Murakami, Y., Yokoyama, K., & Tamiya, E. (2001). High-throughput PCR in silicon based microchamber array. Biosensors and Bioelectronics, 16, 1015–1019.Google Scholar
  86. Narang, U., Anderson, G. P., Ligler, F. S., & Burans, J. (1997). Fiber optic-based biosensor for ricin. Biosensors and Bioelectronics, 12, 937–945.Google Scholar
  87. Nashat, A. H., Moronne, M., & Ferrari, M. (1998). Detection of functional groups and antibodies on microfabricated surfaces by confocal microscopy. Biotechnology and Bioengineering, 60, 137–146.Google Scholar
  88. Nicolini, C., Erokhin, V., Facci, P., Guerzoni, S., Ross, A., & Paschkevitsch, P. (1997). Quartz balance DNA sensor. Biosensors and Bioelectronics, 12, 613–618.Google Scholar
  89. Pal, S., Alocilja, E. C., & Downes, F. P. (2007). Nanowire labeled direct-charge transfer biosensor for detecting bacillus species. Biosensors & Bioelectronics Journal, 22, 2329–2336.Google Scholar
  90. Park, I. S., Kim, W. Y., & Kim, N. (2000). Operational characteristics of an antibody-immobilized QCM system detecting Salmonella spp. Biosensors and Bioelectronics, 15, 167–172.Google Scholar
  91. Park, S., & Durst, R. A. (2000). Immunoliposome sandwich assay for the detection of Escherichia coli O157:H7. Analytical Biochemistry, 280, 151–158.Google Scholar
  92. Radke, S., & Alocilja, E. (2004). Design and fabrication of an impedimetric biosensor. IEEE Sensors Journal, 4, 434–440.Google Scholar
  93. Radke, S., & Alocilja, E. C. (2005b). A microfabricated biosensor for detecting foodborne bioterrorism agents. IEEE Sensors Journal, 5 (4), 744–750.Google Scholar
  94. Radke, S. M., & Alocilja, E. C. (2005a). A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosensors and Bioelectronics SPEC ISS, 20, 1662–1667.Google Scholar
  95. Ramanaviciene, A., & Ramanavicius, A. (2004). Pulsed amperometric detection of DNA with an ssDNA/polypyrrole-modified electrode. Analytical and Bioanalytical Chemistry, 379, 287–293.Google Scholar
  96. Rishpon, J., & Ivnitski, D. (1997). An amperometric enzyme-channeling immunosensor. Biosensors and Bioelectronics, 12, 195–204.Google Scholar
  97. Rodriguez, M., & Alocilja, E. (2005). Embedded DNA-polypyrrole biosensor for rapid detection of Escherichia coli. IEEE Sensors Journal, 5, 733–736.Google Scholar
  98. Ruan, C. M., Yang, L. J., & Li, Y. B. (2002). Immunobiosensor chips for detection of Escherichia coli O157: H7 using electrochemical impedance spectroscopy. Analytical Chemistry, 74, 4814–4820.Google Scholar
  99. Ruan, C. M., Zeng, K. F., Varghese, O. K., & Grimes, C. A. (2004). A staphylococcal enterotoxin B magnetoelastic immunosensor. Biosensors and Bioelectronics, 20, 585–591.Google Scholar
  100. Sadana, A. 2002. Engineering biosensors: Kinetic and design application. London: Academic Press.Google Scholar
  101. Savage, M. D., Mattson, G., Desai, S., Nielander, G. W., Morgensen, S., & Conklin, E. J. (1994). Avidin-biotin chemistry: A handbook. Rockford, IL: Pierce Chemical Company.Google Scholar
  102. Scheller, F. W., Hintscher, R., Pfeiffer, P., Schubert, F., Riedel, K., & Kindervater, R. (1991). Biosensors: Fundamentals, applications and trends. Sensors and Actuators B, 4, 197–206.Google Scholar
  103. Seo, K. H., Brackett, R. E., Hartman, N. F., & Campbell, D. P. (1999). Development of a rapid response biosensor for detection of Salmonella Typhimurium. Journal of Food Protection, 62, 431–437.Google Scholar
  104. Shah, J., Chemburu, S., Wilkins, E., & Abdel-Hamid, I. (2003). Rapid amperometric immunoassay for Escherichia coli based on graphite coated nylon membranes. Electroanalysis, 15, 1809–1814.Google Scholar
  105. Sheppard, N. F., Mears, D. J., & Guiseppi-Elie, A. (1995). Model of an immobilized enzyme conductimetric urea biosensor. Biosensors and Bioelectronics, 11, 967–979.Google Scholar
  106. Shriver-Lake, L. C., Donner, B., Edelstein, R., Breslin, K., Bhatia, S. K., & Ligler, F. S. (1997). Antibody immobilization using heterobifunctional crosslinkers. Biosensors and Bioelectronics, 12, 1101–1106.Google Scholar
  107. Silin, V., & Plant, A. (1997). Biotechnological applications of surface plasmon resonance. Trends in Biotechnology, 15, 353–359.Google Scholar
  108. Skuridin, S. G., Yevdokimov, Y. M., Efimov, V. S., Hall, J. M., & Turner, A. P. F. (1996). A new approach for creating double-stranded DNA biosensors. Biosensors and Bioelectronics, 11, 903–911.Google Scholar
  109. Slavik, R., Homola, J., & Brynda, E. (2002). A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B. Biosensors and Bioelectronics, 17, 591–595.Google Scholar
  110. Sportsman, J. R., & Wilson, G. S. (1980). Chromatographic properties of silica-immobilized antibodies. Analytical Chemistry, 52, 2013–2018.Google Scholar
  111. Su, X. L., & Li, Y. (2005). Surface plasmon resonance and quartz crystal microbalance immunosensors for detection of Escherichia coli O157 : H7. Transactions of the ASAE, 48, 405–413.Google Scholar
  112. Su, X. L., & Li, Y. B. (2004). A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157 : H7. Biosensors and Bioelectronics, 19, 563–574.Google Scholar
  113. Suehiro, J., Hamada, R., Noutomi, D., Shutou, M., & Hara, M. (2003). Selective detection of viable bacteria using dielectrophoretic impedance measurement method. Journal of Electrostatics, 57, 157–168.Google Scholar
  114. Sung Hoon, R., In Seon, P., Namsoo, K., & Woo Yeon, K. (2001). Hybridization of Salmonella spp.-specific nucleic acids immobilized on a quartz crystal microbalance. Food Science and Biotechnology, 10, 663–667.Google Scholar
  115. Teratanavat, R., & Hooker, N. H. (2004). Understanding the characteristics of US meat and poultry recalls: 1994–2002. Food Control, 5, 359–367.Google Scholar
  116. Tien, H., & Ottova-Leitmannova, A. (2000). Membrane biophysics as viewed from experimental bilayer lipid membranes. Amsterdam: Elsevier.Google Scholar
  117. Tombelli, S., Mascini, M., Sacco, C., & Turner, A. P. F. (2000). A DNA piezoelectric biosensor assay coupled with a polymerase chain reaction for bacterial toxicity determination in environmental samples. Analytica Chimica Acta, 418, 1–9.Google Scholar
  118. Tsai, W. C., & Lin, I. C. (2005). Development of a piezoelectric immunosensor for the detection of alpha-fetoprotein. Sensors and Actuators B-Chemical, 106, 455–460.Google Scholar
  119. Turner, A. P., & Newman, J. D. (1998). An introduction to biosensor. In T. W. Gateshead (Ed.), Biosensor for Food Analysis (pp. 13–27). UK: Athaenaeum Press Ltd.Google Scholar
  120. Van Gerwen, P., Laureyn, W., Laureys, W., Huyberechts, G., Op De Beeck, M., Baert, K., et al. (1998). Nanoscaled interdigitated electrode arrays for biochemical sensors. Sensors and Actuators B, 49, 73–80.Google Scholar
  121. Vaughan, R. D., Carter, R. M., O’Sullivan, C. K., & Guilbault, G. G. (2003). A quartz crystal microbalance (QCM) sensor for the detection of Bacillus cereus. Analytical Letters, 36, 731–747.Google Scholar
  122. Vikholm, I. (2005). Self-assembly of antibody fragments and polymers onto gold for immunosensing. Sensors and Actuators B-Chemical, 106, 311–316.Google Scholar
  123. Wang, R. H., Tombelli, S., Minunni, M., Spiriti, M. M., & Mascini, M. (2004). Immobilisation of DNA probes for the development of SPR-based sensing. Biosensors and Bioelectronics, 20, 967–974.Google Scholar
  124. Weeks, B. L., Camarero, J., Noy, A., Miller, A. E., Stanker, L., & De Yoreo, J. J. (2003). A microcantilever-based pathogen detector. Scanning, 25, 297–299.Google Scholar
  125. WHO. (2002). Terrorist threats to food: Guidance for establishing and strengthening prevention and response systems. Geneva, Switzerland: World Health Organization Food Safety Dept.Google Scholar
  126. Wiegand, G., Arribas-Layton, N., Hillebrandt, H., Sackmann, E., & Wagner, P. (2002). Electrical properties of supported bilayer membranes. Journal of Physical Chemistry B, 106, 4245–4254.Google Scholar
  127. Yang, L., Chakrabartty, S., & Alocilja, E. C. (2007). Fundamental building blocks for molecular bio-wire based forward-error correcting biosensors. Nanotechnology Journal, 18, 424017 (6pp).Google Scholar
  128. Ye, J. M., Letcher, S. V., & Rand, A. G. (1997). Piezoelectric biosensor for detection of Salmonella Typhimurium. Journal of Food Science, 62, 1067.Google Scholar
  129. Younts, S., Alocilja, E. C., Osburn, W. N., Marquie, S., & Grooms, D. L. (2002). Differentiation of Escherichia coli O157:H7 from non-O157:H7 E. coli serotypes using a sensor-based, computer-controlled detection system. Transactions of the ASAE, 44, 1681–1685.Google Scholar
  130. Younts, S. Alocilja, E., Osburn, W., Marquie, S., Gray, J., & Grooms, D. (2003). Experimental use of a gas sensor-based instrument for differentiation of E. coli O157:H7 from non-O157:H7 E. coli field isolates. Journal of Food Protection, 66, 1455–1458.Google Scholar
  131. Zhang, Z. X., & Li, M. Q. (2005). Electrostatic microcantilever array biosensor and its application in DNA detection. Progress in Biochemistry and Biophysics, 32, 314–317.Google Scholar
  132. Zhao, H. Q., Lin, L., Li, J. R., Tang, J. A., Duan, M. X., & Jiang, L. (2001). DNA biosensor with high sensitivity amplified by gold nanoparticles. Journal of Nanoparticle Research, 3, 321–323.Google Scholar
  133. Zhou, A. H., & Muthuswamy, J. (2004). Acoustic biosensor for monitoring antibody immobilization and neurotransmitter GABA in real-time. Sensors and Actuators B-Chemical, 101, 8–19.Google Scholar
  134. Zhou, X. D., Liu, L. J., Hu, M., Wang, L. L., & Hu, J. M. (2002). Detection of Hepatitis B virus by piezoelectric biosensor. Journal of Pharmaceutical and Biomedical Analysis, 27, 341–345.Google Scholar
  135. Zuo, Y., Chakrabartty, S., Muhammad-Tahir, Z., Pal, S., & Alocilja, E. C. (2006). Spatio-temporal processing for multichannel biosensors using support vector machines. IEEE Sensors Journal, 6, 1644–1651.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Evangelyn C. Alocilja
    • 1
  1. 1.Department of Biosystems and Agricultural EngineeringMichigan State UniversityEast Lansing

Personalised recommendations