Brain-Computer Interface Using Wavelet Transformation and Naïve Bayes Classifier

Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 657)

Abstract

The main purpose of this work is to establish an exploratory approach using electroencephalographic (EEG) signal, analyzing the patterns in the time-frequency plane. This work also aims to optimize the EEG signal analysis through the improvement of classifiers and, eventually, of the BCI performance. In this paper a novel exploratory approach for data mining of EEG signal based on continuous wavelet transformation (CWT) and wavelet coherence (WC) statistical analysis is introduced and applied. The CWT allows the representation of time-frequency patterns of the signal’s information content by WC qualiatative analysis. Results suggest that the proposed methodology is capable of identifying regions in time-frequency spectrum during the specified task of BCI. Furthermore, an example of a region is identified, and the patterns are classified using a Naïve Bayes Classifier (NBC). This innovative characteristic of the process justifies the feasibility of the proposed approach to other data mining applications. It can open new physiologic researches in this field and on non stationary time series analysis.

Keywords

Pattern analysis Classification Signal processing Brain computer interface 

References

  1. 1.
    U. Hoffmann, J. Vesin, T. Ebrahimi, K. Diserens, Journal of Neuroscience Methods 167(1), 115 (2008)PubMedCrossRefGoogle Scholar
  2. 2.
    S. Sutton, M. Braren, J. Zubin, E.R. John, Science 150, 11871188 (1965)Google Scholar
  3. 3.
    S. Lemm, B. Blankertz, G. Curio, K.R. Muller, IEEE Transactions on Biomedical Engineering 52, 1541 (2005)PubMedCrossRefGoogle Scholar
  4. 4.
    C.J. Stam, B.W. van Dijk, Physica D: Nonlinear Phenomena 163, 236 (2002)CrossRefGoogle Scholar
  5. 5.
    S. Micheloyannis, V. Sakkalis, M. Vourkas, C.J. Stam, P.G. Simos, Neuroscience Letters 373, 212 (2005)PubMedCrossRefGoogle Scholar
  6. 6.
    H. Kantz, T. Schreiber, Nonlinear time series analysis (Cambridge University Press, 1997)Google Scholar
  7. 7.
    M. Farge, Annu. Rev. Fluid Mech. 24, 395 (1992)CrossRefGoogle Scholar
  8. 8.
    G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, E.M. Stadlan, Neurology 34(7), 939 (1984)PubMedGoogle Scholar
  9. 9.
    C. Torrence, G.P. Compo, Bulletin of the American Meteorological Society 79(1), 61 (1998)CrossRefGoogle Scholar
  10. 10.
    J.P. Lachaux, A. Lutz, D. Rudrauf, D. Cosmelli, M.L.V. Quyen, J. Martinerie, F. Varela, Neurophysiol Clin 32(3), 157 (2002)PubMedCrossRefGoogle Scholar
  11. 11.
    V. Sakkalis, T. Oikonomou, E. Pachou, I. Tollis, S. Micheloyannis, M. Zervakis, in 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2006)Google Scholar
  12. 12.
    V. Bostanov, IEEE Transactions on Biomedical Engineering 51(6), 1057 (2004)PubMedCrossRefGoogle Scholar
  13. 13.
    C.T. Lin, K.L. Lin, L.W. Ko, S.F. Liang, B.C. Kuo, I.F. Chung, EURASIP Journal on Advances in Signal Processing 2008, 10 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Wolpaw, N. Birbaumer, W. Heetderks, D. McFarland, P. Peckham, G. Schalk, E. Donchin, IEEE Transactions on Rehabilitation Engineering 8(2), 164 (2000)PubMedCrossRefGoogle Scholar
  15. 15.
    A. Grinsted, J.C. Moore, S. Jevrejeva, Nonlinear Processes in Geophysics 11, 561566 (2004)CrossRefGoogle Scholar
  16. 16.
    T. Dietterich, Approximate statistical tests for comparing supervised classification learning algorithms. Research report, Computer Science Dept., Oregon State University (1997)Google Scholar
  17. 17.
    W.O. Galitz, The Essential Guide to User Interface Design: An Introduction to GUI to User Interface Design, 3rd edn. (John Wiley and Sons, 2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Instituto Nacional de Inovação em Diagnósticos para a Saúde Pública - fisica.ufpr.br/INIDSP CPGEI–Programa de Pós-Graduação em Engenharia Elétrica e Informática IndustrialFlorianópolisBrazil
  2. 2.UTFPR - Universidade Tecnológica Federal do ParanáLondrinaBrazil
  3. 3.is with PUCPR at PPGIa (Programa de Pós-Graduação em Informática)He is a Full Professor at PUCPR and the Team Leader of the Knowledge Discovery and Machine Learning Research GroupPanamaPanama

Personalised recommendations