Protein–Protein Interactions Involving the N-Terminus of p35

Chapter

Abstract

As a major regulator of Cdk5, the protein p35 exerts various effects on neuronal cells. Under certain conditions, p35 undergoes truncation of its N-terminus to form the protein p25. Although p25 is equally potent in activating Cdk5 as p35, it displays a number of differences from the latter, indicating an indispensable role of the N-terminal region for carrying out many of the Cdk5-p35 activities. A number of proteins have been identified that interact with p35 via its N-terminus. Such binding confers p35 and Cdk5 a multitude of properties, including regulation of Cdk5 activity by interacting with the proteins SET, CK2, importins β, 5 and 7, as well as the microtubule cytoskeleton; mediation of nuclear import of p35 through binding with the importin proteins; and participation in the control of protein biogenesis by regulating ribosomal protein S6 kinase 1. p35 itself also functions as a microtubule-associated protein through its N-terminus to regulate microtubule dynamics which is required for neurite outgrowth. Therefore, the discovery of p35–N-terminal binding partners has facilitated the elucidation of p35 and Cdk5 functions and regulations.

References

  1. 1.
    Lew, J., Q. Q. Huang, Z. Qi, R. J. Winkfein, R. Aebersold, T. Hunt, and J. H. Wang (1994) A brain-specific activator of cyclin-dependent kinase 5. Nature 371:423–426PubMedCrossRefGoogle Scholar
  2. 2.
    Tang, D., A. C. Chun, M. Zhang, and J. H. Wang (1997) Cyclin-dependent kinase 5 (Cdk5) activation domain of neuronal Cdk5 activator: Evidence of the existence of cyclin fold in neuronal Cdk5a activator. J. Biol. Chem. 272:12318–12327Google Scholar
  3. 3.
    Tsai, L. H., I. Delalle, V. S. Caviness, Jr., T. Chae, and E. Harlow (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371:419–423PubMedCrossRefGoogle Scholar
  4. 4.
    Tsai, L. H., T. Takahashi, V. S. Caviness, Jr., and E. Harlow (1993) Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development 119:1029–1040PubMedGoogle Scholar
  5. 5.
    Poon, R. Y., J. Lew, and T. Hunter (1997) Identification of functional domains in the neuronal Cdk5 activator protein. J. Biol. Chem. 272:5703–5708Google Scholar
  6. 6.
    Ohshima, T., J. M. Ward, C. G. Huh, G. Longenecker, Veeranna, H. C. Pant, R. O. Brady, L. J. Martin, and A. B. Kulkarni (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. USA 93:11173–11178CrossRefGoogle Scholar
  7. 7.
    Chae, T., Y. T. Kwon, R. Bronson, P. Dikkes, E. Li, and L. H. Tsai (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18:29–42PubMedCrossRefGoogle Scholar
  8. 8.
    Ko, J., S. Humbert, R. T. Bronson, S. Takahashi, A. B. Kulkarni, E. Li, and L. H. Tsai (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J. Neurosci. 21:6758–6771Google Scholar
  9. 9.
    Kusakawa, G., T. Saito, R. Onuki, K. Ishiguro, T. Kishimoto, and S. Hisanaga (2000) Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. J. Biol. Chem. 275:17166–17172Google Scholar
  10. 10.
    Lee, M. S., Y. T. Kwon, M. Li, J. Peng, R. M. Friedlander, and L. H. Tsai (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364PubMedCrossRefGoogle Scholar
  11. 11.
    Patrick, G. N., L. Zukerberg, M. Nikolic, M. S. de la, P. Dikkes, and L. H. Tsai (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402:615–622PubMedCrossRefGoogle Scholar
  12. 12.
    Cruz, J. C., H. C. Tseng, J. A. Goldman, H. Shih, and L. H. Tsai (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40:471–483PubMedCrossRefGoogle Scholar
  13. 13.
    Nguyen, M. D., R. C. Lariviere, and J. P. Julien (2001) Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron 30:135–147PubMedCrossRefGoogle Scholar
  14. 14.
    Lee, K. Y., J. L. Rosales, D. Tang, and J. H. Wang (1996) Interaction of cyclin-dependent kinase 5 (Cdk5) and neuronal Cdk5 activator in bovine brain. J. Biol. Chem. 271:1538–1543Google Scholar
  15. 15.
    Qi, Z., Q. Q. Huang, K. Y. Lee, J. Lew, and J. H. Wang (1995) Reconstitution of neuronal Cdc2-like kinase from bacteria-expressed Cdk5 and an active fragment of the brain-specific activator. Kinase activation in the absence of Cdk5 phosphorylation. J. Biol. Chem. 270:10847–10854Google Scholar
  16. 16.
    Sasaki, Y., C. Cheng, Y. Uchida, O. Nakajima, T. Ohshima, T. Yagi, M. Taniguchi, T. Nakayama, R. Kishida, Y. Kudo, S. Ohno, F. Nakamura, and Y. Goshima (2002) Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron 35:907–920PubMedCrossRefGoogle Scholar
  17. 17.
    Zukerberg, L. R., G. N. Patrick, M. Nikolic, S. Humbert, C. L. Wu, L. M. Lanier, F. B. Gertler, M. Vidal, R. A. Van Etten, and L. H. Tsai (2000) Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26:633–646PubMedCrossRefGoogle Scholar
  18. 18.
    Lee, M. H., M. Nikolic, C. A. Baptista, E. Lai, L. H. Tsai, and J. Massague (1996) The brain-specific activator p35 allows Cdk5 to escape inhibition by p27Kip1 in neurons. Proc. Natl. Acad. Sci. USA 93:3259–3263CrossRefGoogle Scholar
  19. 19.
    Fu, X., Y. K. Choi, D. Qu, Y. Yu, N. S. Cheung, and R. Z. Qi (2006) Identification of nuclear import mechanisms for the neuronal CDK5 activator. J. Biol. Chem. 281:39014–39021Google Scholar
  20. 20.
    Lim, A. C., Z. Hou, C. P. Goh, and R. Z. Qi (2004) Protein kinase CK2 is an inhibitor of the neuronal Cdk5 kinase. J. Biol. Chem. 279:46668–46673Google Scholar
  21. 21.
    Hou, Z., Q. Li, L. He, H. Y. Lim, X. Fu, N. S. Cheung, D. X. Qi, and R. Z. Qi (2007) Microtubule association of the neuronal p35 activator of Cdk5. J. Biol. Chem. 282:18666–18670Google Scholar
  22. 22.
    Qu, D., Q. Li, H. Y. Lim, N. S. Cheung, R. Li, J. H. Wang, and R. Z. Qi (2002) The protein SET binds the neuronal Cdk5 activator p35nck5a and modulates Cdk5/p35nck5a activity. J. Biol. Chem. 277:7324–7332Google Scholar
  23. 23.
    Gong, X., X. Tang, M. Wiedmann, X. Wang, J. Peng, D. Zheng, L. A. Blair, J. Marshall, and Z. Mao (2003) Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38:33–46PubMedCrossRefGoogle Scholar
  24. 24.
    Nikolic, M., H. Dudek, Y. T. Kwon, Y. F. Ramos, and L. H. Tsai (1996) The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 10:816–825PubMedCrossRefGoogle Scholar
  25. 25.
    Gorlich, D. and U. Kutay (1999) Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15:607–660Google Scholar
  26. 26.
    Dufner, A. and G. Thomas (1999) Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253:100–109CrossRefGoogle Scholar
  27. 27.
    Martin, K. A. and J. Blenis (2002) Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv. Cancer Res. 86:1–39CrossRefGoogle Scholar
  28. 28.
    Hou, Z., L. He, and R. Z. Qi (2007) Regulation of s6 kinase 1 activation by phosphorylation at ser-411. J. Biol. Chem. 282:6922–6928Google Scholar
  29. 29.
    Schalm, S. S., A. R. Tee, and J. Blenis (2005) Characterization of a conserved C-terminal motif (RSPRR) in ribosomal protein S6 kinase 1 required for its mammalian target of rapamycin-dependent regulation. J. Biol. Chem. 280:11101–11106Google Scholar
  30. 30.
    Kandel, E. R. (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038PubMedCrossRefGoogle Scholar
  31. 31.
    Steward, O. and E. M. Schuman (2001) Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24:299–325Google Scholar
  32. 32.
    Hay, N. and N. Sonenberg (2004) Upstream and downstream of mTOR. Genes Dev. 18:1926–1945PubMedCrossRefGoogle Scholar
  33. 33.
    Baumann, K., E. M. Mandelkow, J. Biernat, H. Piwnica-Worms, and E. Mandelkow (1993) Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett. 336:417–424PubMedCrossRefGoogle Scholar
  34. 34.
    Paudel, H. K., J. Lew, Z. Ali, and J. H. Wang (1993) Brain proline-directed protein kinase phosphorylates tau on sites that are abnormally phosphorylated in tau associated with Alzheimer's paired helical filaments. J. Biol. Chem. 268:23512–23518Google Scholar
  35. 35.
    Tanaka, T., F. F. Serneo, H. C. Tseng, A. B. Kulkarni, L. H. Tsai, and J. G. Gleeson (2004) Cdk5 phosphorylation of doublecortin Ser297 regulates its effect on neuronal migration. Neuron 41:215–227PubMedCrossRefGoogle Scholar
  36. 36.
    Kamei, H., T. Saito, M. Ozawa, Y. Fujita, A. Asada, J. A. Bibb, T. C. Saido, H. Sorimachi, and S. Hisanaga (2007) Suppression of calpain-dependent cleavage of the CDK5 activator p35 to p25 by site-specific phosphorylation. J. Biol. Chem. 282:1687–1694Google Scholar
  37. 37.
    Patrick, G. N., P. Zhou, Y. T. Kwon, P. M. Howley, and L. H. Tsai (1998) p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J. Biol. Chem. 273:24057–24064Google Scholar
  38. 38.
    He, L., Z. Hou, and R. Z. Qi; unpublished dataGoogle Scholar
  39. 39.
    Harada, T., T. Morooka, S. Ogawa, and E. Nishida (2001) ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nat. Cell Biol. 3:453–459Google Scholar
  40. 40.
    Paglini, G., G. Pigino, P. Kunda, G. Morfini, R. Maccioni, S. Quiroga, A. Ferreira, and A. Caceres (1998) Evidence for the participation of the neuron-specific CDK5 activator P35 during laminin-enhanced axonal growth. J. Neurosci. 18:9858–9869Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of BiochemistryThe Hong Kong University of Science and TechnologyKowloonChina

Personalised recommendations