Two-Component Signaling and Gram Negative Envelope Stress Response Systems

  • Dawn M. MacRitchie
  • Daelynn R. Buelow
  • Nancy L. Price
  • Tracy L. RaivioEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 631)


Bacteria have evolved complex stress responses that allow them to respond to their surroundings. In Gram negative bacteria, these stress responses can be compartmentalized into the cytoplasmic and extracytoplasmic (envelope) stress responses. The extracytoplasmic stress response monitors the integrity of the envelope, which consists of the outer membrane (OM), inner membrane (IM) and the periplasm. The OM is an atypical membrane in that it is asymmetrical with lipopolysaccharides found only on the outer facet. Functions of the OM include acting as a permeability barrier, allowing for transport via porins and avoiding phagocytosis1. The IM is composed of phospholipids and proteins. The IM is involved in many activities including energy generation and conservation, biosynthetic and catabolic reactions, signal transduction and acting as a hydrophobic barrier to control and maintain the intracellular concentrations of cytoplasmic ions/molecules2. The periplasm, which lies between the IM and OM, contains the peptidogylcan layer that is involved in maintaining cell shape. Although it has been thought that the periplasm is extremely viscous due to its high protein content, it was recently shown that the viscosity of the periplams is not that much different than the cytoplasm with an average diffusion rate of 9.0±2.1 μm2s−1 in the cytoplasm and 2.6±1.2 μm2s−1 in the periplasm3. The periplasm is involved in processing essential nutrients for transport, biogenesis of major envelope components, detoxification and buffering the cytoplasmic environment from external stresses to maintain growth and viability4.


Sigma Factor Envelope Stress Periplasmic Domain Outer Membrane Lipoprotein Phosphorelay System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nikaido H, Vaara M. Outer membrane. In: Neidhardt FC et al., eds. Escherichia coli and Salmonella: cellular and molecular biology. Washington, DC: ASM Press, 1987:7–22.Google Scholar
  2. 2.
    Cronan JE, Gennis RB, Maloy SR. Cytoplasmic membrane. In: Neidhardt FC et al, eds. Escherichia coli and Salmonella: cellular and molecular biology. Washington, DC: ASM Press, 1987:31–55.Google Scholar
  3. 3.
    Mullineaux CW, Neninger A, Ray N et al. Diffusion of green fluorescent protein in three cell environments in Escherichia coli. J Bacteriol 2006; 188:3442–3448.PubMedCrossRefGoogle Scholar
  4. 4.
    Oliver DB. Periplasm and protein secretion. In: Neidhardt FC et al, eds. Escherichia coli and Salmonella: cellular and molecular biology. Washington, DC: ASM Press 1987:56–69.Google Scholar
  5. 5.
    Alba BM, Gross CA. Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol 2004; 52:613–619.PubMedCrossRefGoogle Scholar
  6. 6.
    Raivio TL, Silhavy TJ. Periplasmic stress and ECF sigma factors. Annu Rev Microbiol 2001; 55:591–624.PubMedCrossRefGoogle Scholar
  7. 7.
    Otto K, Silhavy TJ. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci USA 2002; 99:2287–2292.PubMedCrossRefGoogle Scholar
  8. 8.
    Baranova N, Nikaido H. The BaeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol 2002; 184:4168–4176.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhou L, Lei XH, Bochner BR et al. Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol 2003; 185:4956–4972.PubMedCrossRefGoogle Scholar
  10. 10.
    Darwin AJ. The phage-shock-protein response. Mol Microbiol 2005; 57:621–628.PubMedCrossRefGoogle Scholar
  11. 11.
    Huang YH, Ferrieres L, Clarke DJ. The role of the Res phosphorelay in Enterobacteriaceae. Res Microbiol 2006; 157:206–212.PubMedCrossRefGoogle Scholar
  12. 12.
    Majdalani N, Gottesman S. The Res phosphorelay: a complex signal transduction system. Annu Rev Microbiol 2005; 59:379–405.PubMedCrossRefGoogle Scholar
  13. 13.
    Helmann JD. The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 2002; 46:47–110.PubMedCrossRefGoogle Scholar
  14. 14.
    Braun V, Mahren S, Ogierman M. Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr Opin Microbiol 2003; 6:173–180.PubMedCrossRefGoogle Scholar
  15. 15.
    De Las Penas A, Connolly L, Gross CA. σE is an essential sigma factor in E.coli. J Bacteriol 1997 179:6862–6864.Google Scholar
  16. 16.
    Hiratsu K, Amemura M, Nashimoto H et al. The rpoE gene of Escherichia coli, which encode Ee, is essential for bacterial growth at high temperature. J Bacteriol 1995; 177:2918–2922.PubMedGoogle Scholar
  17. 17.
    Erickson JW, Gross CA. Identification of the σE subunit of E.coli RNA polymerase; a second alternate o factor involved in high-temperature gene expression. Genes Dev 1989; 3:1462–1471.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang QP, Kaguni JM. A novel sigma factor is involved in expression of the rpoH gene of Escherichia coli. J Bacteriol 1989; 171:4248–4253.PubMedGoogle Scholar
  19. 19.
    Rouviere PE, De Las Penas A, Meesas J et al. rpoE, the gene encoding the second heat-shock sigma factor, σE in E coli. EMBO J. 1995; 14:1032–1042.PubMedGoogle Scholar
  20. 20.
    Raina S, Missiakas D, Georgopoulos C. The rpoE gene encoding the σE24) heat shock sigma factor E. coli. EMBO J 1995; 12:1043–1055.Google Scholar
  21. 21.
    De Las Penas A, Connolly L, Gross CA. The σE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE Mol Microbiol 1997; 24:373–385.PubMedCrossRefGoogle Scholar
  22. 22.
    Missiakas D, Mayer MP, Lemaire M et al. Modulation of the Escherichia coli σE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins Mol Microbiol 1997; 24:355–371.PubMedCrossRefGoogle Scholar
  23. 23.
    Mecsas J, Rouviere PE, Erickson JW et al. The activity of σE, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev 1993; 7:2618–2628.PubMedCrossRefGoogle Scholar
  24. 24.
    Jones CH, Danese PN, Pinkner JS et al. The chaperone-assisted membrane release and folding pathway is sensed by two signal transduction systems EMBO J 1997; 16:6394–6406.PubMedCrossRefGoogle Scholar
  25. 25.
    Missiakas D, Betton JM, Raina S. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol. Microbiol 1996; 21:871–884.PubMedCrossRefGoogle Scholar
  26. 26.
    Campbell EA, Tupy JL, Gruber TM et al. Crystal structure of Escherichia coli σE with the cytoplasmic domain of its anti-sigma RseA Mol Cell 2003; 11:1067–1078.PubMedCrossRefGoogle Scholar
  27. 27.
    Tam C, Collinet B, Lau G et al. Interaction of the conserved region 4.2 of σE with the RseA anti-sigma factor. J Biol Chem 2002; 277:27282–27287.PubMedCrossRefGoogle Scholar
  28. 28.
    Collinet B, Yuzawa H, Chen T et al. RseB binding to the periplasmic domain of RseA modulates the RseA: σE interaction in the cytoplasm and the availability of σE: RNA polymerase. J Biol Chem 2000: 275:33898–33904.PubMedCrossRefGoogle Scholar
  29. 29.
    Ades SE, Connolly LE, Alba BM et al. The Escherichia coli σE-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. Genes Dev 1999; 13:2449–2461.PubMedCrossRefGoogle Scholar
  30. 30.
    Kanehara K, Ito K, Akiyama Y. YacL (EcfE) activates the OE pathway of stress response through a site-2 cleavage of anti-OE, RseA. Genes Dev 2002; 16:2147–2155.PubMedCrossRefGoogle Scholar
  31. 31.
    Walsh NP, Alba BM, Bose B et al. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 2003; 113:61–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Harris BZ, Lim WA. Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci 2001; 114:3219–3231.PubMedGoogle Scholar
  33. 33.
    Alba BM, Leeds JA, Onufryk C et al. DegS and YacL participate sequentially in the cleavage of RseA to activate the OE-dependent extracytoplasmic stress response. Genes Dev 2002; 16:2156–2168.PubMedCrossRefGoogle Scholar
  34. 34.
    Grigorova IL, Chaba R, Zhong HJ et al. Fine-tuning of the Escherichia coli OE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA. Genes Dev 2004; 18:2686–2697.PubMedCrossRefGoogle Scholar
  35. 35.
    Flynn JM, Levchenko I, Sauer RT et al. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev 2004; 18:2292–2301.PubMedCrossRefGoogle Scholar
  36. 36.
    Costanzo A, Ades SE. Growth phase-dependent regulation of the extracytoplasmic stress factor, OE, by guanosine 3′,5′-bispyrophosphate (ppGpp). J Bacteriol 2006; 188:4627–4634.PubMedCrossRefGoogle Scholar
  37. 37.
    Magnusson LU, Farewell A, Nystrom T. ppGpp: a global regulator in Escherichia coli. Trends Microbiol 2005; 13:236–242.PubMedCrossRefGoogle Scholar
  38. 38.
    Dartigalongue C, Missiakas D, Raina S. Characterization of the E. coli OE regulon. J Biol Chem 2001; 276:20866–20875.PubMedCrossRefGoogle Scholar
  39. 39.
    Johansen J, Rasmussen AA Overgaard M et al. Conserved small noncoding RNAs that belong to the OE regulon: role in down-regulation of outer membrane proteins. J Mol Biol 2006; 364:1–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Kabir MS, Yamashita D, Koyama S et al. Cell lysis directed by sigmaE in early stationary phase and effect of induction of the rpoE gene on global gene expression in Escherichia coli. Microbiology 2005; 151:2721–2735.PubMedCrossRefGoogle Scholar
  41. 41.
    Onufryk C, Crouch ML, Fang FC et al. Characterization of six lipoproteins in the OE regulon. J Bacteriol 2005; 187:4552–4561.PubMedCrossRefGoogle Scholar
  42. 42.
    Rezuchova B, Miticka H, Homerova D et al. New members of the Escherichia coli sigmaE regulon identified by a two-plasmid system. FEMS Microbiol Lett 2003: 225:1–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Rhodius VA, Suh WC, Nonaka G et al. Conserved and variable functions of the OE stress response in related genomes. PLoS Biol 2006; 4:e2.PubMedCrossRefGoogle Scholar
  44. 44.
    Ruiz N, Falcone B, Kahne D et al. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 2005; 121:307–317.PubMedCrossRefGoogle Scholar
  45. 45.
    Wu T, Malinverni J, Ruiz N et al. Identification of a multicomponent complex required for outer membrane biogenesis in E. coli. Cell 2005; 121:235–245.PubMedCrossRefGoogle Scholar
  46. 46.
    Raivio TL. Envelope stress responses and Gram-negative bacterial pathogenesis. Mol Microbiol 2005; 56:1119–1128.PubMedCrossRefGoogle Scholar
  47. 47.
    Humphrey S, Stevenson A, Bacon A et al. The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. Infect Immun 1999; 67:1560–1568.Google Scholar
  48. 48.
    Kenyon WJ, Sayers DG, Humphreys S et al. The starvation-stress response of Salmonella enterica serovar Typhimurium requires sigma(E)-, but not CpxR-regulated extracytoplasmic functions. Microbiology 2002; 148:113–122.PubMedGoogle Scholar
  49. 49.
    Testerman TL, Vazquez-Torres A, Xu Y et al. The alternative sigma factor sigmaE controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Mol Microbiol 2002; 43:771–782.PubMedCrossRefGoogle Scholar
  50. 50.
    Eriksson S, Lucchini S, Thompson A et al. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 2003; 47:103–118.PubMedCrossRefGoogle Scholar
  51. 51.
    Skovierova H, Rowley G, Rezuchova B et al. Identification of the sigmaE regulon of Salmonella enterica serovar Typhimurium. Microbiology 2006; 152:1347–1359.PubMedCrossRefGoogle Scholar
  52. 52.
    Kovacikova G, Skorupski K. The alternative sigma factor sigma(E) plays an important role in intestinal survival and virulence in Vibrio cholerae. Infect Immun 2002; 70: 5355–5362.PubMedCrossRefGoogle Scholar
  53. 53.
    Ando M, Yoshimatsu T, Ko C et al. Deletion of Mycobacterium tuberculosis sigma factor E results in delayed time to death with bacterial persistence in the lungs of aerosol-infected mice. Infect Immun 2003; 71:7170–7172.PubMedCrossRefGoogle Scholar
  54. 54.
    Manganelli R, Fattorini L, Tan D et al. The extra cytoplasmic function sigma factor sigma(E) is essential for Mycobacterium tuberculosis virulence in mice. Infect Immun 2004; 72:3038–3041.PubMedCrossRefGoogle Scholar
  55. 55.
    Korbsrisate S, Vanaporn M, Kerdsuk P et al. The Burkholderia pseudomallei RpoE (AlgU) operon is involved in environmental stress tolerance and biofilm formation. FEMS Microbiol Lett 2005; 252:243–249.PubMedCrossRefGoogle Scholar
  56. 56.
    Deretic V, Schurr MJ, Boucher JC et al. Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors. J Bacteriol 1994; 176:2773–2780.PubMedGoogle Scholar
  57. 57.
    Justice SS, Hunstad DA, Harper JR et al. Periplasmic peptidyl prolyl cis-trans isomerases are not essential for viability, but SurA is required for pilus biogenesis in Escherichia coli. J Bacteriol 2005; 187:7680–7686.PubMedCrossRefGoogle Scholar
  58. 58.
    Douchin V, Bohn C, Bouloc P. Down-regulation of porins by a small RNA bypasses the essentiality of the regulated intramembrane proteolysis protease RseP in Escherichia coli. J Biol Chem 2006; 281:12253–12259.PubMedCrossRefGoogle Scholar
  59. 59.
    McEwen J, Silverman P. Chromosomal mutations of Escherichia coli that alter expression of conjugative plasmid functions. Proc Natl Acad Sci USA 1980; 77:513–517.PubMedCrossRefGoogle Scholar
  60. 60.
    McEwen J, Silverman P. Genetic analysis of Escherichia coli K-12 chromosomal mutants defective in expression of F-plasmid functions: identification of genes cpxA and cpxB. J Bacteriol 1980; 144:60–67.PubMedGoogle Scholar
  61. 61.
    McEwen J, Silverman P. Mutations in genes cpxA and cpxB of Eschrichia coli K-12 cause a defect in isoleucine and valine syntheses. J Bacteriol 1980; 144:68–73.PubMedGoogle Scholar
  62. 62.
    McEwen J, Silverman PM. Mutations in genes cpxA and cpxB alter the protein composition of Escherichia coli inner and outer membranes. J Bacteriol 1982; 151:1553–1559.PubMedGoogle Scholar
  63. 63.
    McEwen J, Sambucetti L, Silverman PM. Synthesis of outer membrane proteins in cpxA cpxB mutants of Escherichia coli K-12. J Bacteriol 1983; 154:375–382.PubMedGoogle Scholar
  64. 64.
    Albin R, Weber R, Silverman PM. The Cpx proteins of Escherichia coli K12. Immunologic detection of the chromosomal cpxA gene product. J Biol Chem 1986; 261:4698–4705.PubMedGoogle Scholar
  65. 65.
    Weber RF, Silverman PM. The epx proteins of Escherichia coli K12. Structure of the cpxA polypeptide as an inner membrane component. J Mol Biol 1988; 203:467–478.PubMedCrossRefGoogle Scholar
  66. 66.
    Dong J, Iuchi S, Kwan HS, et al. The deduced amino-acid sequence of the cloned cpxR gene suggests the protein is the cognate regulator for the membrane sensor, CpxA, in a two-component signal transduction system of Escherichia coli. Gene 1993; 136:227–230.PubMedCrossRefGoogle Scholar
  67. 67.
    Cosma CL, Danese PN, Carlson JH et al. Mutational activation of the Cpx signal transduction pathway of Escherichia coli suppresses the toxicity conferred by certain envelope-associated stresses. Mol Microbiol 1995; 18:491–505.PubMedCrossRefGoogle Scholar
  68. 68.
    Snyder WB, Davis LJ, Danese PN et al. Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway. J Bacteriol 1995; 177:4216–4223.PubMedGoogle Scholar
  69. 69.
    Danese PN, Silhavy TJ. CpxP, a stress-combative member of the Cpx regulon. J Bacteriol 1998; 180:831–839.PubMedGoogle Scholar
  70. 70.
    Raivio TL, Popkin DL, Silhavy TJ. The Cpx envelope stress response is controlled by amplification and feedback inhibition. J Bacteriol 1999;181:5263–5272.PubMedGoogle Scholar
  71. 71.
    Raivio TL, Laird MW, Joly JC et al. Tethering of CpxP to the inner membrane prevents spheroplast induction of the Cpx envelope stress response. Mol Microbiol 2000; 37:1186–1197.PubMedCrossRefGoogle Scholar
  72. 72.
    Fleischer R, Heermann R, Jung K et al. Purification, Reconstitution and Characterization of the CpxRAP Envelope Stress System of Escherichia coli. J Biol Chem 2007; 282:8583–8593.PubMedCrossRefGoogle Scholar
  73. 73.
    Nevesinjac AZ, Raivio TL. The Cpx envelope stress response affects expression of the type IV bundle-forming pili of enteropathogenic Escherichia coli. J Bacteriol 2005; 187: 672–686.PubMedCrossRefGoogle Scholar
  74. 74.
    Hung DL, Raivio TL, Jones CH et al. Cpx signaling pathway monitors biogenesis and affects assembly and expression of P pili. EMBO J 2001; 20: 1508–1518.PubMedCrossRefGoogle Scholar
  75. 75.
    Raffa RG, Raivio TL. A third envelope stress signal transduction pathway in Escherichia coli. Mol Microbiol 2002; 45:1599–1611.PubMedCrossRefGoogle Scholar
  76. 76.
    Lee YM, DiGiuseppe PA, Silhavy TJ et al. P pilus assembly, motif necessary for activation of the CpxRA pathway by PapE in Escherichia coli. J Bacteriol 2004; 186:4326–4337.PubMedCrossRefGoogle Scholar
  77. 77.
    Nakayama S, Watanabe H. Involvement of cpxA, a sensor of a two-component regulatory system, in the pH-dependent regulation of expression of Shigella sonnei virF gene. J Bacteriol 1995; 177:5062–5069.PubMedGoogle Scholar
  78. 78.
    Mileykovskaya E, Dowhan W. The Cpx two-component signal transduction pathway is activated in Escherichia coli mutant strains lacking phosphatidylethanolamine. J Bacteriol 1997; 179:1029–1034.PubMedGoogle Scholar
  79. 79.
    Danese PN, Oliver GR, Barr K et al. Accumulation of the enterobacterial common antigen lipid II biosynthetic intermediate stimulates degP transcription in Escherichia coli. J Bacteriol 1998; 180:5875–5884.PubMedGoogle Scholar
  80. 80.
    Raivio TL, Silhavy TJ. Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J Bacteriol 1997; 179:7724–7733.PubMedGoogle Scholar
  81. 81.
    Kenney LJ. Structure/function relationships in OmpR and other winged-helix transcription factors. Curr Opin Mierobiol 2002; 5:135–141.CrossRefGoogle Scholar
  82. 82.
    Buelow DR, Raivio TL. Cpx signal transduction is influenced by a conserved N-terminal domain in the novel inhibitor CpxP and the periplasmic protease DegP. J Bacteriol 2005; 187: 6622–6630.PubMedCrossRefGoogle Scholar
  83. 83.
    Isaac DD, Pinkner JS, Hultgren SJ et al. The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP. Proc Natl Acad Sci USA 2005; 102:17775–17779.PubMedCrossRefGoogle Scholar
  84. 84.
    DiGiuseppe PA, Silhavy TJ. Signal detection and target gene induction by the CpxRA two-component system. J Bacteriol 2003; 185:2432–2440.PubMedCrossRefGoogle Scholar
  85. 85.
    Danese PN, Silhavy TJ. The OE and the Cpx signal transduction systems control the synthesis of peri-plasmic protein-folding enzymes in Escherichia coli. Genes Dev 1997; 11:1183–1193.PubMedCrossRefGoogle Scholar
  86. 86.
    Pogliano J, Lynch AS, Belin D et al. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev 1997; 11:1169–1182.PubMedCrossRefGoogle Scholar
  87. 87.
    Kamitani S, Akiyama Y, Ito K. Identification and characterization of an Escherichia coli gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme. EMBO J 1992; 11:57–62.PubMedGoogle Scholar
  88. 88.
    Bardwell JC, McGovern K, Beekwith J. Identification of a protein required for disulfide bond formation in vivo. Cell 1991; 67:581–589.PubMedCrossRefGoogle Scholar
  89. 89.
    Strauch KL, Beekwith J. An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc Natl Acad Sci USA 1988; 85:1576–1580.PubMedCrossRefGoogle Scholar
  90. 90.
    Kleerebezem M, Heutink M, Tommassen J. Characterization of an Escherichia coli rotA mutant, affected in periplasmic peptidyl-prolyl cis/trans isomerase. Mol Microbiol 1995; 18:313–320.PubMedCrossRefGoogle Scholar
  91. 91.
    Dartigalongue C, Raina S. A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. EMBO J 1998; 17:3968–3980.PubMedCrossRefGoogle Scholar
  92. 92.
    De Wolf P, McGuire AM, Liu X et al. Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli. J Biol Chem 2002; 277:26652–26661.CrossRefGoogle Scholar
  93. 93.
    Hawrot E, Kennedy EP. Biogenesis of membrane lipids: mutants of Escherichia coli with temperature-sensitive phosphatidylserine decarboxylase. Proc Natl Acad Sci USA 1975; 72:1112–1116.PubMedCrossRefGoogle Scholar
  94. 94.
    Batchelor E, Walthers D, Kenney LJ et al. The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins ompF and, ompO. J Bacteriol 2005; 187:5723–5731.PubMedCrossRefGoogle Scholar
  95. 95.
    Condemine G, Berrier C, Plumbridge J et al. Function and expression of an N-acetylneuraminic acid-inducible outer membrane channel in Escherichia coli. J Bacteriol 2005; 187:1959–1965.PubMedCrossRefGoogle Scholar
  96. 96.
    Hirakawa H, Inazumi Y, Masaki T et al. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol Microbiol 2005; 55:1113–1126.PubMedCrossRefGoogle Scholar
  97. 97.
    Hall MN, Silhavy TJ. Genetic analysis, of the major outer membrane proteins of Escherichia coli. Annu Rev Genet 1981; 15:91–142.PubMedCrossRefGoogle Scholar
  98. 98.
    Kalivoda KA, Steenbergen SM, Vime ER et al. Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli. J Bacteriol 2003; 185:4806–4815.PubMedCrossRefGoogle Scholar
  99. 99.
    Nagakubo S, Nishino K, Hirata T et al. The putative response regulator BacR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system mDtABC. J Bacteriol 2002; 184:4161–4167.PubMedCrossRefGoogle Scholar
  100. 100.
    Hirakawa H, Nishino K, Yamada J et al. Beta-lactam resistance modulated by the overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J Antimicrob Chemother 2003; 52:576–582.PubMedCrossRefGoogle Scholar
  101. 101.
    De Wulf P, Kwon O, Lin EC. The CpxRA signal transduction system of Escherichia coli: growth-related autoactivation and control of unanticipated target operons. J Bacteriol 1999; 181:6772–6778.PubMedGoogle Scholar
  102. 102.
    Price NL, Raivio TL, submitted.Google Scholar
  103. 103.
    Dorel C, Vidal O, Prigent-Combaret C et al. Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 1999; 178:169–175.PubMedCrossRefGoogle Scholar
  104. 104.
    Jubelin G, Vianney A, Beloin C et al. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol 2005; 187:2038–2049.PubMedCrossRefGoogle Scholar
  105. 105.
    Hernday AD, Braaten BA, Broitman-Maduro G et al. Regulation of the pap epigenetic switch by CpxAR: phosphorylated CpxR inhibits transition to the phase ON state by competition with Lrp. Mol Cell 2004; 16:537–547.PubMedGoogle Scholar
  106. 106.
    Ogasawara H, Teramoto K, Hirao K et al. Negative regulation of DNA repair gene (ung) expression by the CpxR/CpxA two-component system in Escherichia coli K-12 and induction of mutations by increased expression of CpxR. J Bacteriol 2004; 186:8317–8325.PubMedCrossRefGoogle Scholar
  107. 107.
    Shimohata N, Chiba S, Saikawa N et al. The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with a cytosolic active site. Genes Cells 2002; 7:653–662.PubMedCrossRefGoogle Scholar
  108. 108.
    Leclerc GJ, Tartera C, Metealf ES. Environmental regulation of Salmonella typhi invasion-defective mutants. Infect Immun 1998; 66:682–691.PubMedGoogle Scholar
  109. 109.
    Humphreys S, Rowley G, Stevenson A et al. Role of the two-component regulator CpxAR in the virulence of Salmonella enterica serotype Typhimurium. Infect Immun 2004; 72:4654–4661.PubMedCrossRefGoogle Scholar
  110. 110.
    Nakayama S, Watanabe H. Identification of cpxR as a positive regulator essential for expression of the Shigella sonnei virF gene. J Bacteriol 1998; 180:3522–3528.PubMedGoogle Scholar
  111. 111.
    Nakayama S, Kushiro A, Asahara T et al. Activation of hilA expression at low pH requires the signal sensor CpxA, but not the cognate response regulator CpxR, in Salmonella enterica serovar Typhimurium. Microbiology 2003; 149:2809–2817.PubMedCrossRefGoogle Scholar
  112. 112.
    Mitobe J, Arakawa E, Watanabe H. A sensor of the two-component system CpxA affects expression of the type III secretion system through posttranscriptional processing of InvE. J Bacteriol 2005; 187:107–113.PubMedCrossRefGoogle Scholar
  113. 113.
    Ha UH, Wang Y, Jin S. DsbA of Pseudomonas aeruginosa is essential for multiple virulence factors. Infect Immun 2003; 71:1590–1595.PubMedCrossRefGoogle Scholar
  114. 114.
    Stenson TH, Weiss AA. DsbA and DsbC are required for secretion of pertussis toxin by Bordetella pertussis. Infect Immun 2002; 70:2297–2303.PubMedCrossRefGoogle Scholar
  115. 115.
    Yu J. Inactivation of DsbA, but not DsbC and DsbD, affects the intracellular survival and virulence of Shigella flexneri. Infect Immun 1998; 66:3909–3917.PubMedGoogle Scholar
  116. 116.
    Yu J, Edwards-Jones B, Neyrolles O et al. Key role for DsbA in cell-to-cell spread of Shigella flexneri, permitting secretion of Ipa proteins into interepithelial protrusions. Infect Immun 2000; 68:6449–6456.PubMedCrossRefGoogle Scholar
  117. 117.
    Jackson MW, Plano GV. DsbA is required for stable expression of outer membrane protein YscC and for efficient Yop secretion in Yersinia pestis. J Bacteriol 1999; 181:5126–5130.PubMedGoogle Scholar
  118. 118.
    Zhang HZ, Donnenberg MS. DsbA is required for stability of the type IV pilin of enteropathogenic Escherichia coli. Mol Microbiol 1996; 21:787–797.PubMedCrossRefGoogle Scholar
  119. 119.
    Johnson K, Charles I, Dougan G et al. The role of a stress-response protein in Salmonella typhimurium virulence. Mol Microbiol 1991; 5:401–407.PubMedCrossRefGoogle Scholar
  120. 120.
    Peek JA, Taylor RK. Characterization of a periplasmic thiol disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc Natl Acad Sci USA 1992; 89:6210–6214.PubMedCrossRefGoogle Scholar
  121. 121.
    Yu J, Webb H, Hirst TR. A homologue of the Escherichia coli DsbA protein involved in disulphide bond formation is required for enterotoxin biogenesis in Vibrio cholerae. Mol Micribiol 1992; 6:1949–1958.CrossRefGoogle Scholar
  122. 122.
    Nagasawa S, Ishige K, Mizuno T. Novel members of the two-component signal transduction genes in Escherichia coli. J Biochem 1993; 114:350–357.PubMedGoogle Scholar
  123. 123.
    Nishino K, Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 2001; 183:5803–5812.PubMedCrossRefGoogle Scholar
  124. 124.
    Hirakawa H, Nishino K, Hirata T et al. Comprehensive studies of drug resistance mediated by over-expression of response regulators of two-component signal transduction systems in Escherichia coli. J Bacteriol 2003; 185:1851–1856.PubMedCrossRefGoogle Scholar
  125. 125.
    Yamamoto K, Hirao K, Oshima T et al. Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 2005; 280:1448–1456.PubMedCrossRefGoogle Scholar
  126. 126.
    Nishino K, Honda T, Yamaguchi A. Genome-wide analyses of Escherichia coli gene expression responsive to the BacSR two-component regulatory system. J Bacteriol 2005; 187:1763–1772.PubMedCrossRefGoogle Scholar
  127. 127.
    Brissette JL, Russel M, Weiner L et al. Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci USA 1990; 87:862–866.PubMedCrossRefGoogle Scholar
  128. 128.
    Brissette JL, Russel M. Secretion and membrane integration of a filamentous phage-encoded morphogenetic protein. J Mol Biol 1990; 211:565–580.PubMedCrossRefGoogle Scholar
  129. 129.
    Drahos DJ, Hendrix RW. Effect of bacteriophage lambda infection on synthesis of groE protein and other Escherichia coli proteins. J Bacteriol 1982; 149:1050–1063.PubMedGoogle Scholar
  130. 130.
    Weiner L, Brissette JL, Model P. Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms. Genes Dev 1991; 5:1912–1923.PubMedCrossRefGoogle Scholar
  131. 131.
    Brissette JL, Weiner L, Ripmaster TL et al. Characterization and sequence of the Escherichia coli stress-induced psp operon. J Mol Biol 1991; 220:35–48.PubMedCrossRefGoogle Scholar
  132. 132.
    Adams H, Teertstra W, Demmers J et al. Interactions between phage-shock proteins in Escherichia coli. J Bacteriol 2003; 185:1174–1180.PubMedCrossRefGoogle Scholar
  133. 133.
    Weiner L, Brissette JL, Ramani N et al. Analysis of the proteins and cis-acting elements regulating the stress-induced phage shock protein operon. Nucleic Acids Res 1995; 23:2030–2036.PubMedCrossRefGoogle Scholar
  134. 134.
    Jovanovic G, Weiner L, Model P. Identification, nucleotide sequence and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon. J Bacteriol 1996; 178:1936–1945.PubMedGoogle Scholar
  135. 135.
    Dworkin J, Jovanovic G, Model P. The PspA protein of Escherichia coli is a negative regulator of sigma(54)-dependent transcription. J Bacteriol 2000; 182:311–319.PubMedCrossRefGoogle Scholar
  136. 136.
    Elderkin S, Jones S, Schumacher J et al. Mechanism of action of the Escherichia coli phage shock protein PspA in repression of the AAA family transcription factor PspF. J Mol Biol 2002; 320:23–37.PubMedCrossRefGoogle Scholar
  137. 137.
    Elderkin S, Bordes P, Jones S et al. Molecular determinants of PspA-mediated repression of the AAA transcriptional activator PspF. J Bacteriol 2005; 187:3238–3248.PubMedCrossRefGoogle Scholar
  138. 138.
    Kleerebezem M, Tommassen J. Expression of the pspA gene stimulates efficient protein export in Eschcrichia coli. Mol Microbiol 1993; 7:947–956.PubMedCrossRefGoogle Scholar
  139. 139.
    Kleerebezem M, Crielaard W, Tommassen J. Involvement of stress protein PspA (phage shock protein A) of Escherichia coli in maintenance of the protonmotive force under stress conditions. EMBO J 1996; 15:162–171.PubMedGoogle Scholar
  140. 140.
    Maxson ME, Darwin AJ. PspB and pspC of Yersina enterocolitica are dual function proteins: regulators and effectors of the phage-shock-protein response. Mol Microbiol 2006; 59:1610–1623.PubMedCrossRefGoogle Scholar
  141. 141.
    Carlson JH, Silhavy TJ. Signal sequence processing is required for the assembly of LamB trimers in the outer membrane of Escherichia coli. J Bacteriol 1993; 175:3327–3334.PubMedGoogle Scholar
  142. 142.
    Weiner L, Model P. Role of an Escherichia coli stress-response operon in stationary-phase survival. Proc Natl Acad Sci USA 1994; 91:2191–2195.PubMedCrossRefGoogle Scholar
  143. 143.
    Jones SE, Lloyd LJ, Tan KK et al. Secretion defects that activate the phage shock response of Escherichia coli. J Bacteriol 2003; 185:6707–6711.PubMedCrossRefGoogle Scholar
  144. 144.
    DeLisa MP, Lee P, Palmer T et al. Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway. J Bacteriol 2004; 186:366–373.PubMedCrossRefGoogle Scholar
  145. 145.
    Becker LA, Bang IS, Crouch ML et al. Compensatory role of PspA, a member of the phage shock protein operon, in rpoE mutant Salmonella enterica serovar Typhimurium. Mol Microbiol 2005; 56:1004–1016.PubMedCrossRefGoogle Scholar
  146. 146.
    Guilvout I, Chami M, Engel A et al. Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin. EMBO J 2006; 25:5241–5249.PubMedCrossRefGoogle Scholar
  147. 147.
    Darwin AJ, Miller VL. Identification of Yersinia enterocolitica genes affecting survival in an animal host using signature-tagged transposon mutagenesis. Mol Microbiol 1999; 32:51–62.PubMedCrossRefGoogle Scholar
  148. 148.
    Darwin AJ, Miller VL. The psp locus of Yersinia enterocolitica is required for virulence and for growth in vitro when the Ysc type III secretion system is produced. Mol Microbiol 2001; 39:429–444.PubMedCrossRefGoogle Scholar
  149. 149.
    Lloyd LJ, Jones SE, Jovanovic G et al. Identification of a new member of the phage shock protein response in Escherichia coli, the phage shock protein G (PspG). J Biol Chem 2004; 279:55707–55714.PubMedCrossRefGoogle Scholar
  150. 150.
    Jovanovic G, Lloyd LJ, Stumpf MP et al. Induction and function of the phage shock protein extracytoplasmic stress response in Escherichia coli. J Biol Chem 2006; 281:21147–21161.PubMedCrossRefGoogle Scholar
  151. 151.
    Gottesman S, Trisler P, Torres-Cabassa A. Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J Bacteriol 1985; 162:1111–1119.PubMedGoogle Scholar
  152. 152.
    Trisler P, Gottesman S. Ion transcriptional regulation of genes necessary for capsular polysaccharide synthesis in Escherichia coli K-12. J Bacteriol 1984; 160:184–191.PubMedGoogle Scholar
  153. 153.
    Torres-Cabassa AS, Gottesman S. Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis. J Bacteriol 1987; 169:981–989.PubMedGoogle Scholar
  154. 154.
    Brill JA, Quinlan-Walshe C, Gottesman S. Fine-structure mapping and identification of two regulators of capsule synthesis in Escherichia coli K-12. J Bacteriol 1988; 170:2599–2611.PubMedGoogle Scholar
  155. 155.
    Stout V, Gottesman S. ResB and ResC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol 1990; 172:659–669.PubMedGoogle Scholar
  156. 156.
    Takeda S, Fujisawa Y, Matsubara M et al. A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC→YojN→RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol 2001; 40:440–450.PubMedCrossRefGoogle Scholar
  157. 157.
    Erickson KD, Detweiler CS. The Res phosphorelay system is specific to enteric pathogens/commensals and activates ydel, a gene important for persistent Salmonella infection of mice. Mol Microbiol 2006: 62:883–894.PubMedCrossRefGoogle Scholar
  158. 158.
    Davalos-Garcia M, Conter A, Toesca I et al. Regulation of osmC gene expression by the two-component system resB-resC in Escherichia coli. J Bacteriol 2001; 183:5870–5876.PubMedCrossRefGoogle Scholar
  159. 159.
    Sturny R, Cam K, Gutierrez C et al. NhaR and ResB independently regulate the osmCp1 promoter of Escherichia coli at overlapping regulatory sites. J Bacteriol 2003; 185:4298–4304.PubMedCrossRefGoogle Scholar
  160. 160.
    Wehland M, Bernhard F. The ResAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem 2000; 275:7013–7020.PubMedCrossRefGoogle Scholar
  161. 161.
    Wehland M, Kiecker C, Coplin DL et al. Identification of an RcsA/ResB recognition motif in the promoters of exopolysaccharide biosynthetic operons from Erwinia amylovora and Pantoca stewartii subspecies stewartii. J Biol Chem 1999; 274:3300–3307.PubMedCrossRefGoogle Scholar
  162. 162.
    Ebel W, Trempy JE. Escherichia coli ResA, a positive activator of colanic acid capsular polysaccharide synthesis, functions to activate its own expression. J Bacteriol 1999; 181:577–584.PubMedGoogle Scholar
  163. 163.
    Kuo MS, Chen KP, Wu WF. Regulation of ResA by the ClpYQ (HslUV) protease in Escherichia coli. Microbiology 2004; 150:437–446.PubMedCrossRefGoogle Scholar
  164. 164.
    Pristovsek P, Sengupta K, Lohr F et al. Structural analysis of the DNA-binding domain of the Erwinia amylovora ResB protein and its interaction with the RcsAB box. J Biol Chem 2003; 278:17752–17759.PubMedCrossRefGoogle Scholar
  165. 165.
    Virlogeux I, Waxin H, Ecobichon C et al. Characterization of the rcsA and rcsB genes from Salmonella typhi: rcsB through tviA is involved in regulation of Vi antigen synthesis. J Bacteriol 1996; 178:1691–1698.PubMedGoogle Scholar
  166. 166.
    Arricau N, Hermant D, Waxin H et al. The RcsB-RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity. Mol Microbiol 1998; 29:835–850.PubMedCrossRefGoogle Scholar
  167. 167.
    Gervais FG, Drapeau GR. Identification, cloning and characterization of rcsF, a new regulator gene for exopolysaccharide synthesis that suppresses the division mutation ftsZ84 in Escherichia coli K-12. J Bacteriol 1992; 174:8016–8022.PubMedGoogle Scholar
  168. 168.
    Majdalani N, Heck M, Stout V et al. Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli. J Bacteriol 2005; 187:6770–6778.PubMedCrossRefGoogle Scholar
  169. 169.
    Castanie-Cornet MP, Cam K, Jacq A. RcsF is an outer membrane lipoprotein involved in the RcsCDB phosphorelay signaling pathway in Escherichia coli. J Bacteriol 2006; 188:4264–4270.PubMedCrossRefGoogle Scholar
  170. 170.
    Cano DA, Dominguez-Bernal G, Tierrez A et al. Regulation of capsule synthesis and cell motility in Salmonella enterica by the essential gene igaA. Genetics 2002; 162:1513–1523.PubMedGoogle Scholar
  171. 171.
    Dominguez-Bernal G, Pucciarelli MG, Ramos-Morales F et al. Repression of the RcsC-YojN-RcsB phosphorelay by the IgaA protein is a requisite for Salmonella virulence. Mol Microbiol 2004; 53:1437–1449.PubMedCrossRefGoogle Scholar
  172. 172.
    Parker CT, Kloser AW, Schnaitman CA et al. Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12. J Bacteriol 1992; 174:2525–2538.PubMedGoogle Scholar
  173. 173.
    Clavel T, Lazzaroni JC, Vianney A et al. Expression of the tolQRA genes of Escherichia coli K-12 is controlled by the RcsC sensor protein involved in capsule synthesis. Mol Microbiol 1996; 19:19–25.PubMedCrossRefGoogle Scholar
  174. 174.
    Mouslim C, Groisman EA. Control of the Salmonella ugd gene by three two-component regulatory systems. Mol Microbiol 2003; 47:335–344.PubMedCrossRefGoogle Scholar
  175. 175.
    Mouslim C, Latifi T, Groisman EA. Signal-dependent requirement for the co-activator protein RcsA in transcription of the RcsB-regulated ugd gene. J Biol Chem 2003; 278:50588–50595.PubMedCrossRefGoogle Scholar
  176. 176.
    Ebel W, Vaughn GJ, Peters HK et al. Inactivation of mdoH leads to increased expression of colanic acid capsular polysaccharide in Escherichia coli. J Bacteriol 1997; 179:6858–6861.PubMedGoogle Scholar
  177. 177.
    Kelley WL, Georgopoulos C. Positive control of the two-component RcsC/B signal transduction network by DjlA: a member of the DnaJ family of molecular chaperones in Escherichia coli. Mol Microbiol 1997; 25:913–931.PubMedCrossRefGoogle Scholar
  178. 178.
    Gottesman S, Stout V. Regulation of capsular polysaccharide synthesis in Escherichia coli K12. Mol Microbiol 1991; 5:1599–1606.PubMedCrossRefGoogle Scholar
  179. 179.
    Sledjeski DD, Gottesman S. Osmotic shock induction of capsule synthesis in Escherichia coli K-12. J Bacteriol 1996; 178:1204–1206.PubMedGoogle Scholar
  180. 180.
    Conter A, Sturny R, Gutierrez C et al. The RcsCB His-Asp phosphorelay system is essential to overcome chlorpromazine-induced stress in Escherichia coli J Bacteriol 2002; 184:2850–2853.PubMedCrossRefGoogle Scholar
  181. 181.
    Hagiwara D, Sugiura M, Oshima T et al. Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 2003; 185:5735–5746.PubMedCrossRefGoogle Scholar
  182. 182.
    Ferrieres L, Clarke DJ. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol 2003; 50:1665–1682.PubMedCrossRefGoogle Scholar
  183. 183.
    Sailer FC, Meberg BM, Young KD. beta-Lactam induction of colanic acid gene expression in Escherichia coli. FEMS Microbiol Lett 2003; 226:245–249.PubMedCrossRefGoogle Scholar
  184. 184.
    Chatterjee A, Chun WA, Chatterjee AK. Isolation and characterization of rcsA like gene of Erwina amylovora that activates extracellular polysaccharide production in Erwinia species, Escherichia coli and Salmonella typhimurium. Mol Plant Microbe Interact 1990; 3:144–148.Google Scholar
  185. 185.
    Bereswill S, Geider K. Characterization of the rcsB gene from Erwinia amylovora and its influence on exoploysaccharide synthesis and virulence of the fire blight pathogen. J Bacteriol 1997; 179:1354–1361.PubMedGoogle Scholar
  186. 186.
    Stevenson G, Andrianopoulos K, Hobbs M et al. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 1996; 178:4885–4893.PubMedGoogle Scholar
  187. 187.
    Delgado MA, Mouslim C, Groisman EA. The PmrA/PmrB and RcsC/YojN/RcsB systems control expression of the Salmonella O-antigen chain length determinant. Mol Microbiol 2006; 60:39–50.PubMedCrossRefGoogle Scholar
  188. 188.
    Gervais FG, Phoenix P, Drapeau GR. The rcsB gene, a positive regulator of colanic acid biosynthesis in Escherichia coli, is also an activator of ftsZ expression. J Bacteriol 1992; 174:3964–3971.PubMedGoogle Scholar
  189. 189.
    Carballes F, Bertrand C, Bouche JP et al. Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC-rcsB. Mol Microbiol 1999; 34:442–450.PubMedCrossRefGoogle Scholar
  190. 190.
    Francez-Charlot A, Laugel B, Van Gemert A et al. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 2003; 49:823–832.PubMedCrossRefGoogle Scholar
  191. 191.
    Vianney A, Jubelin G, Renault S et al. Escherichia coli tol and rcs genes participate in the complex network affecting curli synthesis. Microbiology 2005; 151:2487–2497.PubMedCrossRefGoogle Scholar
  192. 192.
    Prigent-Combaret C, Prensier G, Le Thi TT et al. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2000; 2:450–464.PubMedCrossRefGoogle Scholar
  193. 193.
    Fredericks CE, Shibata S, Aizawa S et al. Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay. Mol Microbiol 2006; 61:734–747.PubMedCrossRefGoogle Scholar
  194. 194.
    Clarke DJ, Joyce SA, Toutain CM et al. Genetic analysis of the RcsC sensor kinase from Escherichia coli K-12. J Bacteriol 2002; 184:1204–1208.PubMedCrossRefGoogle Scholar
  195. 195.
    Majdalani N, Hernandez D, Gottesman S. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 2002; 46:813–826.PubMedCrossRefGoogle Scholar
  196. 196.
    Garcia-Calderon CB, Garcia-Quintanilla M, Casadesus J et al. Virulence attenuation in Salmonella enterica rcsC mutants with constitutive activation of the Rcs system. Microbiology 2005; 151:579–588.PubMedCrossRefGoogle Scholar
  197. 197.
    Majdalani N, Chen S, Murrow J et al. Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol Microbiol 2001; 39:1382–1394.PubMedCrossRefGoogle Scholar
  198. 198.
    Peterson CN, Carabetta VJ, Chowdhury T et al. LrhA regulates rpoS translation in response to the Rcs phosphorelay system in Escherichia coli. J Bacteriol 2006; 188:3175–3181.PubMedCrossRefGoogle Scholar
  199. 199.
    Tobe T, Ando H, Ishikawa H et al. Dual regulatory pathways integrating the RcsC-RcsD-RcsB signalling system control enterohaemorrhagic Escherichia coli pathogenicity. Mol Microbiol 2005; 58:320–333.PubMedCrossRefGoogle Scholar
  200. 200.
    Venecia K, Young GM. Environmental regulation and virulence attributes of the Ysa type III secretion system of Yersinia enterocolitica biovar 1B. Infect Immun 2005; 73:5961–5977.PubMedCrossRefGoogle Scholar
  201. 201.
    Mouslim C, Delgado M, Groisman EA. Activation of the RcsC/YojN/RcsB phosphorelay system attenuates Salmonella virulence. Mol Microbiol 2004; 54:386–395.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Dawn M. MacRitchie
    • 1
  • Daelynn R. Buelow
    • 1
  • Nancy L. Price
    • 1
  • Tracy L. Raivio
    • 1
    Email author
  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations