An Historical Introduction to Porphyrin and Chlorophyll Synthesis

  • Michael R. Moore
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Porphyrins are the extroverts of chemistry. Bright purple and fluorescent, they are used biologically in the processes of energy capture and utilization. Porphyrins are the key to life. It has been suggested that abiotic formation of porphyrins, in particular uroporphyrinogen would have provided the first pigments necessary for the eventual synthesis of the chlorophylls. This would have facilitated the emergence of simple photosynthetic organisms in primordial earth through enhanced efficiency of energy capture and utilisation (Fig. 1).


Chlorophyll Synthesis Harderian Gland Porphyria Cutanea Tarda Acute Intermittent Porphyria Acute Porphyria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lecanu LR. Études chimiques sur le sang humain (cited by Berzelius, 1840), 4∘ Paris No. 395. 1837.Google Scholar
  2. 2.
    Schultz JH. Ein fall von pemphigus leprosus, complicirt durch lepra visceralis. Griefswald: Inaugural Diss, 1874.Google Scholar
  3. 3.
    Baumstark F. Zwei pathologische Harnfarbstoff. Pflugers Arch ges Physiol 1874; 9:568–584.Google Scholar
  4. 4.
    Garrod AE. Inborn Errors of Metabolism. 2nd ed. London: Hodder and Stoughton, 1923.Google Scholar
  5. 5.
    Biosynthesis of tetrapyrroles and of corrinoids. In: Florkin M, Stotz EH, eds. Comprehensive Biochemistry: A History of Biochemistry. Amsterdam: Elsevier, 1979:193–238.Google Scholar
  6. 6.
    Moore MR, McColl KEL, Goldberg A. The porphyries. Diabet Metab 1979; 5:323–336.Google Scholar
  7. 7.
    Hodgson GW, Baker BL. Porphyrin abiogenesis from pyrrole and formaldehyde under simulated geochemical conditions. Nature 1967; 216:29–32.PubMedGoogle Scholar
  8. 8.
    Mercer-Smith JA, Mauzerall DC. Photochemistry of porphyrins-a model for the origin of photosynthesis. Photochem Photobiol 1984; 39:397–405.PubMedGoogle Scholar
  9. 9.
    Bonnett R, Czechowski F. Metalloporphyrins in coal-gallium porphyrins in bituminous coal. J Lab Chem Sci 1984; 1:125–132.Google Scholar
  10. 10.
    Hodgson GW. Cosmochemical evolution of large organic molecules-illustrative laboratory simulations for porphyrins. Ann NY Acad Sci 1972; 194:86–97.PubMedGoogle Scholar
  11. 11.
    Barnes CR. On the food of green plants. Bot Gaz 1893; 18:403–411.Google Scholar
  12. 12.
    Gest HO. History of the word photosynthesis and evolution of its definition. Photosynthesis Research 2002; 73:7–10.PubMedGoogle Scholar
  13. 13.
    Pelletier F, Caventou JB. Ann Chim Phys 1818; 9(2):194; (J Pharm 1818; 3:486).Google Scholar
  14. 14.
    Rüdiger W. Chlorophyll metabolism: From outer space down to the molecular level. Phytochemistry 1997; 46:1151–1167.Google Scholar
  15. 15.
    Fischer H, Orth H. Die chemie des Pyrrols. Leipzig: Adademische Verlagsgesellschaft, 1940.Google Scholar
  16. 16.
    Woodward RB. The total synthesis of chlorophyll. Pure Appl Chem 1960; 2:383–404.Google Scholar
  17. 17.
    Beale SI, Gough SP, Granick S. Biosynthesis of δ-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. Proc Natl Acad Sci USA 1975; 72:2719–2723.PubMedGoogle Scholar
  18. 18.
    Von Wettstein D, Gough S, Kannangara CG. Chlorophyll Biosynthesis. The Plant Cell 1995; 7:1039–1057.Google Scholar
  19. 19.
    Battersby AR. Biosynthesis of the pigments of life. Proc R Soc Lond B 1985; 225:1–26.PubMedGoogle Scholar
  20. 20.
    Berzelius JJ. Lehrbuch der Chemie. Arnoldische Buchhandlung. Leipzig: Dresden, 1840:67–69.Google Scholar
  21. 21.
    Scherer J. Chemische-physiologische Untersuchungen. Ann Chem Phar 1841; 40:1–64.Google Scholar
  22. 22.
    Mülder GH. Über eisenfreises hämatin. J Prakt Chem 1844; 32:186–197.Google Scholar
  23. 23.
    Thudichum JLW. Report on researches intended to promote an improved chemical identification of disease. 10th Report of The Medical Officer. London: Privy Council, H.M.S.O., 1867:152–233, (App. 7).Google Scholar
  24. 24.
    Hoppe-Seyler F. Das hämatin. Tübinger Med Chem Untersuchungen 1871; 4:523–533.Google Scholar
  25. 25.
    MacMunn CA. Further researches into the colouring-matters of human urine, with an account of their artificial production from bilirubin, and from haematin. Proc Roy Soc Lond Ser B 1880; 31:206–237.Google Scholar
  26. 26.
    Hoppe-Seyler F. Über das chlorophyll der pflanzen. Hoppe-Seyler’s Z Physiol Chem 1879; 205:193–197.Google Scholar
  27. 27.
    Church AH. Researches in Turacin an animal pigment containing copper 11. Philos Trans Roy Soc Lond Ser A 1892; 183:511–530.Google Scholar
  28. 28.
    Soret JL. Récherches sur l’absorption des rayons ultraviolets par diverses substances. Arch Sci Phys Nat 1883; 10:430–485.Google Scholar
  29. 29.
    Günther H. Die hämatoporphyrie. Deutsch Arch Klin Med 1911; 105:89–146.Google Scholar
  30. 30.
    Hammarsten O. Tva fall af hamatoporphyrin i urinen. Uppsala Lak For Forh 1891; 26:259–288.Google Scholar
  31. 31.
    Stokvis BJ. Zur pathogenese der hamatoporphyrinurie. Z Klin Med 1895; 28:1–9.Google Scholar
  32. 32.
    Salkowski E. Über vorkommen und nachweis des hämatoporphyrins in härn. Hoppe-Seyler’s Z Physiol Chem 1891; 15:286–309.Google Scholar
  33. 33.
    Garrod A. On the occurrence and detection of haematoporphyrin in the urine. J Physiol 1892; 13:598–620.PubMedGoogle Scholar
  34. 34.
    Fischer H. Über das urinporphyrin. 1. Mitteilung. Hoppe-Seyler’s Z Physiol Chem 1915; 95:34–60.Google Scholar
  35. 35.
    Nencki M, Sieber N. Über das hämatoporphyrin. Arch Exp Pathol Pharmacol 1888; 24:430–446.Google Scholar
  36. 36.
    Saillet H. De l’urospectrine (ou urohematoporphyrine urinale normlae). Rev Med 1896; 16:542–552.Google Scholar
  37. 37.
    Fischer H, Zerweck W. Über uroporphyrinogen heptamethylester und eine neue uberfuhrung von uro-koproporphyrin. Hoppe-Seyler’s Z Physiol Chem 1924; 137:242–264.Google Scholar
  38. 38.
    Laidlaw PP. Some observations on blood pigments. J Physiol 1904; 31:464–472.PubMedGoogle Scholar
  39. 39.
    Küster W. Beitrage zur Kenntnis des Bilirubins und Hämins. Hoppe Seyler’s Z Physiol Chem 1912; 82:463–483.Google Scholar
  40. 40.
    Willstätter R, Mieg W. Untersuchungen über das chlorophyll. Liebigs Ann Chem 1906; 350:1–47.Google Scholar
  41. 41.
    Willstätter R, Stoll A. Untersuchungen über chlorophyll. Methoden und ergebnisse. Berlin: Springer, 1913:424.Google Scholar
  42. 42.
    Fischer H, Hilmer H, Lindner F et al. Chemische befunde bei einem fall von porphyrie (Petry). Hoppe-Seyler’s Z Physiol Chem 1925; 150:44–101.Google Scholar
  43. 43.
    Borst M, Königsdörffer H. Untersuchungen uber porphyrie mit besonderer berucksichtigung der Porphyrie Congenita. Leipzig: Hirzel, 1929.Google Scholar
  44. 44.
    Schumm O. Über die naturlichen porphyrine. Z Physiol Chem 1924; 126:169–202.Google Scholar
  45. 45.
    Fischer H, Orth H. Chemie des Pyrrols. Leipzig: Acad Verlag, 1937.Google Scholar
  46. 46.
    Sachs P. Ein fall von akuter porphyrie mit hochgradiger muskelatrophied. Klin Wschr 1931; 10:1123–1125.Google Scholar
  47. 47.
    Waldenström J, Vahlquist BC. Studien uber die entstehung der roten harnpigmente (uroporphyrin und porphobilin) bein der akuten porphyrie aus ihrer farblosen Vorstufe (porphobilinogen). Hoppe-Seyler’s Z Physiol Chem 1939; 260:189–209.Google Scholar
  48. 48.
    Shemin D, Russell CS, Abramsky T. The succinate glycine cycle. 1. The mechanism of pyrrole synthesis. J Biol Chem 1955; 215:613.PubMedGoogle Scholar
  49. 49.
    Muir HM, Neuberger A. The biogenesis of porphyrins. 2. The origin of the methyne carbon atoms. Biochem J 1950; 47:97–104.PubMedGoogle Scholar
  50. 50.
    Shemin D, Russell CS. Succinate glycine cycle. J Amer Chem Soc 1953; 75:4873–4875.Google Scholar
  51. 51.
    Neuberger A, Scott JJ. Aminolaevulinic acid and porphyrin synthesis. Nature 1953; 172:1093–1094.PubMedGoogle Scholar
  52. 52.
    Falk JE, Dresel EIB, Rimington C. Porphobilinogen as a porphyrin precursor and interconversion of porphyrins in a tissue system. Nature 1953; 172:292.PubMedGoogle Scholar
  53. 53.
    Westall RG. Isolation of porphobilinogen from the urine of a patient with acute porphyria. Nature 1952; 170:614.PubMedGoogle Scholar
  54. 54.
    Cookson GH, Rimington C. Porphobilinogen. Biochem J 1954; 57:476–484.PubMedGoogle Scholar
  55. 55.
    Kast A. Über die art der darreichung und Verordnung des sulfonals. Ther Mh 1888; 11:316–319.Google Scholar
  56. 56.
    Stokvis BJ. Over twee zeldsame kleurstoffen in urine van zicken. Ned Tijds Geneesk 1889; 13:409–417.Google Scholar
  57. 57.
    Harley V. Two fatal cases of an unusual form of nerve disturbance associated with red urine, probably due to defective tissue oxidation. Brit Med J 1890; 11:1169–1170.Google Scholar
  58. 58.
    Ranking JE, Pardington GL. Two cases of haematoporphyrin in the urine. Lancet 1890; ii:607–609.Google Scholar
  59. 59.
    Dobrschansky M. Einiges uber malonal. Wiener Med Presse 1906; 47:2145.Google Scholar
  60. 60.
    De Matteis F. Disturbances of liver metabolism caused by drugs. Pharm Rev 1967; 19:523–550.PubMedGoogle Scholar
  61. 61.
    Schmid R, Schwartz S. Experimental porphyria: Hepatic type produced by sedormid. Proc Soc Exp Biol Med 1952; 81:685–689.PubMedGoogle Scholar
  62. 62.
    Goldberg A, Rimington C. Diseases of Porphyrin Metabolism. Springfield: Thomas, 1962:1:11.Google Scholar
  63. 63.
    Solomon HM, Figge FHJ. Disturbance in porphyrin metabolism caused by feeding diethyl-l,4-dihydro-2,4,6-trimethylpyridine-3,5-dicarboxylate. Proc Soc Exp Biol Med 1959; 100:583–586.PubMedGoogle Scholar
  64. 64.
    Tephly TR, Coffman BL, Ingall G et al. Identification of N-methylprotoporphrin IX in livers of untreated mice and mice treated with 3,5-diethoxycarbonyl-l,4-dihydrocollidine-source of the methyl group. Arch Biochem Biophys 1981; 212:120–126.PubMedGoogle Scholar
  65. 65.
    De Matteis F, Marks GS. The effect of N-methylprotoporphyrin and succinylacetone on the regulation of haem biosynthesis in checken hepatocytes in culture. FEBS Lett 1983; 159:127–131.PubMedGoogle Scholar
  66. 66.
    Cam C. Report on few cases of congenital porphyria. Nester (Instanbul) 1957; 1:2–6.Google Scholar
  67. 67.
    Elder GH. Acquired disorders of haem synthesis. Essays Med Biochem 1976; 2:75–114.Google Scholar
  68. 68.
    Strik JJTWA, Koeman JH. Chemical Porphyria in Man. Amsterdam: Elsevier North-Holland, 1979.Google Scholar
  69. 69.
    De Matteis F, Rimington C. Disturbance of porphyrin metabolism caused by griseofulvin in mice. Brit J Dermatol 1963; 75:91–104.Google Scholar
  70. 70.
    Günther H. Die bedeutung der hamatoporphyrinurie in der physiologie und pathologic. Ergebnisse der Allgemienen Pathol Anat 1922; 20:608–764.Google Scholar
  71. 71.
    McCall-Anderson T. Hydroa aestivale in two brothers, complicated with the presence of hematoporphyrin in the urine. Brit J Dermatol 1898; 10:1–4.Google Scholar
  72. 72.
    Meyer-Betz F. Untersuchungen über die biologische (photodynamische) Wirkung des hämatoporphyrins und anderen derivate des blut und gallenfarbstoffs. Deutsch Arch Klin Med 1913; 112:476–503.Google Scholar
  73. 73.
    Hausmann W. Uber die sensibilisierende wirkung tierischer farbstoffe. Anwendung Biochem Z 1908; 14:275–283.Google Scholar
  74. 74.
    Hausmann W. Die sensibilisierende wirkung des hamatoporphyrins. Biochem Z 1911; 30:276–316Google Scholar
  75. 75.
    Waldenström J. Studien uber porphyries. Acta Med Scand Suppl 1937; 82:120.Google Scholar
  76. 76.
    Watson CJ. The problem of porphyria-some facts and questions. N Engl J Med 1960; 263:1205–1215.PubMedGoogle Scholar
  77. 77.
    Eales L. Clinical chemistry of the porphyries. In: Dolphin D, ed. The Porphyrias. New York: Academic Press, 1979:665–793.Google Scholar
  78. 78.
    Yeung-Laiwah AC, Moore MR, Goldberg A. Pathogenesis of acute porphyria. Quart J Med 1987; 63:377–392.PubMedGoogle Scholar
  79. 79.
    Granick S. Porphyrin synthesis in erythrocytes. 1. Formation of 5-aminolaevulinic acid in erythrocytes. J Biol Chem 1963; 232:1101–1117.Google Scholar
  80. 80.
    Jackson AH, Games DE, Couch P et al. Conversion of coproporphyrinogen III to protoporphyrin IX. Enzyme 1974; 17:81–87.PubMedGoogle Scholar
  81. 81.
    Brodie MJ, Moore MR, Goldberg A. Enzyme abnormalities in the porphyrias. Lancet 1977; ii:699–701.Google Scholar
  82. 82.
    Jordan PM, Burton G, Nordlov H et al. Preuroporphyrinogen-a substrate for uroporphyrinogen III cosynthetase. J Chem Soc Chem Comm 1979; 204–205.Google Scholar
  83. 83.
    Battersby AR, Fookes CJR, Matcham GWJ et al. Biosynthesis of the pigments of life: Formation of the macrocycle. Nature 1980; 285:17–21.PubMedGoogle Scholar
  84. 84.
    Waldenström J. Studies on the incidence and heredity of acute porphyria in Sweden. Acta Genet 1956; 6:122–131.PubMedGoogle Scholar
  85. 85.
    Prunty FTG. Acute porphyria-some properties of porphobilinogen. Biochem J 1945; 39:446–451.PubMedGoogle Scholar
  86. 86.
    Gray CH. Porphyria. Arch Intern Med 1950; 85:459–470.Google Scholar
  87. 87.
    Haeger G. Urinary 5-aminolaevulinic acid and porphobilinogen in different types of porphyria. Lancet 1958; ii:606–607.Google Scholar
  88. 88.
    Moore MR, McColl KEL, Rimington C et al. Disorders of Porphyrin Metabolism. New York: Plenum, 1987.Google Scholar
  89. 89.
    Day RS, Eales L, Meissner D. Coexistent variegate porphyria and porphyria cutanea tarda. N Engl J Med 1982; 307:36–41.PubMedGoogle Scholar
  90. 90.
    Meissner PN, Sturrock ED, Moore MR et al. Protoporphyrinogen oxidase, porphobilinogen-deaminase and uroporphyrinogen decarboxyiase in variegate porphyria. Biochem Soc Trans 1985; 13:203–204.Google Scholar
  91. 91.
    Moore MR, Goldberg A. Health implications of the hemopoietic effects of lead. In: Mahaffey K, ed. Dietary and Environmental Lead: Human Health Effects. Amsterdam: Elsevier, 1985.Google Scholar
  92. 92.
    Hift RJ, Meissner PN, Todd G et al. Homozygous variegate porphyria: An evolving clinical syndrome. Postgrad Med J 1993; 69:781–786.PubMedGoogle Scholar
  93. 93.
    Campbell K. A case of haematoporphyrinuria. J Men Sci 1898; 44:305–313.Google Scholar
  94. 94.
    Erbslöh W. Zur pathologie und pathologischen anatomic der toxischer polyneuritis nach sulfonalgebrauch. Deutsch Z Nervenheik 1903; 23:197–204.Google Scholar
  95. 95.
    Mason VR, Courville C, Ziskind E. The porphyrins in human disease. Medicine 1933; 12:355–439.Google Scholar
  96. 96.
    Copeman SM. Porphyrinuria. Proc Pathol Soc Lond Lancet 1891; i: 197.Google Scholar
  97. 97.
    Brugsch J. Porphyrine. J Ambrosius Barth, Leipzig1959.Google Scholar
  98. 98.
    Tishler PV, Woodward B, O’Connor J et al. High prevalence of intermittent acute porphyria in a psychiatric in-patient population. Amer J Psych 1985; 142:1430–1436.Google Scholar
  99. 99.
    Irvine DG, Wetterberg L. Kryptopyrrole-like substance in acute intermittent porhyria. Lancet 1972; 2:1201.PubMedGoogle Scholar
  100. 100.
    Graham DJM, Brodie MJ, McColl KEL et al. Quantitation of 3-ethyl-5-hydroxy-4,5-dimethyl-A3-pyrrolin-2-one in the urine of patients with acute intermittent porphyria. Eur J Clin Invest 1979; 9:40–53.Google Scholar
  101. 101.
    Graham DJM, Moore MR, Thompson GG et al. The effect of 4-ethyl-5hydroxy-3,5-dimethyl-A3 pyrrolin-2-one on porphyrin synthesis in the rat. Biochem Soc Trans 1976; 4:1089–1091.PubMedGoogle Scholar
  102. 102.
    Moore MR, Graham DJM. Monopyrroles in porphyria psychosis and lead exposure. Internat J Biochem 1980; 12:827–832.Google Scholar
  103. 103.
    Gagey PL. Un cas d’hémoglobinurie en cours d’un xeroderma pigmentosum. Thèse de Paris, 1896.Google Scholar
  104. 104.
    Vollmer E. Über hereditare syphilis und haematoporphyrinurie. Arch Dematol and Syphilogy (Berlin) 1903; 65:221–234.Google Scholar
  105. 105.
    Schmid R, Schwartz S, Watson CJ. Porphyrin content of bone marrow and liver in the various forms of porphyria. Arch Intern Med 1954; 93:167–190.Google Scholar
  106. 106.
    Waldenström J. The porphyries as inborn errors of metabolism. Amer J Med 1957; 22:758–773.PubMedGoogle Scholar
  107. 107.
    Tio TH. Beschouwingen over de porphyria cutanea tarda. Doctoral Thesis. Amsterdam: 1956.Google Scholar
  108. 108.
    Moore MR, McColl KEL, Goldberg A. The effects of alcohol on porphyrin biosynthesis and metabolism. In: Rosalki SB, ed. Clinical Biochemistry of Alcoholism. Oxford: Churchill Livingstone: 1984:161–187.Google Scholar
  109. 109.
    Orten JM, Doehr SA, Bond C et al. Urinary excretion of porphyrins and porphyrin intermediates in human alcoholics. Quart J Studies on Alcohol 1963; 24:598–609.Google Scholar
  110. 110.
    Cetingil AI, Ozen MA. Toxic porphyria. Blood 19601; 16:1002–1010.Google Scholar
  111. 111.
    Pinol-Aguade J, Castells A, Indocochea A et al. A case of biochemically unclassifiable hepatic porphyria. Brit J Dermatol 1969; 81:270–275.Google Scholar
  112. 112.
    Smith SG. Hepatoerythropoietic porphyria. Sem Dermatol 1986; 5:125–137.Google Scholar
  113. 113.
    Magnus IA, Jarret A, Prankerd TAJ et al. Erythropoietic protoporphyria: A new porphyria syndrome with solar urticaria due to protoporphyrinaemia. Lancet 1961; ii:448–451.Google Scholar
  114. 114.
    Langhof H, Müller H, Rietschel I. Untersuchungen zur familiären protoporphyrinamischen lichurticaria. Arch Klin Exp Dermatol 1961; 212:506–518.PubMedGoogle Scholar
  115. 115.
    Kosenow W, Treibs A. Lichtuberempfindlichtkeit und porphyrinamie. Z Kinderkeikunde 1953; 73:82–92.Google Scholar
  116. 116.
    Murphy GM, Hawk JLM, Magnus IA. Late-onset erythropoietic protoporphyria with unusual cutaneous features. Arch Dermatol 1985; 121:1309–1312.PubMedGoogle Scholar
  117. 117.
    Brouwier L. Quelques observations recueilles dans le service d’inspection de I’abbatoir de Liege: Alteration des os. Echo Vet (Liege) 1884; 271–273.Google Scholar
  118. 118.
    Tappeiner H. Untersuchung pigmentirter knochen vom schweine. Sitzungserber Ges Morph Physiol München 1885; 1:38–41.Google Scholar
  119. 119.
    Mosselman D, Hebrant A. Coloration abnormale du squelette chez une bête de boucherie. Ann Med Vet 1898; 47:201–206.Google Scholar
  120. 120.
    Ingier A. Ochronose bei tieren. Zieglers Beirage zur Pathol Anat 1911; 51:199–208.Google Scholar
  121. 121.
    Schmey M. Über ochronose bei mensch und tier. Frankfurter Z Pathol 1913; 12:218–328.Google Scholar
  122. 122.
    Möller-Sorenson A. On haemochromatosis ossium (Ochronose) has husdyrene. In: Den KGL, ed. Veterinaer-Og Landbohojskoles Aarsskrift. Copenhagen: 1920:122–139.Google Scholar
  123. 123.
    Witte H. Ein fall von ochronose bei einem bullen und einem von ihre stammenden kalbe. Z Fleisch U Milchhyg 1914; 24:334.Google Scholar
  124. 124.
    Rimington C. Some cases of congenital porphyrinuria in cattle-chemical studies upon living animals and postmortem material. Onderstepoort J Vet Sci Animal Ind 1936; 7:567–609.Google Scholar
  125. 125.
    Poulson V. Om ochronotiske tilstande hos mennesker og. dyr. (on ochronotic states in man and animals). Med. Diss., University of Copenhagen, 1910.Google Scholar
  126. 126.
    Clare T, Stephens EH. Congenital porphyria in pigs. Nature (London) 1944; 153:252–253.Google Scholar
  127. 127.
    Jørgensen SK. Congenital porphyria in pigs. Brit Vet J 1959; 115:160–175.Google Scholar
  128. 128.
    Jørgensen SK, With TK. Congenital porphyria in animals other than man. In: Rook AJ, Walton GS, eds. Comparative Physiology and Pathology of the Skin. Oxford: Blackwell, 1965:317–331.Google Scholar
  129. 129.
    Tobias G. Congenital porphyria in a cat. J Amer Vet Med Assoc 1964; 145:462–463.Google Scholar
  130. 130.
    Owen LN, Stevenson DE, Keilin J. Abnormal pigmentation and fluorescence in canine teeth. Res Vet Sci 1962; 3:139–146.Google Scholar
  131. 131.
    Vannotti A. Porphyrins—Their Biological and Chemical Importance. London: Hilger and Watts, 1954.Google Scholar
  132. 132.
    Lascelles J. Tetrapyrrole Biosynthesis and Its Regulation. New York: Benjamin, 1964.Google Scholar
  133. 133.
    Rimington C. Porphyrins. Endeavour 1955; 14:126–135.Google Scholar
  134. 134.
    Turner WJ. Studies on Porphyria. 1. Observations on the fox squirrel (Sciurus niger). J Biol Chem 1937; 118:519–530.Google Scholar
  135. 135.
    Levin EY, Flyger V. Uroporphyrinogen, III. Cosynthetase activity in the fox squirrel (Sciurus niger). Science 1971; 174:59–60.PubMedGoogle Scholar
  136. 136.
    Kennedy GY. Pigments of marine invertebrates. Adv Mar Biol 1979; 16:309–381.Google Scholar
  137. 137.
    Church AH. Researches in turacin, an animal pigment containing copper. Phil Trans R Soc 1869; 159:627–636.Google Scholar
  138. 138.
    Fischer H, Hilger J. Zur kenntnis der naturlichen porphyrine. 8 mitteilung. Uber das vorkommen von uroporphyrin (als kuppfersalz, Turacin) in den turakusvogeln und den nachweis von koproporphyrin in der hefe. Hoppe-Seyler’s Z Physiol Chem 1924; 138:49–67.Google Scholar
  139. 139.
    With TK. Porphyrins in egg shells. Biochem J 1973; 137:597–598.Google Scholar
  140. 140.
    Derrien E, Turchini J. Sur les fluoresences rouges de certains tissus on secreta animaux en lumiere ultraviolette-nouvelles observations de fluorescences rouges chez les animaux. C R Soc BW (Paris) 1925; 92:1028–1032.Google Scholar
  141. 141.
    Harder JJ. Glandula nova lacrymalis una cum ducta excretoria in cervis et damis detecta. Acta Eruditorum Lipsiae 1694; 11:49–52.Google Scholar
  142. 142.
    Brownscheidle CM, Niewenhuis RJ. Ultrastructure of the Harderian gland in male albino rats. Anat Rec 1978; 190:735–754.PubMedGoogle Scholar
  143. 143.
    Kennedy GY, Jackson AH, Kenner GW et al. Isolation, structure and synthesis of a tricarboxylic porphyrin from the Harderian glads of the rat. FEBS Lett 1970; 6:9–12.PubMedGoogle Scholar
  144. 144.
    Spike RC, Johnston HS, McGadey J et al. Quantitative studies on the effects of hormones on structure and porphyrin biosynthesis in the Harderian gland of the female golden hamster. I. The effects of ovariectomy and androgen administration. J Anat 1985; 142:59–72.PubMedGoogle Scholar
  145. 145.
    Spike RC, Johnston HS, McGadey J et al. Quantitative studies on the effects of hormones on structure and porphyrin biosynthesis in the Harderian gland of the female golden hamster. II. The time course of changes after ovariectomy. J Anat 1986; 145:67–77.PubMedGoogle Scholar
  146. 147.
    Payne AP, McGadey J, Moore MR et al. Androgenic control of the Harderian gland in the male golden hamster. J Endocr 1977; 75:73–82.PubMedGoogle Scholar
  147. 148.
    Mindegaard J. Studier verrend porphyrinsynthese og porfyrinholdige biologiske pigmentinkorns oprindelse og ultrastruktur, Afdelingen for biokemi og erneering. Danmarks Tekniske Hojskole 1976.Google Scholar
  148. 148.
    Woolley GW, Worley J. Sexual dimorphism in the Harderian gland of the hamster (Cricetus auratus). Anat Rec 1954; 118:416–417.Google Scholar
  149. 149.
    Thompson GG, Hordovatzi X, Moore MR et al. Sex differences in haem biosynthesis and porphyrin content in the Harderian gland of the golden hamster. Int J Biochem 1984; 16:849–852.PubMedGoogle Scholar
  150. 150.
    Policard A. Étude sur les aspects offerts par des tumeurs expérimentales examinées a la lumière de Wood. C R Seances Soc Biol 1924; 91:1423–1424.Google Scholar
  151. 151.
    Körbler J. Untersuchung von krebsgewebe im fluoreszenzerregenden licht. Strahlentherapie 1931; 41:510–518.Google Scholar
  152. 152.
    Schwartz S, Absolon K, Vermund H. Some relationships of porphyrins, X-rays and tumors. Univ Minnesota Med Bull 1955; 27:7–13.Google Scholar
  153. 153.
    Rassmussen-Taxdal DS, Ward GE, Figge FHJ. Fluorescence of human lymphatic and cancer tissues following high doses of intravenous hematoporphyrin derivative. Cancer 1955; 8:78–81.PubMedGoogle Scholar
  154. 154.
    Lipson RL, Baldes EJ, Olsen AM. The use of a derivative of hematoporphyrin in tumor detection. J Nat Cancer Inst 1961; 26:1–11.PubMedGoogle Scholar
  155. 155.
    Kessel D. Components of hematoporphyrin derivatives and their tumor-localizing capacity. Cancer Res 1982; 42:1703–1706.PubMedGoogle Scholar
  156. 156.
    Dougherty TJ, Potter WR, Weishaupt KR. An overview of the status of photoradiation therapy. In: Doiron TJ, Gomer CJ, eds. Porphyrin Localisation and Treatment of Tumors. New York: Alan R. lass, 1984.Google Scholar
  157. 157.
    Kessel D, Cheng ML. Biological and biophysical properties of the tumor-localizing component of hematoporphyrin derivative. Cander Res 1985; 45:3053–3057.Google Scholar
  158. 158.
    Scott JJ. The Metabolism of δ-aminolevinlate acid in CIBA Foundation Symposium on Porphyrin Biosynthesis and Metabolism. In: Wolstenholme GEW, Millar ECP, eds. London: J. and A. Churchill Ltd., 1955.Google Scholar
  159. 159.
    Peng Q, Warloe T, Berg K et al. 5-Aminolevulinic Acid-Based Photodynamic Therapy: Clinical Research and Future Challenges. Cancer 1997; 12(79):2282–2308.Google Scholar
  160. 160.
    Brown JE, Brown SB, Vernon DI. Photodynamic therapy—New light on cancer treatment. JSDC 1999; 115:249–253.Google Scholar
  161. 161.
    MacAlpine I, Hunter R. George the III and the ‘Mad Business.’ London: Penguin, 1969.Google Scholar
  162. 162.
    Röhl JCG, Warren M, Hunt D. Purple Secret: Genes. ‘Madness’ and the Royal Houses of Europe 1998.Google Scholar
  163. 163.
    Ware M. Porphyria-A royal malady. London: British Medical Association, 1968.Google Scholar
  164. 164.
    Cox TM, Jack N, Lofthouse S et al. King George 111 and porphyria: An elecental hypothesis and investigation. Lancet 2005; 366:332–335.PubMedGoogle Scholar
  165. 165.
    Arnold WN. Vincent Van Gogh: Chemicals, Crises, and Creativity. Boston: Birkhäuser, 1992.Google Scholar
  166. 166.
    Ulis L. On porphyria and the aetiology of werewolves. Proc Roy Soc Med 1964; 57:23–26.Google Scholar
  167. 167.
    Dresser N. Vampires are in the headlines, but patients pay the price. Cal Folk Soc Modesto Calif 1986.Google Scholar
  168. 168.
    Gentz J, Johansson S, Lindblad B et al. Excretion of delta-aminolaevulinic acid in hereditary tyrosinaemia. Clin Chim Acta 1969; 23:257–263.PubMedGoogle Scholar
  169. 169.
    Koskelo P. Studies of urinary coproporphyrin excretion in acute coronary diseases. Ann Med Intern Fenniae 1956.Google Scholar
  170. 170.
    Koskelo P, Heikkila J. Urinary excretion of porphyrin precursors in myocardial infarction. Acta Med Scand 1965; 178:681.PubMedGoogle Scholar
  171. 171.
    Yeung-Laiwah AC, Rapeport WG et al. Carbamazepine-induced nonhereditary acute porphyria. Lancet 1983; i:790–792.Google Scholar
  172. 172.
    Marks GS. The effects of chemicals on hepatic heme biosynthesis. TIPS 1981; 2:59–61.Google Scholar
  173. 173.
    Udagawa M, Horie Y, Hirayama C. Aberrant porphyrin metabolism in hepatocellular carcinoma. Biochem Med 1984; 31:131–139.PubMedGoogle Scholar
  174. 174.
    Tio TH, Leijnse B, Jarrett A et al. Acquired porphyria from a liver tumour. Clin Sci 1957; 16:517–527.PubMedGoogle Scholar
  175. 175.
    Lithner F, Wetterberg L. Hepatocellular carcinoma in patients with acute intermittent porphyria. Acta Med Scand 1984; 215:272–274.Google Scholar
  176. 176.
    Koskelo P, Toivonen I, Adlercreutz H. Urinary coproporphyrin isomer distribution in the Dubin-Johnson syndrome. Clin Chem 1967; 13:1006–1008.PubMedGoogle Scholar
  177. 177.
    Ben Ezzer J, Rimington C, Shani M et al. Abnormal excretion of the isomers of urinary coproporphyrin by patients with Dubin-Johnson syndrome in Israel. Clin Sci 1971; 40:17–30.PubMedGoogle Scholar
  178. 178.
    Cohen C, Kirsch RE, Moore MR. Porphobilinogen-deaminase and the synthesis of porphyrin isomers in Dubin-Johnson syndrome. S Afr Med J 1986; 70:36–39.PubMedGoogle Scholar
  179. 179.
    Lannaec RTM. Traite sur l’auscultation mediate. 4th ed. Chaude Paris 1831.Google Scholar
  180. 180.
    Behrend B. Uber endoglobulare einschlusse volker blutkorperchen. Deutsch Med Wschr 1899; 25:254.Google Scholar
  181. 181.
    Duesberg R. Über die anämien — 1. Porphyrie und erythropoese. Arch Exp Pathol 1931; 162:249.Google Scholar
  182. 182.
    Liebig NS. Uber die experimentelle Bleihämatoporphyrie. Arch Exp Pathol Pharmacol 1927; 125:16–27.Google Scholar
  183. 183.
    Grotepass W. Zur kenntnis des im harn auftretenden porphyrins bei bleivergiftung. Hoppe-Seyler’s Z Physiol Chem 1932; 205:193–197.Google Scholar
  184. 184.
    Van den Bergh HAA, Grotepass W, Revers FE. Beitrag über das porphyrin in Blut und Galle. Klin Wschr 1932; 11:1534–1536.Google Scholar
  185. 185.
    Gibson KD, Neuberger A, Scott JJ. The purification and properties of delta-aminolaevulinic acid dehydratase. Biochem J 1955; 61:618–629.PubMedGoogle Scholar
  186. 186.
    Woods JS, Fowler BA. Effects of chronic arsenic exposure on hematopoietic function in adult mammalian liver. Environ Health Perspect 1977; 19:209–213.PubMedGoogle Scholar
  187. 187.
    Fowler BA, Mahaffey KR. Interactions among lead, cadmium and arsenic in relation to porhyrin excretion patterns. Environ Health Perspect 1978; 25:87–90.PubMedGoogle Scholar
  188. 188.
    Ng JC, Qi L, Moore MR. Porphyrin profiles in blood and urine as a biomarker for exposure to various arsenic species. Cell Mol Biol (Noisy-le-grand) 2002; 48:111–123.Google Scholar
  189. 189.
    Wang JP, Qi L, Zheng B et al. Porphyrins as early biomarkers for arsenic exposure in animals and humans. Cell Mol Biol (Noisy-le-grand) 2002; 48:835–843.Google Scholar
  190. 190.
    Hughes GS, Davis L. Variegate porphyria and heavy metal poisoning from ingestion of ‘moonshine’. South Med J 198; 76:1027–1029.Google Scholar
  191. 191.
    Poh-Fitzpatrick M.B. Porphyria, pseudoporphyria, pseudopseudoporphyria. Arch Dermatol 1986; 122:403–404.PubMedGoogle Scholar
  192. 192.
    Topi GC, D’Alessandro GL, De Costanza F et al. Porphyria and pseudoporphyria in hemodialized patients. Int J Biochem 1980; 12:963–967.PubMedGoogle Scholar
  193. 193.
    Kaneko J, Cornelius CE. Clinical Biochemistry of Domestic Animals. 2nd ed. Vol. 1. New York: Academic Press, 1970.Google Scholar
  194. 194.
    Lim CK, Rideout JM, Peters TJ. Pseudoporphyria associated with consumption of brewer’s yeast. Brit Med J 1984; 298:1640.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Michael R. Moore
    • 1
  1. 1.National Research Centre for Environmental ToxicologyUniversity of QueenslandBrisbaneAustralia

Personalised recommendations