Behavioural Skeletons for Component Autonomic Management on Grids

  • Marco Aldinucci
  • Sonia Campa
  • Marco Danelutto
  • Patrizio Dazzi
  • Domenico Laforenza
  • Nicola Tonellotto
  • Peter Kilpatrick

Abstract

We present behavioural skeletons for the CoreGRID Component Model, which are an abstraction aimed at simplifying the development of GCM-based selfmanagement applications. Behavioural skeletons abstract component self-managent in component-based design as design patterns abstract class design in classic OO development. As here we just wish to introduce the behavioural skeleton framework, emphasis is placed on general skeleton structure rather than on their autonomic management policies.

Keywords

components code adaptivity autonomic computing skeletons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Aldinucci and M. Danelutto. Algorithmic skeletons meeting grids. Parallel Computing, 32(7):449-462, 2006. DOI:10.1016/j.parco.2006.04.001.CrossRefGoogle Scholar
  2. [2]
    M. Aldinucci, M. Danelutto, and P. Kilpatrick. Management in distributed systems: a semi-formal approach. In A.-M. Kermarrec, L. Bouge, and T. Priol, editors, Proc. of 13th Intl. Euro-Par 2007, LNCS, Rennes, France, Aug. 2007. Springer. To appear.Google Scholar
  3. [3]
    M. Aldinucci, M. Danelutto, and M. Vanneschi. Autonomic QoS in ASSIST grid-aware components. In B. D. Martino and S. Venticinque, editors, Proc. of Intl. Euromicro PDP 2006: Parallel Distributed and network-based Processing, pages 221-230, Montbeliard, France, Feb. 2006. IEEE.Google Scholar
  4. [4]
    F. Andre, J. Buisson, and J.-L. Pazat. Dynamic adaptation of parallel codes: toward self-adaptable components for the Grid. In Proc. of the Intl. Workshop on Component Models and Systems for Grid Applications, CoreGRID series. Springer, Jan. 2005.Google Scholar
  5. [5]
    A. Andrzejak, A. Reinefeld, F. Schintke, and T. Sch utt. On adaptability in grid systems. In Future Generation Grids, CoreGRID series. Springer, Nov. 2005.Google Scholar
  6. [6]
    F. Baude, D. Caromel, and M. Morel. On hierarchical, parallel and distributed components for grid programming. In V. Getov and T. Kielmann, editors, Proc. of the Intl. Workshop on Component Models and Systems for Grid Applications, CoreGRID series, pages 97-108, Saint-Malo, France, Jan. 2005. Springer.CrossRefGoogle Scholar
  7. [7]
    J. Bosch. Superimposition: a component adaptation technique. Information & Software Technology, 41(5):257-273, 1999.CrossRefMathSciNetGoogle Scholar
  8. [8]
    M. Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel programming. Parallel Computing, 30(3):389-406, 2004.CrossRefGoogle Scholar
  9. [9]
    CoreGRID NoE deliverable series, Institute on Programming Model. Deliverable D.PM.04 - Basic Features of the Grid Component Model (assessed), Feb. 2007.Google Scholar
  10. [10]
    P.-C. David and T. Ledoux. An aspect-oriented approach for developing self-adaptive fractal components. In W. L owe and M. S udholt, editors, Proc of the 5th Intl Symposium Software on Composition (SC 2006), volume 4089 of LNCS, pages 82-97, Vienna, Austria, Mar. 2006. Springer.Google Scholar
  11. [11]
    S. Gorlatch and J. D unnweber. From grid middleware to grid applications: Bridging the gap with HOCs. In V. Getov, D. Laforenza, and A. Reinefeld, editors, Future Generation Grids, CoreGRID series. Springer, Nov. 2005.Google Scholar
  12. [12]
    K. Kennedy et al. Toward a framework for preparing and executing adaptive Grid programs. In Proc. of NSF Next Generation Systems Program Workshop (IPDPS), 2002.Google Scholar
  13. [13]
    J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE Computer, 36(1):41-50, 2003.Google Scholar
  14. [14]
    J. Misra and W. R. Cook. Computation orchestration: A basis for a wide-area computing. Software and Systems Modeling, 2006. DOI 10.1007/s10270-006-0012-1.Google Scholar
  15. [15]
    Next Generation GRIDs Expert Group. NGG3, Future for European Grids: GRIDs and Service Oriented Knowledge Utilities. Vision and Research Directions 2010 and Beyond, Jan. 2006.Google Scholar
  16. [16]
    ObjectWeb Consortium. The Fractal Component Model, Technical Specification, 2003.Google Scholar
  17. [17]
    M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang, and S. Hariri. AutoMate: Enabling autonomic applications on the Grid. Cluster Computing, 9(2):161-174, 2006.CrossRefGoogle Scholar
  18. [18]
    S. M. Sadjadi and P. K. McKinley. Transparent self-optimization in existing CORBA applications. In Proc. of the 1st Intl. Conference on Autonomic Computing (ICAC’04), pages 88-95, Washington, DC, USA, 2004. IEEE.CrossRefGoogle Scholar
  19. [19]
    E. Truyen, B. Jfirgensen, W. Joosen, and P. Verbaeten. On interaction refinement in middleware. In J. Bosch, C. Szyperski, and W. Weck, editors, Proc. of the 5th Intl. Workshop on Component-Oriented Programming, pages 56-62, 2001.Google Scholar
  20. [20]
    M. Vanneschi. The programming model of ASSIST, an environment for parallel and distributed portable applications. Parallel Computing, 28(12):1709-1732, Dec. 2002.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marco Aldinucci
    • 1
  • Sonia Campa
    • 2
  • Marco Danelutto
    • 1
  • Patrizio Dazzi
    • 2
  • Domenico Laforenza
    • 2
  • Nicola Tonellotto
    • 2
  • Peter Kilpatrick
    • 3
  1. 1.Computer Science DepartmentUniversity of PisaPisaItaly
  2. 2.ISTICNRPisaItaly
  3. 3.Computer Science DepartmentQueen's UniversityBelfastUK

Personalised recommendations