The P/Halley Stream: Meteor Showers on Earth, Venus and Mars

  • Apostolos A. Christou
  • Jeremie Vaubaillon
  • Paul Withers
Chapter 1: Meteor Shower Activity, Forecasting, Dust Orbits

Abstract

We have simulated the formation and evolution of comet 1P/Halley’s meteoroid stream by ejecting particles from the nucleus 5000 years ago and propagating them forward to the present. Our aim is to determine the existence and characteristics of associated meteor showers at Mars and Venus and compare them with 1P/Halley’s two known showers at the Earth. We find that one shower should be present at Venus and two at Mars. The number of meteors in those atmospheres would, in general, be less than that at the Earth. The descending node branch of the Halley stream at Mars exhibits a clumpy structure. We identified at least one of these clumps as particles trapped in the 7:1 mean motion resonance with Jupiter, potentially capable of producing meteor ourbursts of ZHR~ 1000 roughly once per century.

Keywords

1P/Halley Mars Venus Meteors Meteor outbursts Meteor showers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.G. Adolfsson, B.A.S. Gustafson, C.D. Murray, The Martian atmosphere as a meteoroid detector. Icarus 119, 144–152 (1996)CrossRefADSGoogle Scholar
  2. M.F. A’Hearn, R.L. Millis, D.G. Schleicher, D.J. Osip, P.V. Birch, The ensemble properties of comets: results from narrowband photometry of 85 comets, 1976–1992. Icarus 118, 223–270 (1995)CrossRefADSGoogle Scholar
  3. D.J. Asher, M.E. Bailey, V.V. Emelyanenko, Resonant meteoroids from comet Tempel-Tuttle in 1333: the cause of the unexpected Leonid outburst in 1998. Mon. Not. R. Astron. Soc. 304, L53–L56 (1999)CrossRefADSGoogle Scholar
  4. A.A. Christou, Prospects for meteor shower activity in the venusian atmosphere. Icarus 168, 23–33 (2004)CrossRefADSGoogle Scholar
  5. R.T. Clancy, B.J. Sandor, M.J. Wolff, An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105, 9553–9572 (2000)CrossRefADSGoogle Scholar
  6. A. Dubietis, Long-term activity of meteor showers from comet 1P/Halley. WGN 31(2), 43–48 (2003)ADSGoogle Scholar
  7. P.D. Feldman, M.C. Festou, M.F. A’Hearn, 13 co-authors, IUE observations of comet P/Halley—evolution of the ultraviolet spectrum between 1985 September and 1986 July. Astron. Astrophys. 187, 325–331 (1987)Google Scholar
  8. J.D. Giorgini, D.K. Yeomans, A.B. Chamberlin, P.W. Chodas, R.A. Jacobson, M.S. Keesey, J.H. Lieske, S.J. Ostro, E.M. Standish, R.N. Wimberly, JPL’s on-line solar system data service. Bull. Am. Astron. Soc. 28, 1158 (1996)ADSGoogle Scholar
  9. A. Hajduk, M. Hajdukova, V. Porubčan, G. Cevolani, One hundred years of observations of the comet Halley meteor stream. in Proc. Asteroid Comets Meteors 2002 Conf., ed. by B. Warmbein, 29 July–2 August 2002, Berlin, Germany. ESA SP-500, (Noordwijk, Netherlands, 2002), pp. 113–116Google Scholar
  10. R. Koschack, J. Rendtel, Determination of spatial number density and mass index from visual meteor observations I. WGN 18, 45–58 (1990a)ADSGoogle Scholar
  11. R. Koschack, J. Rendtel, Determination of spatial number density and mass index from visual meteor observations II. WGN 18, 119–140 (1990b)ADSGoogle Scholar
  12. J.P. McAuliffe, A.A. Christou, Modelling meteor ablation in the venusian atmosphere. Icarus 180, 8–22 (2006)CrossRefADSGoogle Scholar
  13. B.A. McIntosh, A. Hajduk, Comet Halley meteor stream: a new model. Mon. Not. R. Astron. Soc. 205, 931–943 (1983)ADSGoogle Scholar
  14. B.A. McIntosh, J. Jones, The Halley comet meteor stream: numerical modelling of its dynamic evolution. Mon. Not. R. Astron. Soc. 235, 673–693 (1988)ADSGoogle Scholar
  15. J. Rendtel, The eta-Aquarid meteor shower in 1997. WGN 25(4), 153–157 (1997)ADSGoogle Scholar
  16. J. Rendtel, Three days of enhanced Orionid activity in 2006—meteoroids from a resonance region? WGN 35(2), 41–45 (2007)ADSGoogle Scholar
  17. G. Ryabova, The comet Halley meteoroid stream: just one more model. Mon. Not. R. Astron. Soc. 341, 739–746 (2003)CrossRefADSGoogle Scholar
  18. M. Sato, J. Watanabe, Origin of the 2006 meteor outburst. Publ. Astron. Soc. Jpn. 59, L21–L24 (2007)ADSGoogle Scholar
  19. J.M. Trigo-Rodriguez, J.M. Madiedo, J. Llorca, P.S. Gural, P. Pujols, T. Tezel, The 2006 Orionid outburst imaged by all-sky CCD cameras from Spain: meteoroid spatial fluxes and orbital elements. Mon. Not. R. Astron. Soc. 380, 126–132 (2007)CrossRefADSGoogle Scholar
  20. P. van Nes, Giotto encounters comet Halley. Ruimtevaart 35, 1–8 (1986)ADSGoogle Scholar
  21. J. Vaubaillon, F. Colas, L. Jorda, A new method to predict meteor showers I. Description of the model. Astron. Astrophys. 439, 751–760 (2005a)CrossRefADSGoogle Scholar
  22. J. Vaubaillon, F. Colas, L. Jorda, A new method to predict meteor showers II. Application to the Leonids. Astron. Astrophys. 439, 761–770 (2005b)CrossRefADSGoogle Scholar
  23. Z. Wu, I.P. Williams, Comet P/Halley and its associated meteoroid stream, in Meteoroids and their Parent Bodies, ed. by J. Stohl, I.P. Williams (Astronomical Inst., Slovak Acad. Sci., Bratislava, 1993) pp. 77–80Google Scholar
  24. D.K. Yeomans, T. Kiang, The long-term motion of comet Halley. Mon. Not. R. Astron. Soc. 197, 633–646 (1981)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Apostolos A. Christou
    • 1
  • Jeremie Vaubaillon
    • 2
    • 3
  • Paul Withers
    • 4
  1. 1.Armagh ObservatoryArmaghNorthern Ireland, UK
  2. 2.IMCCEObservatoire de ParisParisFrance
  3. 3.CalTech/IPAC/SSCPasadenaUSA
  4. 4.Center for Space PhysicsBoston UniversityBostonUSA

Personalised recommendations