Microneme Proteins in Apicomplexans

Part of the Subcellular Biochemistry book series (SCBI, volume 47)

Abstract

The invasive stages (zoites) of most apicomplexan parasites are polarised cells that use their actinomyosin-powered gliding motility or “glideosome” system to move over surfaces, migrate through biological barriers and invade and leave host cells. Central to these processes is the timely engagement and disengagement of specific receptors upon the regulated release of apical invasion proteins from parasite secretory organelles (micronemes, rhoptries). In this short review, we summarise recent progress on identification and functional characterisation of apical invasion proteins mobilised to the parasite surface from the microneme organelles. We have restricted our focus to Toxoplasma, Eimeria, Cryptosporidium and the nonerythrocytic stages of Plasmodium because these organisms have been the most intensively studied apicomplexans that invade nucleated cells and because invasion by erythrocytic stages of Plasmodium is covered in the next chapter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shaw MK. The same but different: The biology of Theileria sporozoite entry into bovine cells. Int J Parasitol 1997; 27(5):457–474.PubMedCrossRefGoogle Scholar
  2. 2.
    Langreth SG, Jensen JB, Reese RT et al. Fine structure of human malaria in vitro. J Protozool 1978; 25(4):443–452.PubMedGoogle Scholar
  3. 3.
    Scholtyseck E, Mehlhorn H. Ultrastructural study of characteristic organelles (paired organelles, micronemes, micropores) of sporozoa and related organisms. Z Parasitenkd 1970; 34(2):97–127.PubMedCrossRefGoogle Scholar
  4. 4.
    Sinden RE, Hartley RH, Winger L. The development of Plasmodium ookinetes in vitro: An ultrastructural study including a description of meiotic division. Parasitology 1985; 91 (Pt 2):227–244.PubMedCrossRefGoogle Scholar
  5. 5.
    Carruthers VB, Sibley LD. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol 1997; 73(2):114–123.PubMedGoogle Scholar
  6. 6.
    Healer J, Murphy V, Hodder AN et al. Allelic polymorphisms in apical membrane antigen-1 are responsible for evasion of antibody-mediated inhibition in Plasmodium falciparum. Mol Microbiol 2004; 52(1):159–168.PubMedCrossRefGoogle Scholar
  7. 7.
    Miller LH, Hudson D, Haynes JD. Identification of Plasmodium knowlesi erythrocyte binding proteins. Mol Biochem Parasitol 1988; 31(3):217–222.PubMedCrossRefGoogle Scholar
  8. 8.
    Narum DL, Haynes JD, Fuhrmann S et al. Antibodies against the Plasmodium falciparum receptor binding domain of EBA-175 block invasion pathways that do not involve sialic acids. Infect Immun 2000; 68(4):1964–1966.PubMedCrossRefGoogle Scholar
  9. 9.
    Sim BKL, Orlandi PA, Haynes JH et al. Primary structure of the 175K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoite invasion. J Cell Biol 1990; 111:1877–1884.PubMedCrossRefGoogle Scholar
  10. 10.
    Singh AP, Puri SK, Chitnis CE. Antibodies raised against receptor-binding domain of Plasmodium knowlesi Duffy binding protein inhibit erythrocyte invasion. Mol Biochem Parasitol 2002; 121(1):21–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Carruthers VB, Giddings OK, Sibley LD. Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cell Microbiol 1999; 1(3):225–235.PubMedCrossRefGoogle Scholar
  12. 12.
    Wiersma HI, Galuska SE, Tomley FM et al. A role for coccidian cGMP-dependent protein kinase in motility and invasion. Int J Parasitol 2004; 34(3):369–380.PubMedCrossRefGoogle Scholar
  13. 13.
    Soldati D, Dubremetz JF, Lebrun M. Microneme proteins: Structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii. Int J Parasitol 2001; 31(12):1293–1302.PubMedCrossRefGoogle Scholar
  14. 14.
    Tomley FM, Soldati DS. Mix and match modules: Structure and function of microneme proteins in apicomplexan parasites. Trends Parasitol 2001; 17(2):81–88.PubMedCrossRefGoogle Scholar
  15. 15.
    Bromley E, Leeds N, Clark J et al. Defining the protein repertoire of microneme secretory organelles in the apicomplexan parasite Eimeria tenella. Proteomics 2003; 3(8):1553–1561.PubMedCrossRefGoogle Scholar
  16. 16.
    Deng M, Templeton TJ, London NR et al. Cryptosporidium parvum genes containing thrombospondin type 1 domains. Infect Immun 2002; 70(12):6987–6995.PubMedCrossRefGoogle Scholar
  17. 17.
    Templeton TJ, Lancto CA, Vigdorovich V et al. The Cryptosporidium oocyst wall protein is a member of a multigene family and has a homolog in Toxoplasma. Infect Immun 2004; 72(2):980–987.PubMedCrossRefGoogle Scholar
  18. 18.
    Lawler J, Hynes RO. The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J Cell Biol 1986; 103(5):1635–1648.PubMedCrossRefGoogle Scholar
  19. 19.
    Adams JC, Tucker RP. The thrombospondin type 1 repeat (TSR) superfamily: Diverse proteins with related roles in neuronal development. Dev Dyn 2000; 218(2):280–299.PubMedCrossRefGoogle Scholar
  20. 20.
    Tucker RP. The thrombospondin type 1 repeat superfamily. Int J Biochem Cell Biol 2004; 36(6):969–974.PubMedCrossRefGoogle Scholar
  21. 21.
    Tan KM, Duquette M, Liu JH et al. Crystal structure of the TSP-1 type 1 repeats: A novel layered fold and its biological implication. J Cell Biol 2002; 159(2):373–382.PubMedCrossRefGoogle Scholar
  22. 22.
    Paakkonen K, Tossavainen H, Permi P et al. Solution structures of the first and fourth TSR domains of F-spondin. Proteins 2006; 64(3):665–72.PubMedCrossRefGoogle Scholar
  23. 23.
    Tossavainen H, Pihajamaa T, Huttunen TK et al. The layered fold of the TSR domain of P. falciparum TRAP contains a heparin binding site. Protein Sci 2006; 15:1760–1768.PubMedCrossRefGoogle Scholar
  24. 24.
    Robson KJ, Frevert U, Reckmann I et al. Thrombospondin-related adhesive protein (TRAP) of Plasmodium falciparum: Expression during sporozoite ontogeny and binding to human hepatocytes. EMBO J 1995; 14(16):3883–3894.PubMedGoogle Scholar
  25. 25.
    Spaccapelo R, Naitza S, Robson KJ et al. Thrombospondin-related adhesive protein (TRAP) of Plasmodium berghei and parasite motility. Lancet 1997; 350(9074):335.PubMedCrossRefGoogle Scholar
  26. 26.
    Sultan AA, Thathy V, Frevert U et al. TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. Cell 1997; 90(3):511–522.PubMedCrossRefGoogle Scholar
  27. 27.
    Fourmaux MN, Achbarou A, Mercereau-Puijalon O et al. The MIC1 microneme protein of Toxoplasma gondii contains a duplicated receptor-like domain and binds to host cell surface. Mol Biochem Parasitol 1996; 83(2):201–210.PubMedCrossRefGoogle Scholar
  28. 28.
    Saouros S, Edwards-Jones B, Reiss M et al. A novel galectin-like domain from Toxoplasma gondii micronemal protein 1 assists the folding, assembly, and transport of a cell adhesion complex. J Biol Chem 2005; 280(46):38583–38591.PubMedCrossRefGoogle Scholar
  29. 28a.
    Harper JM, Huynh MH, Coppens I et al. A cleavable propeptide influences Toxoplasma infection by facilitating the trafficking and secretion of the TgMIC2-M2AP invasion complex. Mol Biol Cell 2006; 17(10):4551–4563.PubMedCrossRefGoogle Scholar
  30. 29.
    Keller N, Naguleswaran A, Cannas A et al. Identification of a Neospora caninum microneme protein (NcMIC1) which interacts with sulfated host cell surface glycosaminoglycans. Infect Immun 2002; 70(6):3187–3198.PubMedCrossRefGoogle Scholar
  31. 30.
    Tuckwell D. Evolution of von Willebrand factor A (VWA) domains. Biochem Soc Trans 1999; 27:835–840.PubMedGoogle Scholar
  32. 31.
    Humphries M, Liddington R. Molecular basis of integrin-dependent cell adhesion. In: Kleanthous C, ed. Protein-Protein Recognition. Oxford: Oxford University Press, 2000.Google Scholar
  33. 32.
    Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/integrin a domains: Widely dispersed adhesion and elsewhere. Mol Biol Cell 2002; 13(10):3369–3387.PubMedCrossRefGoogle Scholar
  34. 33.
    Ball S, Bella J, Kielty C et al. Structural basis of type VI collagen dimer formation. J Biol Chem 2003; 278(17):15326–15332.PubMedCrossRefGoogle Scholar
  35. 34.
    Romijn RAP, Bouma B, Wuyster W et al. Identification of the collagen-binding site of the von Willebrand factor A3-domain. J Biol Chem 2001; 276(13):9985–9991.PubMedCrossRefGoogle Scholar
  36. 35.
    Matuschewski K, Nunes AC, Nussenzweig V et al. Plasmodium sporozoite invasion into insect and mammalian cells is directed by the same dual binding system. EMBO J 2002; 21(7):1597–1606.PubMedCrossRefGoogle Scholar
  37. 36.
    Jethwaney D, Lepore T, Hassan S et al. Fetuin-A, a hepatocyte-specific protein that binds Plasmodium berghei thrombospondin-related adhesive protein: A potential role in infectivity. Infect Immun 2005; 73(9):5883–5891.PubMedCrossRefGoogle Scholar
  38. 37.
    McCormick CJ, Tuckwell DS, Crisanti A et al. Identification of heparin as a ligand for the A-domain of Plasmodium falciparum thrombospondin-related adhesion protein. Mol Biochem Parasitol 1999; 100(1):111–124.PubMedCrossRefGoogle Scholar
  39. 38.
    Harper JM, Hoff EF, Carruthers VB. Multimerization of the Toxoplasma gondii MIC2 integrin-like A-domain is required for binding to heparin and human cells. Mol Biochem Parasitol 2004; 134(2):201–212.PubMedCrossRefGoogle Scholar
  40. 39.
    Baglia FA, Jameson BA, Walsh PN. Localization of the high molecular weight kininogen binding site in the heavy chain of human factor XI to amino acids phenylalanine 56 through serine 86. J Biol Chem 1990; 265(7):4149–4154.PubMedGoogle Scholar
  41. 40.
    Baglia FA, Walsh PN. A binding site for thrombin in the apple 1 domain of factor XL. J Biol Chem 1996; 271(7):3652–3658.PubMedCrossRefGoogle Scholar
  42. 41.
    Baglia FA, Jameson BA, Walsh PN. Identification and chemical synthesis of a substrate-binding site for factor IX on coagulation factor XIa. J Biol Chem 1991; 266(35):24190–24197.PubMedGoogle Scholar
  43. 42.
    Ho DH, Badellino K, Baglia FA et al. The role of high molecular weight kininogen and prothrombin as cofactors in the binding of factor XI A3 domain to the platelet surface. J Biol Chem 2000.Google Scholar
  44. 43.
    Sun Y, Gailani D. Identification of a factor IX binding site on the third apple domain of activated factor XL. J Biol Chem 1996; 271(46):29023–29028.PubMedCrossRefGoogle Scholar
  45. 44.
    Baglia FA, Jameson BA, Walsh PN. Identification and characterization of a binding site for factor XIIa in the Apple 4 domain of coagulation factor XI. J Biol Chem 1993; 268(6):3838–3844.PubMedGoogle Scholar
  46. 45.
    Brown PJ, Mulvey D, Potts JR et al. Solution structure of a PAN module from the apicomplexan parasite Eimeria tenella. J Struct Funct Genomics 2003; 4(4):227–234.PubMedCrossRefGoogle Scholar
  47. 46.
    Bai T, Becker M, Gupta A et al. Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proc Natl Acad Sci USA 2005; 102(36):12736–12741.PubMedCrossRefGoogle Scholar
  48. 47.
    Pizarro JC, Vulliez-Le Normand B, Chesne-Seck ML et al. Crystal structure of the malaria vaccine candidate apical membrane antigen 1. Science 2005; 308(5720):408–411.PubMedCrossRefGoogle Scholar
  49. 48.
    Brecht S, Carruthers VB, Ferguson DJP et al. The Toxoplasma micronemal protein MIC4 is an adhesin composed of six conserved apple domains. J Biol Chem 2001; 276(6):4119–4127.PubMedCrossRefGoogle Scholar
  50. 49.
    Reiss M, Viebig N, Brecht S et al. Identification and characterization of an escorter for two secretory adhesins in Toxoplasma gondii. J Cell Biol 2001; 152(3):563–578.PubMedCrossRefGoogle Scholar
  51. 50.
    Keller N, Riesen M, Naguleswaran A et al. Identification and characterization of a Neospora caninum microneme-associated protein (NcMIC4) that exhibits unique lactose-binding properties. Infect Immun 2004; 72(8):4791–4800.PubMedCrossRefGoogle Scholar
  52. 51.
    Alexander PL, Mital J, Ward GE et al. Identification of the moving junction complex of Toxoplasma gondii: A collaboration between distinct secretory organelles. PloS Pathogens 2005; 1e17.Google Scholar
  53. 52.
    Lebrun M, Michelin A, El Hajj H et al. The rhoptry neck protein RON4 relocalizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol 2005; 7(12):1823–1833.PubMedCrossRefGoogle Scholar
  54. 53.
    Downing AK, Knott V, Werner JM et al. Solution structure of a pair of calcium-binding epidermal growth factor-like domains: Implications for the Marfan syndrome and other genetic disorders. Cell 1996; 85(4):597–605.PubMedCrossRefGoogle Scholar
  55. 54.
    Blackman MJ, Whittle H, Holder AA. Processing of the Plasmodium falciparum major merozoite surface protein-1: Identification of a 33-kilodalton secondary processing product which is shed prior to erythrocyte invasion. Mol Biochem Parasitol 1991; 49(1):35–44.PubMedCrossRefGoogle Scholar
  56. 55.
    Kaslow DC, Quakyi IA, Syin C et al. A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains. Nature 1988; 333(6168):74–76.PubMedCrossRefGoogle Scholar
  57. 56.
    Tomley FM, Billington KJ, Bumstead JM et al. EtMIC4: A microneme protein from Eimeria tenella that contains tandem arrays of epidermal growth factor-like repeats and thrombospondin type-I repeats. Int J Parasitol 2001; 31(12):1303–1310.PubMedCrossRefGoogle Scholar
  58. 57.
    Periz J, Gill AC, Knott V et al. Calcium binding activity of the epidermal growth factor-like domains of the apicomplexan microneme protein EtMIC4. Mol Biochem Parasitol 2005; 143(2):192–199.PubMedCrossRefGoogle Scholar
  59. 58.
    Garcia-Reguet N, Lebrun M, Fourmaux MN et al. The microneme protein MIC3 of Toxoplasma gondii is a secretory adhesin that binds to both the surface of the host cells and the surface of the parasite. Cell Microbiol 2000; 2(4):353–364.PubMedCrossRefGoogle Scholar
  60. 59.
    Wright HT, Sandrasegaram G, Wright CS. Evolution of a family of N-acetylglucosamine binding-proteins containing the disulfide-rich domain of wheat-germ-agglutinin. J Mol Evol 1991; 33(3):283–294.PubMedCrossRefGoogle Scholar
  61. 60.
    Meissner M, Reiss M, Viebig N et al. A family of transmembrane microneme proteins of Toxoplasma gondii contain EGF-like domains and function as escorters. J Cell Sci 2002; 115 (Pt 3):563–574.PubMedGoogle Scholar
  62. 61.
    Cerede O, Dubremetz JF, Bout D et al. The Toxoplasma gondii protein MIC3 requires pro-peptide cleavage and dimerization to function as adhesin. EMBO J 2002; 21(11):2526–2536.PubMedCrossRefGoogle Scholar
  63. 62.
    Cerede O, Dubremetz JF, Soete M et al. Synergistic role of micronemal proteins in Toxoplasma gondii virulence. J Exp Med 2005; 201(3):453–463.PubMedCrossRefGoogle Scholar
  64. 63.
    Di Cristina M, Spaccapelo R, Soldati D et al. Two conserved amino acid motifs mediate protein targeting to the micronemes of the apicomplexan parasite Toxoplasma gondii. Mol Cell Biol 2000; 20(19):7332–7341.PubMedCrossRefGoogle Scholar
  65. 64.
    Huynh MH, Carruthers VB. Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathogens 2006; 2(8), [epub ahead of print].Google Scholar
  66. 65.
    Arnaout MA, Goodman SL, Xiong JP. Coming to grips with integrin binding to ligands. Curr Opin Cell Biol 2002; 14(5):641–651.PubMedCrossRefGoogle Scholar
  67. 66.
    Sonnenberg A. Integrins and their ligands. Curr Top Microbiol Immunol 1993; 184:7–35.PubMedGoogle Scholar
  68. 67.
    Zhou XW, Kafsack BFC, Cole RN et al. The opportunistic pathogen Toxoplasma gondii deploys a diverse legion of invasion and survival proteins. J Biol Chem 2005; 280(40):34233–34244.PubMedCrossRefGoogle Scholar
  69. 68.
    Mital J, Meissner M, Soldati D et al. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 2005; 16(9):4341–4349.PubMedCrossRefGoogle Scholar
  70. 69.
    Jewett TJ, Sibley LD. The Toxoplasma proteins MIC2 and M2AP form a hexameric complex necessary for intracellular survival. J Biol Chem 2004; 279(10):9362–9369.PubMedCrossRefGoogle Scholar
  71. 70.
    Petry F, Harris JR. Ultrastructure, fractionation and biochemical analysis of Cryptosporidium parvum sporozoites. Int J Parasitol 1999; 29(8):1249–1260.PubMedCrossRefGoogle Scholar
  72. 71.
    Harper JM, Zhou XW, Pszenny V et al. The novel coccidian micronemal protein MIC11 undergoes proteolytic maturation by sequential cleavage to remove an internal propeptide. Int J Parasitol 2004; 34(9):1047–1058.PubMedCrossRefGoogle Scholar
  73. 72.
    Hoff EF, Cook SH, Sherman GD et al. Toxoplasma gondii: Molecular cloning and characterization of a novel 18-kDa secretory antigen, TgMIC10. Exp Parasitol 2001; 97(2):77–88.PubMedCrossRefGoogle Scholar
  74. 73.
    Kuliawat R, Prabakaran D, Arvan P. Proinsulin endoproteolysis confers enhanced targeting of processed insulin to the regulated secretory pathway. Mol Biol Cell 2000; 11(6):1959–1972.PubMedGoogle Scholar
  75. 74.
    Zhang B, Chang A, Kjeldsen TB et al. Intracellular retention of newly synthesized insulin in yeast is caused by endoproteolytic processing in the Golgi complex. J Cell Biol 2001; 153(6):1187–1198.PubMedCrossRefGoogle Scholar
  76. 75.
    Arvan P, Halban PA. Sorting ourselves out: Seeking consensus on trafficking in the beta-cell. Traffic 2004; 5(1):53–61.PubMedCrossRefGoogle Scholar
  77. 76.
    Kappe S, Bruderer T, Gantt S et al. Conservation of a gliding motility and cell invasion machinery in Apicomplexan parasites. J Cell Biol 1999; 147(5):937–944.PubMedCrossRefGoogle Scholar
  78. 77.
    Brown PJ, Billington KJ, Bumstead JM et al. A microneme protein from Eimeria tenella with homology to the Apple domains of coagulation factor XI and plasma prekallikrein. Mol Biochem Parasitol 2000; 107(1):91–102.PubMedCrossRefGoogle Scholar
  79. 78.
    Carruthers VB, Blackman MJ. A new release on life: Emerging concepts in proteolysis and parasite invasion. Mol Microbiol 2005; 55(6):1617–1630.PubMedCrossRefGoogle Scholar
  80. 79.
    Luo BH, Springer TA. Integrin structures and conformational signaling. Curr Opin Cell Biol 2006, [ebup ahead of print].Google Scholar
  81. 80.
    Springer TA, Wang JH. The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Adv Protein Chem 2004; 68:29–63.PubMedCrossRefGoogle Scholar
  82. 81.
    Dessens JT, Beetsma AL, Dimopoulos G et al. CTRP is essential for mosquito infection by malaria ookinetes. EMBO J 1999; 18(22):6221–6227.PubMedCrossRefGoogle Scholar
  83. 82.
    Dessens JT, Siden-Kiamos I, Mendoza J et al. SOAP, a novel malaria ookinete protein involved in mosquito midgut invasion and oocyst development. Mol Microbiol 2003; 49(2):319–329.PubMedCrossRefGoogle Scholar
  84. 83.
    Kadota K, Ishino T, Matsuyama T et al. Essential role of membrane-attack protein in malarial transmission to mosquito host. Proc Natl Acad Sci USA 2004; 101(46):16310–16315.PubMedCrossRefGoogle Scholar
  85. 84.
    Kariu T, Ishino T, Yano K et al. CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Mol Microbiol 2006; 59(5):1369–1379.PubMedCrossRefGoogle Scholar
  86. 85.
    Mota MM, Hafalla JCR, Rodriguez A. Migration through host cells activates Plasmodium sporozoites for infection. Nat Med 2002; 8(11):1318–1322.PubMedCrossRefGoogle Scholar
  87. 86.
    Mota MM, Pradel G, Vanderberg JP et al. Migration of Plasmodium sporozoites through cells before infection. Science 2001; 291(5501):141–144.PubMedCrossRefGoogle Scholar
  88. 87.
    Ishino T, Yano K, Chinzei Y et al. Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. PLoS Biol 2004; 2(1):E4.PubMedCrossRefGoogle Scholar
  89. 88.
    Ishino T, Chinzei Y, Yuda M. A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. Cell Microbiol 2005; 7(2):199–208.PubMedCrossRefGoogle Scholar
  90. 89.
    Barragan A, Brossier F, Sibley LD. Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. Cell Microbiol 2005; 7(4):561–568.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyUniversity of Michigan School of MedicineAnn ArborUSA
  2. 2.Division of MicrobiologyInstitute for Animal HealthBerkshireUK

Personalised recommendations