Leishmania Invasion and Phagosome Biogenesis

  • Robert Lodge
  • Albert DescoteauxEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 47)


Whereas bacterial pathogens take over the control of their host cell actin cytoskeleton by delivering an array of protein effectors through specialized secretion systems, promastigotes of the protozoan parasite Leishmania donovani rely entirely upon a cell surface glycolipid to achieve this feat. Here, we review recent evidence that L. donovani promastigotes subvert host macrophage actin dynamics during the establishment of infection and we discuss the potential mechanisms involved.


Lipid Raft Visceral Leishmaniasis Leishmania Species Parasitophorous Vacuole Phagosomal Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander J, Russell DG. The interaction of Leishmania species with macrophages. Adv Parasitol 1992; 31:175–254.PubMedCrossRefGoogle Scholar
  2. 2.
    Sacks DL. Metacyclogenesis in Leishmania promastigotes. Exp Parasitol 1989; 69:100–103.PubMedCrossRefGoogle Scholar
  3. 3.
    Descoteaux A, Turco SJ. Glycoconjugates in Leishmania infectivity. Biochim Biophys Acta 1999; 1455:341–352.PubMedGoogle Scholar
  4. 4.
    Turco SJ, Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol 1992; 46:65–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Sacks D, Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol 2001; 55:453–483.PubMedCrossRefGoogle Scholar
  6. 6.
    Huang C, Turco SJ. Defective galactofuranose addition in lipophosphoglycan biosynthesis in a mutant of Leishmania donovani. J Biol Chem 1993; 268:24060–24066.PubMedGoogle Scholar
  7. 7.
    Descoteaux A, Luo Y, Turco SJ et al. A specialized pathway affecting virulence glycoconjugates of Leishmania. Science 1995; 269:1869–1872.PubMedCrossRefGoogle Scholar
  8. 8.
    Ilg T, Demar M, Harbecke D. Phosphoglycan repeat-deficient Leishmania mexicana parasites remain infectious to macrophages and mice. J Biol Chem 2001; 276:4988–4997.PubMedCrossRefGoogle Scholar
  9. 9.
    McNeely TB, Turco SJ. Requirement of lipophosphoglycan for intracellular survival of Leishmania donovani within human monocytes. J Immunol 1990; 144:2745–2750.PubMedGoogle Scholar
  10. 10.
    Späth GF, Epstein L, Leader B et al. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc Natl Acad Sci USA 2000; 97:9258–9263.PubMedCrossRefGoogle Scholar
  11. 11.
    Turco SJ, Späth GF, Beverley SM. Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends Parasitol 2001; 17(5):223–226.PubMedCrossRefGoogle Scholar
  12. 12.
    Blackwell JM. Receptors and recognition mechanisms of Leishmania species. Trans R Soc Trop Med Hyg 1985; 79:606–612.PubMedCrossRefGoogle Scholar
  13. 13.
    Kane MM, Mosser DM. Leishmania parasites and their ploys to disrupt macrophage activation. Curr Opin Hematol 2000; 7:26–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Joshi PB, Kelly BL, Kamhawi S et al. Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Mol Biochem Parasitol 2002; 120:33–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Green PJ, Feizi T, Stoll MS et al. Recognition of the major cell surface glycoconjugates of Leishmania parasites by the human serum mannan-binding protein. Mol Biochem Parasitol 1994; 66:319–328.PubMedCrossRefGoogle Scholar
  16. 16.
    Pelletier I, Sato S. Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope. J Biol Chem 2002; 277:17663–17670.PubMedCrossRefGoogle Scholar
  17. 17.
    Pelletier I, Hashidate T, Urashima T et al. Specific recognition of Leishmania major poly-beta-galactosyl epitopes by galectin-9: Possible implication of galectin-9 in interaction between L. major and host cells. J Biol Chem 2003; 278:22223–22230.PubMedCrossRefGoogle Scholar
  18. 18.
    Privé C, Descoteaux A. Leishmania donovani promastigotes evade the activation of mitogen-activated protein kinases p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase-1/2 during infection of naive macrophages. Eur J Immunol 2000; 30:2235–2244.PubMedCrossRefGoogle Scholar
  19. 19.
    Chimini G, Chavrier P. Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat Cell Biol 2000; 2:E191–E196.PubMedCrossRefGoogle Scholar
  20. 20.
    Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420:629–635.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoppe AD, Swanson JA. Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol Biol Cell 2004; 15:3509–3519.PubMedCrossRefGoogle Scholar
  22. 22.
    Coppolino MG, Krause M, HagendorfF P et al. Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcψ receptor signalling during phagocytosis. J Cell Sci 2001; 114:4307–4318.PubMedGoogle Scholar
  23. 23.
    Olazabal IM, Caron E, May RC et al. Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcγR, phagocytosis. Curr Biol 2002; 12:1413–1418.PubMedCrossRefGoogle Scholar
  24. 24.
    Le Cabec V, Carreno S, Moisand A et al. Complement receptor 3 (CD11b/CD 18) mediates type I and type II phagocytosis during nonopsonic and opsonic phagocytosis, respectively. J Immunol 2002; 169:2003–2009.PubMedGoogle Scholar
  25. 25.
    Lodge R, Descoteaux A. Leishmania donovani promastigotes induce periphagosomal F-actin accumulation through retention of the GTPase Cdc42. Cell Microbiol 2005; 7:1647–1658.PubMedCrossRefGoogle Scholar
  26. 26.
    Love DC, Mentink Kane M, Mosser DM. Leishmania amazonensis: The phagocytosis of amastigotes by macrophages. Exp Parasitol 1998; 88:161–171.PubMedCrossRefGoogle Scholar
  27. 27.
    Morehead J, Coppens I, Andrews NW. Opsonization modulates Rac-1 activation during cell entry by Leishmania amazonensis. Infect Immun 2002; 70:4571–4580.PubMedCrossRefGoogle Scholar
  28. 28.
    Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999; 17:593–623.PubMedCrossRefGoogle Scholar
  29. 29.
    Duclos S, Diez R, Garin J et al. Rab5 regulates the kiss and run fusion between phagosomes and endosomes and the acquisition of phagosome leishmanicidal properties in RAW 264.7 macrophages. J Cell Sci 2000; 113:3531–3541.PubMedGoogle Scholar
  30. 30.
    Vieira OV, Botelho RJ, Rameh L et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 2001; 155:19–25.PubMedCrossRefGoogle Scholar
  31. 31.
    Vieira OV, Bucci C, Harrison RE et al. Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell Biol 2003; 23:2501–2514.PubMedCrossRefGoogle Scholar
  32. 32.
    Desjardins M, Descoteaux A. Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan. J Exp Med 1997; 185:2061–2068.PubMedCrossRefGoogle Scholar
  33. 33.
    Dermine JF, Scianimanico S, Privé C et al. Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis. Cell Microbiol 2000; 2:115–126.PubMedCrossRefGoogle Scholar
  34. 34.
    Scianimanico S, Desrosiers M, Dermine JF et al. Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes. Cell Microbiol 1999; 1:19–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Holm Å, Tejle K, Magnusson KE et al. Leishmania donovani lipophosphoglycan causes periphagosomal actin accumulation: Correlation with impaired translocation of PKCα and defective phagosome maturation. Cell Microbiol 2001; 3:439–447.PubMedCrossRefGoogle Scholar
  36. 36.
    Tolson DL, Turco SJ, Pearson TW. Expression of a repeating phosphorylated disaccharide lipophosphoglycan epitope on the surface of macrophages infected with Leishmania donovani. Infect Immun 1990; 58:3500–3507.PubMedGoogle Scholar
  37. 37.
    Miao L, Stafford A, Nir S et al. Potent inhibition of viral fusion by the lipophosphoglycan of Leishmania donovani. Biochemistry 1995; 34:4676–4683.PubMedCrossRefGoogle Scholar
  38. 38.
    Dermine JF, Duclos S, Garin J et al. Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem 2001; 276:18507–18512.PubMedCrossRefGoogle Scholar
  39. 39.
    Dermine JF, Goyette G, Houde M et al. Leishmania donovani lipophosphoglycan disrupts phagosome microdomains in J774 macrophages. Cell Microbiol 2005; 7:1263–1270.PubMedCrossRefGoogle Scholar
  40. 40.
    Vilhardt F, Van Deurs B. The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly. EMBO J 2004; 23:739–748.PubMedCrossRefGoogle Scholar
  41. 41.
    Courret N, Frehel C, Gouhier N et al. Biogenesis of Leishmania-harbouring parasitophorous vacu-oles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites. J Cell Sci 2002; 115:2303–2316.PubMedGoogle Scholar
  42. 42.
    Antoine JC, Prina E, Lang T et al. The biogenesis and properties of the parasitophorous vacuoles that harbour Leishmania in murine macrophages. Trends Microbiol 1998; 6:392–401.PubMedCrossRefGoogle Scholar
  43. 43.
    Holm Å, Tejle K, Gunnarsson T et al. Role of protein kinase Cα for uptake of unopsonized prey and phagosomal maturation in macrophages. Biochem Biophys Res Commun 2003; 302:653–658.PubMedCrossRefGoogle Scholar
  44. 44.
    Allen LH, Aderem A. A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J Exp Med 1995; 182:829–840.PubMedCrossRefGoogle Scholar
  45. 45.
    Allen LA, Aderem A. Protein kinase C regulates MARCKS cycling between the plasma membrane and lysosomes in fibroblasts. EMBO J 1995; 14:1109–1121.PubMedGoogle Scholar
  46. 46.
    Scott CC, Dobson W, Botelho RJ et al. Phosphatidylinositol-4,5-bisphosphate hydrolysis directs actin remodeling during phagocytosis. J Cell Biol 2005; 169:139–149.PubMedCrossRefGoogle Scholar
  47. 47.
    Gruenheid S, Finlay BB. Microbial pathogenesis and cytoskeletal function. Nature 2003; 422:775–781.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  1. 1.INRS-Institut Armand-FrappierLavalCanada

Personalised recommendations