Paratransgenesis Applied for Control of Tsetse Transmitted Sleeping Sickness

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 627)

Abstract

African trypanosomiasis (sleeping sickness) is a major cause of morbidity and mortality in Subsaharan Africa for human and animal health. In the absence of effective vaccines and efficacious drugs, vector control is an alternative intervention tool to break the disease cycle. This describes the vectorial and symbiotic biology of tsetse with emphasis on the current knowledge on tsetse symbiont genomics and functional biology, and tsetse’s trypanosome transmission capability. The ability to culture one of tsetse’s commensal symbiotic microbes, Sodalis in vitro has allowed for the development of a genetic transformation system for this organism. Tsetse can be repopulated with the modified Sodalis symbiont, which can express foreign gene products (an approach we refer to as paratransgenic expression system). Expanding knowledge on tsetse immunity effectors, on genomics of tsetse symbionts and on tsetse’s parasite transmission biology stands to enhance the development and potential application of paratransgenesis as a new vector-control strategy. We describe the hallmarks of the paratransgenic transformation technology where the modified symbionts expressing trypanocidal compounds can be used to manipulate host functions and lead to the control of trypanosomiasis by blocking trypanosome transmission in the tsetse vector.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ekwanzala M, Pepin J, Khonde N et al. In the heart of darkness: Sleeping sickness in Zaire. Lancet 1996; 348:1427–1430.PubMedCrossRefGoogle Scholar
  2. 2.
    Welburn SC, Coleman PG, Maudlin I et al. Crisis, what crisis? Control of Rhodesian sleeping sickness. Trends Parasitol Mar 2006; 22(3): 123–128.CrossRefGoogle Scholar
  3. 3.
    Fevre EM, Picozzi K, Jannin J et al. Human African trypanosomiasis: Epidemiology and control. Adv Parasitol 2006; 61:167–221.PubMedCrossRefGoogle Scholar
  4. 4.
    Etchegorry MG, Helenport JP, Pecoul B et al. Availability and affordability of treatment for Human African Trypanosomiasis. Trop Med Int Health 2001; 6(11):957–959.PubMedCrossRefGoogle Scholar
  5. 5.
    Mamman M, Katende J, Moloo SK et al. Variation in sensitivity of Trypanosoma congolense to diminazene during the early phase of tsetse-transmitted infection in goats. Vet Parasitol 1993; 50(1–2):1–14.Google Scholar
  6. 6.
    Moloo SK, Kutuza SB. Expression of resistance to isometamidium and diminazene in Trypanosoma congolense in Boran cattle infected by Glossina morsitans centralis. Acta Trop 1990; 47(2):79–89.PubMedCrossRefGoogle Scholar
  7. 7.
    Nok AJ. Arsenicals (melarsoprol), pentamidine and suramin in the treatment of human African trypanosomiasis. Parasitol Res 2003; 90(1):71–79.PubMedGoogle Scholar
  8. 8.
    Matovu E, Enyaru JC, Legros D et al. Melarsoprol refractory T. b. gambiense from Omugo, north-western Uganda. Trop Med Int Health 2001; 6(5):407–411.PubMedCrossRefGoogle Scholar
  9. 9.
    Gouteux JP, Blanc F, Pounekrozou E et al. Tsetse and livestock in Central African Republic: Retreat of Glossina morsitans submorsitans (Diptera, Glossinidae). Bulletin de la Societe de Pathologie Exotique 1994; 87:52–56, [French].PubMedGoogle Scholar
  10. 10.
    Joja LL, Okoli UA. Trapping the vector: Community action to curb sleeping sickness in southern Sudan. Am J Public Health 2001; 91(10):1583–1585.PubMedCrossRefGoogle Scholar
  11. 11.
    Berriman M, Ghedin E, Hertz-Fowler C et al. The genome of the African trypanosome Trypanosoma brucei. Science 2005; 309(5733):416–422.PubMedCrossRefGoogle Scholar
  12. 12.
    Lehane MJ, Aksoy S, Gibson W et al. Adult midgut expressed sequence tags from the tsetse fly Glossina morsitans morsitans and expression analysis of putative immune response genes. Genome Biol 2003; 4(10):R63.PubMedCrossRefGoogle Scholar
  13. 13.
    Attardo G, Strickler-Dinglasan P, Perkin S et al. Analysis of fat body transcriptome from the adult tsetse fly, Glossina morsitans morsitans. Insect Mol Biology 2006; 15(4):411–424.CrossRefGoogle Scholar
  14. 14.
    Akman L, Yamashita A, Watanabe H et al. Genome sequence of the endocellular obligate symbiont of tsetse, Wigglesworthia glossinidia. Nat Genet 2002; 32(2):402–407.PubMedCrossRefGoogle Scholar
  15. 15.
    Toh H, Weiss BL, Perkin SA et al. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 2006; 16(2):149–156.Google Scholar
  16. 16.
    Aksoy S, Berriman M, Hall N et al. A case for a Glossina genome project. Trends in Parasitology 2005; 21(3):107–111.PubMedCrossRefGoogle Scholar
  17. 17.
    Aksoy S. Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse flies. Int J Syst Bacteriol 1995; 45(4):848–851.PubMedCrossRefGoogle Scholar
  18. 18.
    Dale C, Maudlin I. Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol 1999; 49(Pt l):267–275.Google Scholar
  19. 19.
    Cheng Q, Aksoy S. Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Molecular Biology 1999; 8(1):125–132.PubMedCrossRefGoogle Scholar
  20. 20.
    Cheng Q, Ruel TD, Zhou W et al. Tissue distribution and prevalence of Wolbachia infections in tsetse flies, Glossina spp. Med Vet Entomol 2000; 14(1):44–50.CrossRefGoogle Scholar
  21. 21.
    Chen XA, Li S, Aksoy S. Concordant evolution of a symbiont with its host insect species: Molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J Mol Evolution 1999; 48(1):49–58.CrossRefGoogle Scholar
  22. 22.
    Weiss BL, Mouchotte R, Rio RVM et al. Inter-specific transfer of bacterial endosymbionts between tsetse species: Infection establishment and effect on host fitness. Applied and Environmental Microbiology, 2006; 72(11):7013–7021.PubMedCrossRefGoogle Scholar
  23. 23.
    Aksoy S, Chen X, Hypsa V. Phylogeny and potential transmission routes of midgutassociated endosymbionts of tsetse (Diptera: Glossinidae). Insect Molecular Biology 1997; 6(2): 183–190.PubMedCrossRefGoogle Scholar
  24. 24.
    Ma WC, Denlinger DL. Secretory discharge and microflora of milk gland in tsetse flies. Nature 1974; 247:301–303.CrossRefGoogle Scholar
  25. 25.
    Gibson W, Bailey M. The development of Trypanosoma brucei within the tsetse fly midgut observed using green fluorescent trypanosomes. Kinetoplastid Biol Dis 2003; 2(1): 1.PubMedCrossRefGoogle Scholar
  26. 26.
    Rio RV, Aksoy S. Interactions among multiple genomes: Tsetse, its symbionts and trypanosomes. Insect Biochem and Molecular Biology 2005; (35):691–698.Google Scholar
  27. 27.
    Beard C, O’Neill S, Tesh R et al. Modification of arthropod vector competence via symbiotic bacteria. Parasitology Today 1993; 9(5):179–183.PubMedCrossRefGoogle Scholar
  28. 28.
    Beard C, Durvasula R, Richards F. Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 1998; 4(4):581–591.PubMedCrossRefGoogle Scholar
  29. 29.
    Welburn SC, Maudlin I, Ellis DS. In vitro cultivation of rickettsia-like-organisms from Glossina spp. Annals of Tropical Medicine and Parasitology 1987; 81(3):331–335.PubMedGoogle Scholar
  30. 30.
    Beard CB, O’Neill SL, Mason P et al. Genetic transformation and phylogeny of bacterial symbionts from tsetse. Insect Mol Biology 1993; 1:123–131.CrossRefGoogle Scholar
  31. 31.
    Hao Z, Kasumba I, Lehane MJ et al. Tsetse immune responses and trypanosome transmission: Implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc Natl Acad Sci USA 2001; 98(22): 12648–12653.PubMedCrossRefGoogle Scholar
  32. 32.
    Hu Y, Aksoy S. An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. Insect Biochem Mol Biol 2005; 35:105–115.PubMedCrossRefGoogle Scholar
  33. 33.
    Welburn SC, Gibson WC. Isolation and cloning of a repetitive element from the rickettsia-like organisms of tsetse (Glossina). Parasitology 1989; 98:81–84.PubMedGoogle Scholar
  34. 34.
    Dale C, Young SA, Haydon DT et al. The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc Natl Acad Sci USA 2001; 98(4):1883–1888.PubMedCrossRefGoogle Scholar
  35. 35.
    Nogge G. Significance of symbionts for the maintenance of an optimal nutritional state for successful reproduction in haematophagous arthropods. Parasitology 1981; 82(4):101–104.Google Scholar
  36. 36.
    Nantulya VM, Moloo SK. Suppression of cyclical development of Trypanosoma brucei brucei in Glossina morsitans centralis by an anti-procyclics monoclonal antibody. Acta Trop 1988; 45(2): 137–144.PubMedGoogle Scholar
  37. 37.
    Durvasula R, Gumbs A, Panackal A et al. Expression of a functional antibody fragment in the gut of Rhodnius prolixus via transgenic bacterial symbiont Rhodococcus rhodnii. Med Vet Entomology 1999; 13(2):115–119.CrossRefGoogle Scholar
  38. 38.
    Oggioni MR, Beninati C, Boccanera M et al. Recombinant Streptococcus gordonii for mucosal delivery of a scFv microbicidal antibody. Int Rev Immunol 2001; 20(2):275–287.PubMedGoogle Scholar
  39. 39.
    Beninati C, Oggioni MR, Boccanera M et al. Therapy of mucosal candidiasis by expression of an anti-idiotype in human commensal bacteria. Nat Biotechnol 2000; 18(10): 1060–1064.PubMedCrossRefGoogle Scholar
  40. 40.
    Kruger C, Hu Y, Pan Q et al. In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat Biotechnol 2002; 20(7):702–706.PubMedCrossRefGoogle Scholar
  41. 41.
    Gibson WC, Bailey M. The development of Trypanosoma brucei within the tsetse fly midgut observed using green fluorescent trypanosomes. Kinetoplastid Biol Dis 2003; 1–3.Google Scholar
  42. 42.
    Hu C, Aksoy S. Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Mol Microbiol 2006; 60(5): 1194–1204.PubMedCrossRefGoogle Scholar
  43. 43.
    Hao Z, Kasumba I, Aksoy S. Proventriculus (cardia) plays a crucial role in immunity in tsetse fly (Diptera: Glossinidiae). Insect Bichem and Molecular Biology 2003; 33(11): 1155–64.CrossRefGoogle Scholar
  44. 44.
    Asling B, Dushay M, Hultmark D. Identification of early genes in the Drosophila immune response by PCR-based differential display: The Attacin A gene and the evolution of attacin-like proteins. Insect Biochem Mol Biol 1995; 25(4):511–518.PubMedCrossRefGoogle Scholar
  45. 45.
    Sinkins SP, Gould F. Gene drive systems for insect disease vectors. Nat Rev Genet 2006; 7(6):427–435.PubMedCrossRefGoogle Scholar
  46. 46.
    Bourtzis K, O’Neill S. Wolbachia infections and arthropod reproduction. BioScience 1998; 48(4):287–293.CrossRefGoogle Scholar
  47. 47.
    Rio RV, Wu YN, Filardo G et al. Dynamics of multiple symbiont density regulation during host development: Tsetse fly and its microbial flora. Proc Biol Sci 2006; 273(1588):805–814.PubMedCrossRefGoogle Scholar
  48. 48.
    Turelli M, Hoffmann AA, McKechnie SW. Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics 1992; 132(3):713–723.PubMedGoogle Scholar
  49. 49.
    Politzar H, Cuisance D. An integrated campaign against riverine tsetse Glossina palpalis gambiensis and G. tachinoides by trapping and the release of sterile males. Insect Sci 1984; 5(60):439–442.Google Scholar
  50. 50.
    Vreysen MJ, Saleh KM, Ali MY et al. Glossina austeni (Diptera: Glossinidae) eradicated on the Island of Unguga, Zanzibar, using the sterile insect technique. J Econ Entomology 2000; 93:123–135.CrossRefGoogle Scholar
  51. 51.
    Douglas AE. Buchnera bacteria and Other Symbionts of Aphids. In: Bourtzis K, Miller TA, eds. Insect Symbiosis. New York: CRC Press, 2003.Google Scholar
  52. 52.
    Wernegreen JJ. Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 2002; 3(11):850–861.PubMedCrossRefGoogle Scholar
  53. Weiss BL, Mouchotte R, Rio RV et al. Inter-specific transfer of bacterial endosymbionts between tsetse species: Infection establishment and effect on host fitness. Appl Environ Microbiol 2006; 72(11):7013–7021.PubMedCrossRefGoogle Scholar
  54. Beard C, Mason P, Aksoy S et al. Transformation of an insect symbiont and expression of a foreign gene in the Chagas’ disease vector Rhodnius prolixus. Am J Trop Med Hyg 1992; 46(2):195–200.PubMedGoogle Scholar
  55. Durvasula RV, Gumbs A, Panackal A et al. Prevention of insect-borne disease: An approach using transgenic symbiotic bacteria. Proceedings of the National Academy of Sciences of the United States of America 1997; 94(7):3274–3278.PubMedCrossRefGoogle Scholar
  56. Durvasala R, Sundarum KR, Cordon-Rosales C et al. Rhodnius prolixus and its symbiont, Rhodococcus rhodnii, A model for Paratransgenic control of Disease Transmission. In: Bourtzis K, Thomas AM, eds. Insect Symbiosis. New York: CRC Press, 2003.Google Scholar
  57. Lindh JM, Terenius O, Faye I. 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl Environ Microbiol 2005; 71(11):7217–7223.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  1. 1.Department of Epidemiology and Public HealthSerap Aksoy-Yale University School of MedicineNew HavenUSA
  2. 2.Arthropod-borne and Infectious Diseases Laboratory Department of MicrobiologyImmunology and Pathology Colorado State UniversityFort CollinsUSA
  3. 3.Department of Epidemiology and Public HealthNew HavenUSA

Personalised recommendations