WinBUGS for Population Ecologists: Bayesian Modeling Using Markov Chain Monte Carlo Methods

  • Olivier Gimenez
  • Simon J. Bonner
  • Ruth King
  • Richard A. Parker
  • Stephen P. Brooks
  • Lara E. Jamieson
  • Vladimir Grosbois
  • Byron J.T. Morgan
  • Len Thomas
Part of the Environmental and Ecological Statistics book series (ENES, volume 3)

Abstract

The computer package WinBUGS is introduced. We first give a brief introduction to Bayesian theory and its implementation using Markov chain Monte Carlo (MCMC) algorithms. We then present three case studies showing how WinBUGS can be used when classical theory is difficult to implement. The first example uses data on white storks from Baden Württemberg, Germany, to demonstrate the use of mark-recapture models to estimate survival, and also how to cope with unexplained variance through random effects. Recent advances in methodology and also the WinBUGS software allow us to introduce (i) a flexible way of incorporating covariates using spline smoothing and (ii) a method to deal with missing values in covariates. The second example shows how to estimate population density while accounting for detectability, using distance sampling methods applied to a test dataset collected on a known population of wooden stakes. Finally, the third case study involves the use of state-space models of wildlife population dynamics to make inferences about density dependence in a North American duck species. Reversible Jump MCMC is used to calculate the probability of various candidate models. For all examples, data and WinBUGS code are provided.

Keywords

Bayesian statistics Density dependence Distance sampling External covariates Hierarchical modeling Line transect Mark-recapture Random effects Reversible jump MCMC Spline smoothing State-space model Survival estimation 

References

  1. Bairlein F (1991) Population studies of white storks ciconia ciconia in Europe, with reference to the western population. In: Perrins C, Lebreton J-D, Hirons G (eds), Bird Population Studies: Relevance to Conservation and Management, pages 207–229. Oxford University Press. Oxford.Google Scholar
  2. Barbraud C, Barbraud JC, Barbraud M (1999) Population dynamics of the White Stork Ciconia ciconia in western France. Ibis 141:469–479.CrossRefGoogle Scholar
  3. Barry SC, Brooks SP, Catchpole EA, Morgan BJT (2003) The analysis of ring-recovery data using random effects. Biometrics 58:54–65.CrossRefMathSciNetGoogle Scholar
  4. Besbeas P, Freeman SN, Morgan BJT, Catchpole EA (2002) Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58:540–547.CrossRefMATHMathSciNetGoogle Scholar
  5. Besbeas P, Freeman SN, Morgan BJT (2005) The potential of integrated population modelling. Australian New Zealand Journal of Statistics 47:35–48.CrossRefMATHMathSciNetGoogle Scholar
  6. Biller C (2000) Adaptive Bayesian Regression Splines in semiparametric generalized linear models. Journal of Computational and Graphical Statistics 9:122–140.MathSciNetGoogle Scholar
  7. Bjornstad ON, Fromentin JM, Stenseth NC, Gjosaeter J (1999) Cycles and trends in cod populations. Proceedings of the National Academy of Sciences of the USA 96:5066–5071.CrossRefGoogle Scholar
  8. Bonner SJ, Schwarz CJ (2006) An extension of the Cormack–Jolly–Seber model for continuous covariates with applications to Microtus pennsylvanicus. Biometrics 62:142–149.CrossRefMATHMathSciNetGoogle Scholar
  9. Brooks SP, Catchpole EA, Morgan BJT (2000) Bayesian animal survival estimation. Statistical Science 15:357–376.CrossRefMathSciNetGoogle Scholar
  10. Brooks SP, Catchpole EA, Morgan BJT, Harris MP (2002) Bayesian methods for analysing ringing data. Journal of Applied Statistics 29:187–206.CrossRefMATHMathSciNetGoogle Scholar
  11. Brooks SP, King R, Morgan BJT (2004) A Bayesian approach to combining animal abundance and demographic data. Animal Biodiversity and Conservation 27:515–529.Google Scholar
  12. Brooks SP, Gimenez O, King R (2005) Bayesian methods for population ecology – workshop codes. National Centre for Statistical Ecology Software Library. [http://www.ncse.org.uk/software.html].
  13. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to Distance Sampling. Oxford University Press, Oxford.MATHGoogle Scholar
  14. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L Eds. (2004a) Advanced Distance Sampling. Oxford University Press, Oxford.Google Scholar
  15. Buckland ST, Newman KB, Thomas L, Koesters NB (2004b) State-space models for the dynamics of wild animal populations. Ecological Modelling 171:157–175.Google Scholar
  16. Buckland ST, Newman KB, Fernández C, Thomas L, Harwood J (2007) Embedding population dynamics models in inference. Statistical Science 22:44–58.CrossRefMATHMathSciNetGoogle Scholar
  17. Burnham KP, White GC (2002) Evaluation of some random effects methodology applicable to bird ringing data. Journal of Applied Statistics 29:245–264.CrossRefMATHMathSciNetGoogle Scholar
  18. Cam E, Link WA, Cooch EG, Monnat JY, Danchin E (2002) Individual covariation between life-history traits: seeing the trees despite the forest. The American Naturalist 159:96–105.CrossRefGoogle Scholar
  19. Catchpole EA, Freeman SN, Morgan BJT, Harris MJ (1998) Integrated reovery/recapture data analysis. Biometrics 54:33–46.CrossRefMATHGoogle Scholar
  20. Celeux G, Forbesy F, Robert CP, Titterington DM (2006) Deviance information criteria for missing data models. Bayesian Analysis 1:651–674.CrossRefMathSciNetGoogle Scholar
  21. Chavez-Demoulin V (1999) Bayesian inference for small-sample capture–recapture data. Biometrics 55:727–731.CrossRefMATHGoogle Scholar
  22. Choquet R, Reboulet A-M, Pradel R, Gimenez O, Lebreton J-D (2005) M-SURGE: new software specifically designed for multistate capture–recapture models. Animal Biodiversity and Conservation, 27: 207–215. Available from http://www.cefe.cnrs.fr/biom/logiciels.htm/
  23. Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecology Letters 8:2–14.CrossRefGoogle Scholar
  24. Clobert J, Lebreton J-D (1985) Dépendance de facteurs de milieu dans les estimations de taux de survie par capture–recapture. Biometrics 412:1031–1037.CrossRefGoogle Scholar
  25. Congdon P (2003) Applied Bayesian Modelling, John Wiley, New York.CrossRefMATHGoogle Scholar
  26. Congdon P (2006) Bayesian Statistical Modelling, 2 nd edition. John Wiley, New York.Google Scholar
  27. Conroy MJ, Fonnesbeck CJ, Zimpfer NL (2005) Modeling regional waterfowl harvest rates using Markov Chain Monte Carlo. Journal of Wildlife Management 69:77–90.CrossRefGoogle Scholar
  28. Cormack RM (1964) Estimates of survival from sighting of marked animals. Biometrika 51:429–438.MATHGoogle Scholar
  29. Crainiceanu CM, Ruppert D, Wand MP (2005) Bayesian analysis for penalized spline regression using WinBUGS. Journal of Statistical Software 14:1–24.Google Scholar
  30. de Valpine P (2002) Review of methods for fitting time-series models with process and observation error, and likelihood calculations for nonlinear, non-Gaussian state-space models. Bulletin of Marine Science 70:455–471.Google Scholar
  31. de Valpine P (2002) Review of methods for fitting time-series models with process and observation error and likelihood calculations for nonlinear, non-Gaussian state-space models. Bulletin of Marine Science 70:455–471.Google Scholar
  32. de Valpine P (2003) Better inferences from population-dynamics experiments using Monte Carlo state-space likelihood methods. Ecology 84:3064–3077.CrossRefGoogle Scholar
  33. de Valpine P, Hastings A (2002) Fitting population models incorporating process noise and observation error. Ecological Monographs 72:57–76.CrossRefGoogle Scholar
  34. Durban JW, Elston DA (2005) Mark-recapture with occasion and individual effects: abundance estimation through Bayesian model selection in a fixed dimensional parameter space. Journal of Agricultural, Biological, and Environmental Statistics 10:291–305.CrossRefGoogle Scholar
  35. Durban JW, Elston DA, Ellifrit DK, Dickson E, Hammond PS, Thompson P (2005) Multisite mark-recapture for cetaceans: population estimates with Bayesian model averaging. Marine Mammal Science 21:80–92.CrossRefGoogle Scholar
  36. Ellison AM (2004) Bayesian inference in ecology. Ecology Letters 7:509–520.CrossRefGoogle Scholar
  37. Fournier D (2001) An introduction to AD MODEL BUILDER Version 6.0.2 for use in nonlinear modeling and statistics. Available from http://otter-rsch.com/admodel.htm.
  38. Gelman A (2006) Prior distributions for variance parameters in hierarchical models (Comment on Article by Browne and Draper). Bayesian Analysis 1:515–534.CrossRefMathSciNetGoogle Scholar
  39. Ghosh SK, Norris JL (2005) Bayesian capture–recapture analysis and model selection allowing for heterogeneity and behavioral effects. Journal of Agricultural, Biological, and Environmental Statistics 10:35–49.CrossRefGoogle Scholar
  40. Ghosh SK, Mukhopadhyay P, Lu J-C (2006) Bayesian analysis of zero-inflated regression models. Journal of Statistical Planning and Inference 136:1360–1375.CrossRefMATHMathSciNetGoogle Scholar
  41. Gilks W, Richardson S, Spiegelhalter D (1996) Markov chain Monte Carlo in practice. Chapman & Hall, London.Google Scholar
  42. Gimenez O, Crainiceanu C, Barbraud C, Jenouvrier S, Morgan BJT (2006a) Semiparametric regression in capture–recapture modelling. Biometrics 62:691–698.Google Scholar
  43. Gimenez O, Covas R, Brown CR, Anderson MD, Bomberger Brown M, Lenormand T (2006b) Nonparametric estimation of natural selection on a quantitative trait using mark-recapture data. Evolution 60:460–466.Google Scholar
  44. Gimenez O, Rossi V, Choquet R, Dehais C, Doris B, Varella H, Vila J-P, Pradel R (2007) State-space modeling of data on marked individuals. Ecological Modelling, 206:431–438.CrossRefGoogle Scholar
  45. Gimenez O, Barbraud C (2008) The efficient semiparametric regression modelling of capture–recapture data: assessing the impact of climate on survival of two Antarctic seabird species. In: Thomson DL, Cooch EG, Conroy MJ (eds.) Modeling Demographic Processes in Marked Populations. Environmental and Ecological Statistics, Springer, New York.Google Scholar
  46. Gimenez BJT, Morgan O, Brooks SP (2008) Weak identifiability in models for mark-recapture-recovery data. In: Thomson DL, Cooch EG, Conroy MJ (eds.) Modeling Demographic Processes in Marked Populations. Environmental and Ecological Statistics, Springer, New York.Google Scholar
  47. Gould WR, Nichols JD (1998) Estimation of temporal variability of survival in animal populations. Ecology 79:2531–2538.CrossRefGoogle Scholar
  48. Green PJ (1995) Reversible jump MCMC computation and Bayesian model determination. Biometrika 82:711–732.CrossRefMATHMathSciNetGoogle Scholar
  49. Grosbois V, Gimenez O, Gaillard J-M, Pradel R, Barbraud C, Clobert J, Møller AP, Weimerskirch H (in revision) Assessing the impact of climate variation on survival in vertebrate populations. Biological Reviews.Google Scholar
  50. Grosbois V, Harris MP, Anker-Nilssen T, McCleery RH, Shaw DN, Morgan BJT, Gimenez O (in revision) Spatial modelling of survival using capture-recapture data. Ecology.Google Scholar
  51. Harley SJ, Myers RA, Field CA (2004) Hierarchical models improve abundance estimates: spawning biomass of hoki in Cook Strait, New Zealand. Ecological Applications 14: 1479–1494.Google Scholar
  52. Ihaka SP, Gentleman EA (1996) R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics 5:299–314.Google Scholar
  53. Jamieson LE (2004) Bayesian model discrimination with application to population ecology and epidemiology. PhD Thesis, University of Cambridge.Google Scholar
  54. Jamieson LE, Brooks SP (2004) Density dependence in North American ducks. Animal Biodiversity and Conservation 27:113–128.Google Scholar
  55. Johnson DS, Hoeting JA (2003) Autoregressive models for capture–recapture data: a Bayesian approach. Biometrics 59:341–350.CrossRefMATHMathSciNetGoogle Scholar
  56. Jolly GM (1965) Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52:225–247.MATHMathSciNetGoogle Scholar
  57. Jonsen ID, Myers RA, Flemming JM (2003) Meta-analysis of animal movement using state-space models. Ecology 84:3055–3063.CrossRefGoogle Scholar
  58. Jonsen ID, Flemming JM, Myers RA (2005) Robust state-space modeling of animal movement data. Ecology 86:2874–2880.CrossRefGoogle Scholar
  59. Kanyamibwa S, Schierer A, Pradel R, Lebreton JD (1990) Changes in adult survival rates in a western European population of the White Stork Ciconia ciconia. Ibis 132:27–35.CrossRefGoogle Scholar
  60. Karunamuni RJ, Quinn II TJ (1995) Bayesian estimation of animal abundance for the line transects sampling. Biometrics 51:1325–1337.CrossRefMATHMathSciNetGoogle Scholar
  61. Kass RE, Carlin BP, Gelman A, Neal RM (1998) Markov chain Monte Carlo in practice: a round-table discussion. American Statistician 52:93–100.MathSciNetGoogle Scholar
  62. King R, Brooks SP (2002a) Bayesian model discrimination for multiple strata capture–recapture data. Biometrika 89:785–806.Google Scholar
  63. King R, Brooks SP (2002b) Model selection for integrated recovery/recapture data. Biometrics 58:841–851.Google Scholar
  64. King R, Brooks SP (2003) Survival and spatial fidelity of mouflons: the effect of location, age and sex. Journal of Agricultural, Biological and Environmental Statistics 8:486–513.CrossRefGoogle Scholar
  65. King R, Brooks SP, Morgan BJT, Coulson T (2006) Bayesian analysis of factors affecting soay sheep. Biometrics 62:211–220.CrossRefMATHMathSciNetGoogle Scholar
  66. King R, Brooks SP (2008) On the Bayesian estimation of a closed population size in the presence of heterogeneity and model uncertainty. Biometrics, In press.Google Scholar
  67. Kuhnert PM, Martin TG, Mengersen K, Possingham HP (2005) Assessing the impacts of grazing levels on bird density in woodland habitat: a Bayesian approach using expert opinion. Environmetrics 16:717–747.CrossRefMathSciNetGoogle Scholar
  68. Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR (2005) How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statistics in Medicine 24:2401–2428.CrossRefMathSciNetGoogle Scholar
  69. Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypothesis using marked animals: a unified approach with case studies. Ecological Monographs 62:67–118.CrossRefGoogle Scholar
  70. Lebreton J-D (2008) Assessing density-dependence: where are we left? In: Thomson DL, Cooch EG, Conroy MJ (eds.) Modeling Demographic Processes in Marked Populations. Environmental and Ecological Statistics, Springer, New York.Google Scholar
  71. Lens L, van Dongen S, Norris K, Githiru M, Matthysen E (2002) Avian persistence in fragmented rainforest. Science 298:1236–1238.CrossRefGoogle Scholar
  72. Lewy P, Nielsen A (2003) Modeling stochastic fish stock dynamics using Markov Chain Monte Carlo. ICES Journal of Marine Science 60:743–752.CrossRefGoogle Scholar
  73. Link WA, Cam E, Nichols JD, Cooch EG (2002) Of bugs and birds: Markov Chain Monte Carlo for hierarchical modelling in wildlife research. Journal of Wildlife Management 66:277–291.CrossRefGoogle Scholar
  74. Link WA, Sauer JR (2002) A hierarchical model of population change with application to cerulean warblers. Ecology 83:2832–2840.CrossRefGoogle Scholar
  75. Link WA, Barker RJ (2005) Modeling association among demographic parameters in analysis of open population capture–recapture data. Biometrics 61:46–54.CrossRefMATHMathSciNetGoogle Scholar
  76. Link WA, Barker RJ (2006) Model weights and the foundations of multimodel inference. Ecology 87:2626–2635.CrossRefGoogle Scholar
  77. Lunn DJ (2006) WinBUGS ‘jump’ interface: beta-release user manual. Technical report dated February 14th 2006, School of Medicine, Imperial College London, UK.Google Scholar
  78. Lunn DJ, Whittaker JC, Best N (2006) A Bayesian toolkit for genetic association studies. Genetic Epidemiology 30:231–247.CrossRefGoogle Scholar
  79. Marques FFC, Buckland ST (2003) Incorporating covariates into standard line transect analyses. Biometrics 59:924–935.CrossRefMATHMathSciNetGoogle Scholar
  80. Marques TA, Thomas L, Fancy SG, Buckland ST (2007) Improving estimates of bird density using multiple covariate distance sampling. The Auk 124:1229–1243.Google Scholar
  81. Martin TG, Kuhnert PM, Mengessen K, Possingham HP (2005a) The power of expert opinion in ecological models using Bayesian methods: Impact of grazing on birds. Ecological Applications 15:266–280.Google Scholar
  82. Martin TG, Wintle BA, Rhodes JR, Kuhnert PM, Field SA, Low-Choy SJ, Tyre AJ, Possingham HP (2005b) Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecology Letters 8:1235–1246.Google Scholar
  83. Maunder MN (2004) Population viability analysis based on combining Bayesian, integrated, and hierarchical analyses. Acta Oecologica 26:85–94.CrossRefGoogle Scholar
  84. Maunder MN, Schnute JT, Ianelli JN (in press) Computers in fisheries population dynamics. In: Megrey B, Moksness E (eds) Computers in Fisheries Research. Kluwer Academic Publishers, Dordrecht.Google Scholar
  85. Maunder MN, Skaug HJ, Hoyle SD (2008) Comparison of estimators for mark-recapture models: random effects, hierarchical Bayes, and AD Model Builder. In: Thomson DL, Cooch EG, Conroy MJ (eds.) Modeling Demographic Processes in Marked Populations. Environmental and Ecological Statistics, Springer, New York.Google Scholar
  86. McCarthy MA, Masters P (2005) Profiting from prior information in Bayesian analyses of ecological data. Journal of Applied Ecology 42:1012–1019.CrossRefGoogle Scholar
  87. McCarthy MA (2007) Bayesian Methods for Ecology. Cambridge University Press, Cambridge.CrossRefMATHGoogle Scholar
  88. Meyer R, Millar RB (1999) Bugs in bayesian stock assessments. Canadian Journal of Fisheries Aquatic Sciences 56:1078–1087.CrossRefGoogle Scholar
  89. Michielsens CGJ, McAllister MK (2004) A Bayesian hierarchical analysis of stock–recruit data: quantifying structural and parameter uncertainties. Canadian Journal of Fisheries Aquatic Sciences 61:1032–1047.CrossRefGoogle Scholar
  90. Millar RB, Meyer R (2000) Bayesian state-space modeling of age-structured data: fitting a model is just the beginning. Canadian Journal of Fisheries Aquatic Sciences 57:43–50.CrossRefGoogle Scholar
  91. Millar RB (2004) Sensitivity of Bayes estimators to hyper-parameters with an application to maximum yiel from fisheries. Biometrics 60:536–542.CrossRefMATHMathSciNetGoogle Scholar
  92. Millar RB, Stewart WS (2005) Automatic calculation of the sensitivity of Bayesian fisheries models to informative priors. Canadian Journal of Fisheries and Aquatic Sciences 62: 1028–1036.CrossRefGoogle Scholar
  93. Morales JM, Haydon DT, Frair J, Holsinger KE, Fryxell JM (2004) Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85:2436–2445.CrossRefGoogle Scholar
  94. Mysterud A, Stenseth NC, Yoccoz NG, Langvatn R, Steinheim G (2001) Nonlinear effects of large-scale climatic variability on wild and domestic herbivores. Nature 410: 1096–1099.CrossRefGoogle Scholar
  95. Newman KB, Buckland ST, Lindley ST, Thomas L, Fernández C (2006) Hidden process models for animal population dynamics. Ecological Applications 16:74–86.CrossRefGoogle Scholar
  96. North PM, Morgan BJT (1979) Modeling heron survival using weather data. Biometrics 35: 667–681.CrossRefMathSciNetGoogle Scholar
  97. Ntzoufras I (2002) Gibbs variable selection using BUGS. Journal of Statistical Software, 7(7).Google Scholar
  98. Pearce JL, Cherry K, Drielsma M, Ferrier S, Whish G (2001) Incorporating expert opinion and fine-scale vegetation mapping into statistical models of faunal distribution. Journal of Applied Ecology 38:412–424.CrossRefGoogle Scholar
  99. Plummer M, Best NG, Cowles K, Vines K (2004) CODA: output analysis and diagnostics for MCMC. R package version 0.9-1, URL http://www-fis.iarc.fr/coda/.
  100. Pollock KH, Hines JE, Nichols JD (1984) The use of auxiliary variables in capture–recapture and removal experiments. Biometrics 40:329–340.CrossRefMATHGoogle Scholar
  101. Pollock KH (2002) The use of auxiliary variables in capture–recapture modelling: an overview. Journal of Applied Statistics 29:85–102.CrossRefMATHMathSciNetGoogle Scholar
  102. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
  103. Rivot E, Prévost E (2002) Hierarchical Bayesian analysis of capture-mark-recapture data. Canadian Journal of Fisheries Aquatic Sciences 59:1768–1784.CrossRefGoogle Scholar
  104. Rivot E, Prévost E, Parent E, Baglinière JL (2004) A Bayesian state-space modelling framework for fitting a salmon stage-structured population dynamic model to multiple time series of field data. Ecological Modelling 179:463–485.CrossRefGoogle Scholar
  105. Royle JA, Link WA (2002) Random effects and shrinkage estimation in capture-recapture models. Journal of Applied Statistics 29:329–351.CrossRefMATHMathSciNetGoogle Scholar
  106. Royle JA, Dorazio RM (2006) Hierarchical models of animal abundance and occurrence. Journal of Agricultural, Biological, and Environmental Statistics 11:249–263.CrossRefGoogle Scholar
  107. Royle JA (2008) Modeling individual effects in the Cormack–Jolly–Seber model: a state-space formulation. Biometrics, In press.Google Scholar
  108. Ruppert D, Wand MP, and Carroll R (2003) Semiparametric Regression. Cambridge University Press, Cambridge.CrossRefMATHGoogle Scholar
  109. Saether BE, Tufto J, Engen S, Jerstad K, Rostad OW, Skatan JE (2000) Population dynamical consequences of climate change for a small temperate songbird. Science 287:854–856.CrossRefGoogle Scholar
  110. Schaub M, Kania W, Koppen U (2005) Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. Journal of Animal Ecology 74:656–666.CrossRefGoogle Scholar
  111. Schaub M, Gimenez O, Sierro S, Arlettaz R (2007) Assessing population dynamics from limited data with integrated modeling: life history of the endangered greater horseshoe bat. Conservation Biology 21:945–955.CrossRefGoogle Scholar
  112. Seber GAF, (1965) A note on multiple-recapture census. Biometrika 52:249–259.MATHMathSciNetGoogle Scholar
  113. Shenk TM, White GC, Burnham KP (1998) Sampling-variance effects on detecting density dependence from temporal trends in natural populations. Ecological Monographs 68:445–463.CrossRefGoogle Scholar
  114. Skaug HJ, Fournier DA (2006) Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models. Computational Statistics and Data Analysis 51:699–709.CrossRefMATHMathSciNetGoogle Scholar
  115. Smith BJ (2004) BOA: Bayesian Output Analysis Program (BOA) for MCMC. R package version 1.1.2-1, URL http://www.public-health.uiowa.edu/boa.
  116. Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A (2002) Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series B-Statistical Methodology 64:583–616.CrossRefMATHMathSciNetGoogle Scholar
  117. Spiegelhalter D, Thomas A, Best N, Lunn D (2003) WinBUGS user manual. version 1.4 (http://www.mrc-bsu.cam.ac.uk/bugs.). Technical report, Medical Research Council Biostatistics Unit. Cambridge.
  118. Stenseth NC, Viljugrein H, Saitoh T, Hansen TF, Kittilsen MO, Bølviken E, Glöckner F (2003) Seasonality, density dependence, and population cycles in Hokkaido voles. Proceedings of the National Academy of Sciences of the USA 100:11478–11483.CrossRefGoogle Scholar
  119. Sturtz S, Ligges U, Gelman A (2005) R2WinBUGS: a package for running WinBUGS from R. Journal of Statistical Software 12:1–16.Google Scholar
  120. Thogmartin WE, Sauer JR, Knutson MG (2004) A hierarchical spatial model of avian abundance with application to cerulean warblers. Ecological Applications 14:1766–1779CrossRefGoogle Scholar
  121. Tufto J, Saether B-E, Engen S, Arcese P, Jerstad K, Rostad OW, Smith JNM (2000) Bayesian meta-analysis of demographic parameters in three small, temperate passerines. Oikos 88:273–281.CrossRefGoogle Scholar
  122. US Fish and Wildlife Service (2003) Waterfowl Population Status, 2003, US Department of the Interior, Washington, DC.Google Scholar
  123. van Dongen S (2006) Prior specification in Bayesian statistics: three cautionary tales. Journal of Theoretical Biology 242:90–100.CrossRefMathSciNetGoogle Scholar
  124. Viljugrein H, Stenseth NC, Smith GW, Steinbakk GH (2005) Density dependence in North American ducks. Ecology 86:245–254.CrossRefGoogle Scholar
  125. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:120–129. Available from http://www.cnr.colostate.edu/gwhite/software.html.
  126. Williams BK, Nichols JD, Conroy MJ (2002) Analysis and Management of Animal Populations. Academic Press, New York.Google Scholar
  127. Wintle BA, Bardos DC (2006) Modeling species-habitat relationships with spatially autocorrelated observation data. Ecological Applications 16:1945–1958.CrossRefGoogle Scholar
  128. Wintrebert C, Zwinderman AH, Cam E, Pradel R, van Houwelingen JC (2005) Joint modeling of breeding and survival of Rissa tridactyla using frailty models. Ecological Modelling 181: 203–213.CrossRefGoogle Scholar
  129. Wyatt RJ (2003) Mapping the abundance of riverine fish populations: integrating hierarchical Bayesian models with a geographic information system (GIS). Canadian Journal of Fisheries and Aquatic Sciences 60:997–1006.CrossRefGoogle Scholar
  130. Yamada K, Elith J, McCarthy M, Zerger A (2003) Eliciting and integrating expert knowledge for wildlife habitat modelling. Ecological Modelling 165:251–264.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Olivier Gimenez
    • 1
  • Simon J. Bonner
  • Ruth King
  • Richard A. Parker
  • Stephen P. Brooks
  • Lara E. Jamieson
  • Vladimir Grosbois
  • Byron J.T. Morgan
  • Len Thomas
  1. 1.CEFE/CNRSUMR 5175France

Personalised recommendations