Comparison of Heuristics for Solving the Gmlst Problem

  • Yiwei Chen
  • Namrata Cornick
  • Andrew O. Hall
  • Ritvik Shajpal
  • John Silberholz
  • Inbal Yahav
  • Bruce L. Golden

Abstract

Given a graph G whose edges are labeled with one or more labels, the Generalized Minimum Label Spanning Tree problem seeks the spanning tree over this graph that uses the least number of labels. We provide a mathematical model for this problem and propose effective greedy heuristics and metaheuristics. We finally compare the results of these algorithms with benchmark heuristics for the related Minimum Label Spanning Tree problem.

Keywords

Combinatorial optimization computational comparison genetic algorithm greedy heuristic metaheuristic minimum label spanning tree 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruggemann, Tobia, Monnot, Jerome, and Woeginger, Gerhard J. (2003). Local search for the minimum label spanning tree problem with bounded color classes. Operations Research Letters, 31(3):195–201.CrossRefMathSciNetGoogle Scholar
  2. Cerulli, Raffaele, Fink, Andreas, Gentili,Monica, and Voss, Stefan (2005). Metaheuristics comparison for the minimum labelling spanning tree problem. In Golden, B, Raghavan, S, and Wasil, E, editors, The Next Wave in Computing, Optimization, and Decision Technologies, pages 93–106.Google Scholar
  3. Chang, RS and Leu, Shing-Jiuan (1997). The minimum labeling spanning trees. Information Processing Letters, 63(5):277–282.CrossRefMathSciNetGoogle Scholar
  4. Michalewicz, Z (1996). Genetic Algorithms+ Data Structures= Evolution Programs. Springer.Google Scholar
  5. Nummela, Jeremiah and Julstrom, Bryant A. (2006). An effective genetic algorithm for the minimum-label spanning tree problem. In GECCO ’06: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pages 553–558, New York, NY, USA. ACM Press.Google Scholar
  6. Patterson, RA and Rolland, Erik (2002). Hybrid fiber coaxial network design. Operations Research, 50(3):538–551.CrossRefMathSciNetGoogle Scholar
  7. Reinelt, G (1990). TSPLIB-A Traveling Salesman Problem Library. Inst. für Mathematik.Google Scholar
  8. Silberholz, John and Golden, Bruce (2007). The generalized traveling salesman problem: A new genetic algorithm approach. In Baker, E, Joseph, A, Mehrotra, A, and Trick, M, editors, Extending the Horizons: Advances in Computing, Optimization, and Decision Technology, pages 165–181.Google Scholar
  9. Watts, Duncan J. and Strogatz, Steven H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684):409–410.CrossRefGoogle Scholar
  10. Xiong, Yupei, Golden, Bruce, and Wasil, Edward (2005a). A one-parameter genetic algorithm for the minimum labeling spanning tree problem. IEEE Transactions on Evolutionary Computation, 9(1):55–60.CrossRefGoogle Scholar
  11. Xiong, Yupei, Golden, Bruce, and Wasil, Edward (2005b). Worst-case behavior of the mvca heuristic for the minimum labeling spanning tree problem. Operations Research Letters, 33(1):77–80.MATHCrossRefGoogle Scholar
  12. Xiong, Yupei, Golden, Bruce, and Wasil, Edward (2006). Improved heuristics for the minimum label spanning tree problem. IEEE Transactions on Evolutionary Computation, 10(1):700– 703.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yiwei Chen
    • 1
  • Namrata Cornick
    • 2
  • Andrew O. Hall
    • 3
  • Ritvik Shajpal
    • 4
  • John Silberholz
    • 3
  • Inbal Yahav
    • 3
  • Bruce L. Golden
    • 3
  1. 1.Department of Electrical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Applied MathematicsUniversity of MarylandCollege ParkUSA
  3. 3.R. H. Smith School of BusinessUniversity of MarylandCollege ParkUSA
  4. 4.Department of GeographyUniversity of MarylandCollege ParkUSA

Personalised recommendations