Vehicle Routing Problems and Container Terminal Operations – An Update of Research

  • Robert Stahlbock
  • Stefan Voβ
Part of the Operations Research/Computer Science Interfaces book series (ORCS, volume 43)


Containers came into the market for international conveyance of sea freight almost five decades ago. The breakthrough was achieved with large investments in specially designed ships, adapted seaport terminals with suitable equipment, and availability of containers. Today over 60 % of the world’s deep-sea general cargo is transported in containers and some routes are even containerized up to 100 %. Seaport container terminals face a high demand for advanced optimization methods. A crucial competitive advantage is the rapid turnover of the containers, which corresponds to an efficient handling of containers as well as to a decrease of the costs of the transshipment processes. One of the key concerns in this respect refers to various types of equipment at container terminals devoted to the routing of containers to achieve high productivity. For instance, a variety of vehicles is used for the horizontal transport at the quayside and at the landside.

In this chapter we provide a comprehensive survey on routing problems that have arisen in the container terminal domain, such as how to route automated guided vehicles, new technologies such as double rail mounted gantry cranes, etc. This opens up new challenges for the field. The chapter strives to summarize the research results for the vehicle routing problem and its variants regarding container terminals.

Key words

Vehicle routing problem container terminal operations scheduling automated guided vehicles straddle carriers rail mounted gantry cranes quay cranes trucks trailers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anonymous. The container terminal of the future, 2006.– last check of URL: Jan 15, 2007.Google Scholar
  2. 2.
    Anonymous. The floating container crane concept, 2006. – last check of URL: Jan 15, 2007.Google Scholar
  3. 3.
    A. Asef-Vaziri and B. Khoshnevis. Automated technologies in maritime container terminals, 2006. Paper presented at the METRANS National Urban Freight Conf., Feb. 1-3, Long Beach, CA, USA.–last check ofURL: April 19, 2007.Google Scholar
  4. 4.
    J.W. Bae and K.H. Kim. A pooled dispatching strategy for automated guided vehicles in port container terminals.International Journal of Management Science, 6:47–67, 2000.Google Scholar
  5. 5.
    F. Baita, R. Pesenti, W. Ukovich, and D. Favaretto. A comparison of different solution approaches to the vehicle scheduling problem in a practical case.Computers & Operations Research, 27:1249–1269, 2000.CrossRefGoogle Scholar
  6. 6.
    M. Ball and M. Magazine. Sequencing of insertions in printed circuit board assembly.Operations Research, 36:192–201, 1988.Google Scholar
  7. 7.
    R.W. Bent and P. van Hentenryck. Scenario-based planning for partially dynamic vehicle routing with stochastic customers.Operations Research, 52:977–987, 2004.CrossRefGoogle Scholar
  8. 8.
    E.K. Bish. A multiple-crane-constrained scheduling problem in a containerterminal.European Journal of Operational Research, 144:83–107, 2003.Google Scholar
  9. 9.
    E.K. Bish, F.Y. Chen, Y.T. Leong, B.L. Nelson, J.W.C. Ng, and D.Simchi-Levi. Dispatching vehicles in a mega container terminal.OR Spectrum, 27:491–506, 2005.CrossRefGoogle Scholar
  10. 10.
    E.K. Bish, T.-Y. Leong, C.-L. Li, J.W.C. Ng, and D. Simchi-Levi. Analysis of a new vehicle scheduling and location problem.Naval Research Logistics, 48:363–385, 2001.CrossRefGoogle Scholar
  11. 11.
    L. Bodin, B. Golden, A. Assad, and M. Ball. Routing and scheduling of vehicles and crews : the state of the art.Computers & Operations Research, 10:63–211, 1983.CrossRefGoogle Scholar
  12. 12.
    J. BÖse, T. Reiners, D. Steenken, and S. Voβ. Vehicle dispatching at seaport container terminals using evolutionary algorithms.In R.H. Sprague, ed.,Proc. of the 33rd Annual Hawaii Intern.Conf. on System Sciences (HICSS), vol 2. IEEE Computer Society, LosAlamitos, CA, USA, 2000.Google Scholar
  13. 13.
    O. Bräysy and M. Gendreau. Vehicle routing problem with time windows, part I: route construction and local search algorithms.Transportation Science, 39:104–118, 2005.CrossRefGoogle Scholar
  14. 14.
    O. Bräysy and M. Gendreau. Vehicle routing problem with time windows, part II: metaheuristics.Transportation Science, 39:119–139, 2005.CrossRefGoogle Scholar
  15. 15.
    D. Briskorn, A. Drexl, and S. Hartmann. Inventory-based dispatching of automated guided vehicles on containerterminals.OR Spectrum, 28:611–630, 2006.CrossRefGoogle Scholar
  16. 16.
    D. Briskorn and S. Hartmann. Simulating dispatching strategies for automated container terminals.InOperations Research Proceedings 2005, 97–102. Springer,Berlin, 2006.CrossRefGoogle Scholar
  17. 17.
    G.G. Brown, K.J. Cormican, S. Lawphongpanich, and D.B. Widdis. Optimizing submarine berthing with a persistence incentive.Naval Research Logistics, 44:301–318, 1997.CrossRefGoogle Scholar
  18. 18.
    A. Bruzzone and R. Signorile. Simulation and genetic algorithms for ship planning and shipyard layout.Simulation, 71:74–83, 1998.CrossRefGoogle Scholar
  19. 19.
    H. Chang, H. Jula, A. Chassiakos, and P. Ioannou. Empty container reuse in the los angeles/long beach port area, 2006.Paper presented at the METRANS National Urban Freight Conf., Feb. 1-3, Long Beach,CA,USA.–last check of URL:April 19, 2007.Google Scholar
  20. 20.
    I.M. Chao. A tabu search method for the truck and trailer routing problem.Computers & Operations Research, 29:33–51, 2002.CrossRefGoogle Scholar
  21. 21.
    L. Chen, N. Bostel, P. Dejax, J. Cai, and L. Xi. A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal.European Journal of Operational Research, 181:40–58, 2007.CrossRefGoogle Scholar
  22. 22.
    S.T. Choong, M.H. Cole, and E. Kutanoglu. Empty container management for intermodal transportation networks.Transportation Research-E, 38:423–438, 2002.CrossRefGoogle Scholar
  23. 23.
    M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen.Maritime transportation. In C. Barnhart and G. Laporte, eds.,Transportation. Handbooks in Operations Research and Management Science, 189–284. Elsevier,Amsterdam, 2007.Google Scholar
  24. 24.
    M. Christiansen, K. Fagerholt, and D. Ronen. Ship routing and scheduling: Status and perspectives.Transportation Science, 38:1–18, 2004.CrossRefGoogle Scholar
  25. 25.
    M. Christiansen and B. Nygreen.Robust inventory ship routing by column generation.In G. Desaulniers, J. Desrosiers, and M.M. Solomon, eds.,Column Generation, 197–224. Springer (US), 2005.CrossRefGoogle Scholar
  26. 26.
    N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem.In N. Christofides, A. Mingozzi, P. Toth, and C. Sandi, eds.,Combinatorial optimization, 315–338. Wiley, Chichester, UK, 1979.Google Scholar
  27. 27.
    J.-F. Cordeau, G. Laporte, P. Legato, and L. Moccia. Models and tabu search heuristics for the berth-allocation problem.Transportation Science, 39:526–538, 2005.CrossRefGoogle Scholar
  28. 28.
    J.-F. Cordeau, G. Laporte, M.W.P. Savelsbergh, and D. Vigo.Vehicle routing.In C. Barnhart and G. Laporte, eds.,Transportation. Handbooks in Operations Research and Management Science, vol 14, 367–428. Elsevier, Amsterdam, 2007.Google Scholar
  29. 29.
    L. Coslovich, R. Pesenti, and W. Ukovich. Minimizing fleet operating costs for a container transportation company.European Journal of Operational Research, 171:776–786, 2006.CrossRefGoogle Scholar
  30. 30.
    T.G. Crainic and K.H. Kim. Intermodal transportation.In C. Barnhart and G. Laporte, eds.,Transportation. Handbooks in Operations Research and Management Science, 467–537. Elsevier, Amsterdam, 2007.Google Scholar
  31. 31.
    S.K. Das and L.N. Spasovic.Scheduling material handling vehicles in a container terminal.Production Planning & Control, 14:623–633, 2003.CrossRefGoogle Scholar
  32. 32.
    M. Desrochers, J.K. Lenstra, and M.W.P. Savelsbergh. A classification scheme for vehicle routing and scheduling problems.European Journal of Operational Research, 46:322–332, 1990.CrossRefGoogle Scholar
  33. 33.
    B. Dimitrijevic and L.N. Spasovic.Innovative transportation technologies–an alternative for providing linkages between port terminals and inland freight distribution facilities, 2006. Paper presented at the METRANS National Urban Freight Conf., Feb.1-3, Long Beach, CA, USA.–last check of URL: April 19, 2007.Google Scholar
  34. 34.
    M. Dror, ed.Arc Routing.Kluwer, Boston, 2000.Google Scholar
  35. 35.
    M.B. Duinkerken, R. Dekker, S.T. Kurstjens, J.A. Ottjes, and N.P. Dellaert. Comparing transportation systems for inter-terminal transport at theMaasvlakte container terminals.OR Spectrum, 28:469–493, 2006.CrossRefGoogle Scholar
  36. 36.
    M.B. Duinkerken, J.A. Ottjes, and G. Lodewijks.Comparison of routing strategies for AGV systems using simulation.In L.F. Perrone, F.P. Wieland, J. Liu, B.G. Lawson, D.M. Nicol, and R.M. Fujimoto, eds.,Proc. of the 2006 Winter Simulation Conf. (WSC 2006), Monterey, CA, USA, Dec 03–06, 1523–1530. ACM, 2006.Google Scholar
  37. 37.
    R. Eisenberg, R. Stahlbock, S. Voβ, and D. Steenken. Sequencing and scheduling of movements in an automated container yard using double rail-mounted gantry cranes.Working paper, University of Hamburg, 2003.Google Scholar
  38. 38.
    K. Fagerholt and M. Christiansen. A travelling salesman problem with allocation, time window and precedence constraints–an application to ship scheduling.International Transactions in Operational Research, 7:231–244,2000.CrossRefGoogle Scholar
  39. 39.
    T. Franz, S. Voβ, and H. RÖlke. Market-mechanisms for integrated container terminal management. In V. Bertram, ed.,Proc. of the 6th Intern. Conf. on Computer and IT Applications in the Maritime Industries, COMPIT’07, Cortona, Italy, April 23-25, 234–248. INSEAN, 2007.Google Scholar
  40. 40.
    L.M. Gambardella, A.E. Rizzoli, and M. Zaffalon. Simulation and planning of an intermodal container terminal.Simulation, 71:107–116, 1998.CrossRefGoogle Scholar
  41. 41.
    J.C. Gerdessen. Vehicle routing problem with trailers.European Journal of Operational Research, 93:135–147, 1996.CrossRefGoogle Scholar
  42. 42.
    M. Goetschalckx and H.D. Ratliff. Order picking in an aisle.IIE Transactions, 20:53–62, 1988.CrossRefGoogle Scholar
  43. 43.
    A.V. Goodchild. Crane double cycling in container ports: Algorithms, evaluation, and planning, 2005. PhD thesis, University of California at Berkeley, Department of Civil and Environmental Engineering.Google Scholar
  44. 44.
    A.V. Goodchild. Crane double cycling in container ports: planning methods and evaluation, 2006. Paper presented at the METRANS National Urban Freight Conf., Feb. 1-3, Long Beach, CA, USA.–last check of URL: April 19, 2007.Google Scholar
  45. 45.
    A.V. Goodchild.Port planning for double cycling crane operations, 2006. Paper presented at the TRB 2006 Annual Meeting, Washington, D.C., Jan 22-26.Google Scholar
  46. 46.
    A.V. Goodchild and C.F. Daganzo.Reducing ship turn-around time using double cycling.Technical report, University of California, Berkeley, Institute of Transportation Studies. Research Report UCB-ITS-RR-2004-4 (May 1), 2004.Google Scholar
  47. 47.
    A.V. Goodchild and C.F. Daganzo.Crane double cycling in container ports: Effect on ship dwell time.Technical report, University of California, Berkeley, Institute of Transportation Studies. Research Report UCB-ITS-RR-2005-5 (July), 2005.Google Scholar
  48. 48.
    A.V. Goodchild and C.F. Daganzo. Double-cycling strategies for container ships and their effect onship loading and unloading operations.Transportation Science, 40:473–483, 2006.CrossRefGoogle Scholar
  49. 49.
    M. Grunow, H.-O. Günther, and M. Lehmann. Dispatching multi-load AGVs in highly automated seaport container terminals.OR Spectrum, 26:211–235, 2004.CrossRefGoogle Scholar
  50. 50.
    M. Grunow, H.-O. Günther, and M. Lehmann.Online- versus Offline-Einsatzplanung von Fahrerlosen Transportsystemen in Containerhäfen.In T. Spengler, S. Voβ, and H. Kopfer, eds.,Logistik Management, 399–410. Springer, Berlin, 2004.Google Scholar
  51. 51.
    M. Grunow, H.-O. Günther, and M. Lehmann. Strategies for dispatching AGVs at automated seaport container terminals.OR Spectrum, 28:587–610, 2006.CrossRefGoogle Scholar
  52. 52.
    H. Gunnarsson, M. Rönnqvist, and D. Carlsson. A combined terminal location and ship routing problem.Journal of the Operational Research Society, 57:928–938, 2006.CrossRefGoogle Scholar
  53. 53.
    H.-O. Günther and K.-H. Kim. Container terminals and terminal operations.OR Spectrum, 28:437–445, 2006.CrossRefGoogle Scholar
  54. 54.
    G. Gutin and A.P. Punnen, eds.The Traveling Salesman Problem and Its Variations.Kluwer, Boston, 2002.Google Scholar
  55. 55.
    R.W. Hall. Distance approximations for routing manual pickers in a warehouse.IIE Transactions, 25:76–87, 1993.CrossRefGoogle Scholar
  56. 56.
    I.A. Hansen. Automated shunting of rail container wagons in ports and terminalareas.Transportation Planning and Technology, 27:385–401, 2004.CrossRefGoogle Scholar
  57. 57.
    R.F. Hartl, G. Hasle, and G.K. Janssens. Special issue on rich vehicle routing problem–editorial.Central European Journal of Operations Research, 14:103–104,2006.CrossRefGoogle Scholar
  58. 58.
    S. Hartmann. Generating scenarios for simulation and optimization of container terminal logistics.OR Spectrum, 26:171–192, 2004.CrossRefGoogle Scholar
  59. 59.
    G. Hasle.Heuristics for rich VRP models. Presentation at ROUTE2003, Skodsborg, Denmark, June 24, 2003.–last check of URL: Jan 14, 2007.Google Scholar
  60. 60.
    L.E. Henesey.Enhancing Container Terminal Performance: A Multi Agent Systems Approach.Blekinge Institute of Technology, Karlshamn (Sweden), 2004.Google Scholar
  61. 61.
    Y.C. Ho and S.H. Chien. A simulation study on the performance of task-determination rules and delivery-dispatching rules for multiple-load AGVs.International Journal of Production Research, 44:4193–4222, 2006.CrossRefGoogle Scholar
  62. 62.
    Y.-C. Ho and P.-F. Hsieh. A machine-to-loop assignment and layout design methodology for tandem AGV systems with multiple-load vehicles.International Journal of Production Research, 42:801–832, 2004.CrossRefGoogle Scholar
  63. 63.
    L. Hoffarth and S. Voβ. Liegeplatzdisposition auf einem Containerterminal – Ansätzezur Entwicklung eines entscheidungsunterstützenden Systems.In H. Dyckhoff, U. Derigs, M. Salomon, and H. Tijms, eds.,Operations Research Proceedings 1993, 89–95. Springer, Berlin, 1994.Google Scholar
  64. 64.
    C.-I. Hsu and Y.-P. Hsieh. Routing, ship size, and sailing frequency decision-making for amaritime hub-and-spoke container network.Mathematical and Computer Modelling, 45:899–916, 2007.CrossRefGoogle Scholar
  65. 65.
    hulten97L.A.R. Hulten.Container Logistics and its Management.PhD thesis, Chalmers University of Technology: Department of Transportation and Logistics, 1997.Google Scholar
  66. 66.
    A. Imai, E. Nishimura, and J. Current. A lagrangian relaxation-based heuristic for the vehicle routing with full container load.European Journal of Operational Research, 176:87–105, 2007.CrossRefGoogle Scholar
  67. 67.
    A. Imai, E. Nishimura, M. Hattori, and S. Papadimitriou. Berth allocation at indented berths for mega-containerships.European Journal of Operational Research, 179:57–593, 2007.CrossRefGoogle Scholar
  68. 68.
    A. Imai, E. Nishimura, and S. Papadimitriou.The dynamic berth allocation problem for a container port.Transportation Research-B, 35:401–417, 2001.CrossRefGoogle Scholar
  69. 69.
    A. Imai, E. Nishimura, and S. Papadimitriou. Berth allocation with service priority.Transportation Research-B, 37:437–457, 2003.CrossRefGoogle Scholar
  70. 70.
    A. Imai, E. Nishimura, and S. Papadimitriou. Corrigendum to ’the dynamic berth allocation problem for a container port’ [Transportation Research-B 35 (2001) 401–417].Transportation Research-B, 39:197, 2005.CrossRefGoogle Scholar
  71. 71.
    A. Imai, E. Nishimura, and S. Papadimitriou.Berthing ships at a multi-user container terminal with a limited quay capacity.Transportation Research-E. In press, doi:10.1016/j.tre.2006.05.002, online 2006.Google Scholar
  72. 72.
    A. Imai, E. Nishimura, S. Papadimitriou, and M. Liu. The economic viability of container mega-ships.Transportation Research-E, 42:21–41, 2006.CrossRefGoogle Scholar
  73. 73.
    P. Ioannou, A. Chassiakos, J. Zhang, A. Kanaris, and R. Unglaub. Automated container transport system between inland port and terminals. Project Report, University of Southern California, 2002. %20Report.pdf – last check of URL: Jan 08, 2007.Google Scholar
  74. 74.
    P.A. Ioannou, E.B. Kosmatopoulos, H. Jula, A. Collinge, C.-I. Liu, A. Asef-Vaziri, and E. Dougherty Jr. Cargo handling technologies. Final Report, University of Southern California, 2000. CCDoTT 97.pdf – last check of URL: Jan 08, 2007.Google Scholar
  75. 75.
    K.A. James and S. Gurol.Urban maglev freight container movement at the ports of Los Angeles/Long Beach, 2006.Paper presented at the METRANS National Urban Freight Conf., Feb. 1-3, Long Beach, CA, USA.–last check of URL: April 19, 2007.Google Scholar
  76. 76.
    H. Jula, A. Chassiakos, and P. Ioannou. Port dynamic empty container reuse.Transportation Research-E, 42:43–60, 2006.CrossRefGoogle Scholar
  77. 77.
    H. Jula, M. Dessouky, P. Ioannou, and A. Chassiakos. Container movement by trucks in metropolitan networks: modeling and optimization.Transportation Research-E, 41:235–259, 2005.CrossRefGoogle Scholar
  78. 78.
    K.H. Kim and J.W. Bae. A dispatching method for automated guided vehicles to minimize delay of containership operations.International Journal of Management Science, 5:1–25, 1999.Google Scholar
  79. 79.
    K.H. Kim and J.W. Bae. A look-ahead dispatching method for automated guided vehicles in automated port container terminals.Transportation Science, 38:224–234, 2004.CrossRefGoogle Scholar
  80. 80.
    K.H. Kim, S.M. Jeon, and K.R. Ryu. Deadlock prevention for automated guided vehicles in automated container terminals.OR Spectrum, 28:659–679, 2006.CrossRefGoogle Scholar
  81. 81.
    K.H. Kim and K.Y. Kim. An optimal routing algorithm for a transfer crane in port container terminals.Transportation Science, 33:17–33, 1999.CrossRefGoogle Scholar
  82. 82.
    K.H. Kim and K.Y. Kim. Routing straddle carriers for the loading operation of containers using a beam search algorithm.Computers & Industrial Engineering, 36:106–136, 1999.CrossRefGoogle Scholar
  83. 83.
    K.H. Kim and Y.-M. Park. A crane scheduling method for port container terminals.European Journal of Operational Research, 156:752–768, 2004.CrossRefGoogle Scholar
  84. 84.
    K.H. Kim, S.J. Wang, Y.-M. Park, C.-H. Yang, and J.W. Bae. A simulation study on operation rules for automated container yards.InProc. of the 7th Annual Intern. Conf. on Industrial Engineering, Pusan, Korea, 250–253, 2002.Google Scholar
  85. 85.
    K.Y. Kim and K.H. Kim. A routing algorithm for a single transfer crane to load exportcontainers onto a containership.Computers & Industrial Engineering, 33:673–676, 1997.CrossRefGoogle Scholar
  86. 86.
    K.Y. Kim and K.H. Kim. A routing algorithm for a single straddle carrier to load export containers onto a containership.International Journal of Production Economics, 59:425–433, 1999.CrossRefGoogle Scholar
  87. 87.
    K.Y. Kim and K.H. Kim. Heuristic algorithms for routing yard-side equipment for minimizing loading times in container terminals.Naval Research Logistics, 50:498–514, 2003.CrossRefGoogle Scholar
  88. 88.
    P.-H. Koo, W.S. Lee, and D.W. Jang. Fleet sizing and vehicle routing for container transportation in a static environment.OR Spectrum, 26(2):193–209, 2004.CrossRefGoogle Scholar
  89. 89.
    E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, eds.The Traveling Salesman Problem–A Guided Tour of Combinatorial Optimization.Wiley, Chichester, 1985.Google Scholar
  90. 90.
    D.-H. Lee, Z. Cao, and Q. Meng. Scheduling of two-transtainer systems for loading outbound containers in port container terminals with simulated annealing algorithm.International Journal of Production Economics, 107:115–124,2007.CrossRefGoogle Scholar
  91. 91.
    D.-H. Lee, H.Q. Wang, and L. Miao.Quay crane scheduling with non-interference constraints in portcontainer terminals.Transportation Research-E. In press,doi:10.1016/j.tre.2006.08.001, online 2006.Google Scholar
  92. 92.
    J. Lee and T. Srisawat. Effect of manufacturing system constructs on pick-up and drop-off strategies of multiple-load AGVs.International Journal of Production Research, 44:653–673,2006.CrossRefGoogle Scholar
  93. 93.
    M. Lehmann, M. Grunow, and H.-O. Günther. Deadlock handling for real-time control of AGVs at automated container terminals.OR Spectrum, 28:631–657, 2006.CrossRefGoogle Scholar
  94. 94.
    B. Lemper.Containerschifffahrt und Welthandel–eine ’Symbiose’, Mar 2003. –last check of URL: Jan 11, 2007.Google Scholar
  95. 95.
    J.-A. Li, S.C.H. Leung, Y. Wu, and K. Liu.Allocation of empty containers between multi-ports.European Journal of Operational Research. In press,doi:10.1016/j.ejor.2006.09.003, online 2006.Google Scholar
  96. 96.
    J.-A. Li, K. Liu, S.C.H. Leung, and K.K. Lai. Empty container management in a port with long-run average criterion.Mathematical and Computer Modelling, 40:85–100, 2004.CrossRefGoogle Scholar
  97. 97.
    A. Lim, B. Rodrigues, F. Xiao, and Y. Zhu. Crane scheduling with spatial constraints.Naval Research Logistics, 51:386–406, 2004.CrossRefGoogle Scholar
  98. 98.
    A. Lim, B. Rodrigues, and Z. Xu. Approximation schemes for the crane scheduling problem.InAlgorithm Theory – SWAT 2004: 9th Scandinavian Workshop on Algorithm Theory, Humlebaek, Denmark, July 8–10, 323–335. Springer, Berlin, 2004.Google Scholar
  99. 99.
    A. Lim, B. Rodrigues, and Z. Xu. Solving the crane scheduling problem using intelligent search schemes(extended abstract).In M. Wallace, ed.,Principles and Practice of Constraint Programming — Proc. of 10th Intern. Conf. CP 2004, Toronto, Canada, Sep 27–Oct 1, 747–751. Springer, Berlin, 2004.Google Scholar
  100. 100.
    A. Lim, B. Rodrigues, and Z. Xu. A m-parallel crane scheduling problem with a non-crossing constraint.Naval Research Logistics, 54:115–127, 2007.CrossRefGoogle Scholar
  101. 101.
    C.-I. Liu, H. Jula, and P.A. Ioannou. Design, simulation, and evaluation of automated container terminals.IEEE Transactions on Intelligent Transportation Systems, 3:12–26, 2002.CrossRefGoogle Scholar
  102. 102.
    D. Martinssen, D. Steenken, F. WÖlfer, T. Reiners, and S. Voβ. Einsatz bioanaloger Verfahren bei der Optimierung des wasserseitigen Containerumschlags. In H. Sebastian and T. Grünert, eds.,Logistik Management–Supply Chain Management und e-Business, 377–388. Teubner, Stuttgart, 2001.Google Scholar
  103. 103.
    P.J.M. Meersmans and A.P.M. Wagelmans. Effective algorithms for integrated scheduling of handling equipment at automated container terminals. Technical Report EI 2001-19, Erasmus University Rotterdam–Econometric Institute, June 2001.–l% ast check of URL: Jan 08, 2007.Google Scholar
  104. 104.
    L. Moccia, J.-F. Cordeau, M. Gaudioso, and G. Laporte. A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal.Naval Research Logistics, 53:45–59, 2006.CrossRefGoogle Scholar
  105. 105.
    R.H. MÖhring, E. KÖhler, E. Gawrilow, and B. Stenzel. Conflict-free real-time AGV routing. In H. Fleuren, D. den Hertog, and P. Kort, eds.,Operations Research Proceedings 2004, 18–24. Springer, Berlin, 2005.CrossRefGoogle Scholar
  106. 106.
    G. Muller.Intermodal Freight Transportation. Eno Foundation for Transportation, Westport, CN, 1995.Google Scholar
  107. 107.
    K.G. Murty, J. Liu, Y.-w. Wan, and R. Linn. A decision support system for operations in a container terminal.Decision Support Systems, 39:309–332, 2005.CrossRefGoogle Scholar
  108. 108.
    R. Namboothiri and A.L. Erere. A column generation heuristic for local drayage routing given a port access appointment system, 2006. Paper presented at the METRANS National Urban Freight Conf., Feb.1-3, Long Beach, CA, USA. – last check of URL: April 19, 2007.Google Scholar
  109. 109.
    W.C. Ng. Crane scheduling in container yards with inter-crane interference.European Journal of Operational Research, 164:64–78, 2005.CrossRefGoogle Scholar
  110. 110.
    W.C. Ng and K.L. Mak. Sequencing of container pickup trucks in container yard blocks.International Journal of Industrial Engineering, 11:82–89, 2004.Google Scholar
  111. 111.
    W.C. Ng and K.L. Mak. An effective heuristic for scheduling a yard crane to handle jobs with different ready times.Engineering Optimization, 37:867–877, 2005.CrossRefGoogle Scholar
  112. 112.
    W.C. Ng and K.L. Mak. Yard crane scheduling in port container terminals.Applied mathematical modelling, 29:263–276, 2005.CrossRefGoogle Scholar
  113. 113.
    W.C. Ng and K.L. Mak. Quay crane scheduling in container terminals.Engineering Optimization, 38:723–737, 2006.CrossRefGoogle Scholar
  114. 114.
    W.C. Ng, K.L. Mak, and Y.X. Zhang. Scheduling trucks in container terminals using a genetic algorithm.Engineering Optimization, 39:33–47, 2007.CrossRefGoogle Scholar
  115. 115.
    V.D. Nguyen and K.H. Kim. A dispatching method for automated lifting vehicles in automated port container terminals, 2007. Paper presented at the Intern. Conf. on Intelligent Manufacturing & Logistics Systems (IML 2007), Kitakyushu, Japan, Feb 26–28.Google Scholar
  116. 116.
    E. Nishimura, A. Imai, and S. Papadimitriou. Yard trailer routing at a maritime container terminal.Transportation Research-E, 41:53–76, 2005.CrossRefGoogle Scholar
  117. 117.
    NKM Noell Special Cranes GmbH & Co KG.Crane construction.–last check of URL: Jan 04, 2007,Sep 2003.Google Scholar
  118. 118.
    J.A. Ottjes, H.P.M. Veeke, M.B. Duinkerken, J.C. Rijsenbrij, and G.Lodewijks. Simulation of a multiterminal system for container handling.OR Spectrum, 28:447–468, 2006.CrossRefGoogle Scholar
  119. 119.
    Y.-M. Park and K.H. Kim. A scheduling method for berth and quay cranes.OR Spectrum, 25:1–23, 2003.CrossRefGoogle Scholar
  120. 120.
    R.I. Peterkofsky and C.F. Daganzo. A branch and bound solution method for the crane scheduling problem.Transportation Research-B, 24B:159–172, 1990.CrossRefGoogle Scholar
  121. 121.
    L. Qiu, W.-J. Hsu, S.Y. Huang, and H. Wang. Scheduling and routing algorithms for AGVs: A survey.International Journal of Production Research, 40:745–760,2002.CrossRefGoogle Scholar
  122. 122.
    H.D. Ratliff and A.S. Rosenthal. Order-picking in a rectangular warehouse: A solvable case of the traveling salesman problem.Operations Research, 31:507–521, 1983.Google Scholar
  123. 123.
    L. Rohter, C. Jackson, B. Dahnke, A. Iris, and G. Rawling.Automated shipping container transportation system design for Chicago, 2006.Paper presented at the METRANS National Urban Freight Conf., Feb.1-3, Long Beach, CA, USA.–last check of URL:April 19, 2007.Google Scholar
  124. 124.
    S. Roop.The freight shuttle: The crisis in freight transportation and theopportunity for a green alternative, 2006.Paper presented at the METRANS National Urban Freight Conf., Feb.1-3, Long Beach, CA, USA.–last check of URL:April 19, 2007.Google Scholar
  125. 125.
    Y. Saanen, J. van Meel, and A. Verbraeck. The next generation automated container terminals. Technical report, TBA Nederland/Delft University of Technology, 2003.Google Scholar
  126. 126.
    Y.A. Saanen and M.V. Valkengoed. Comparison of three automated stacking alternatives by means of simulation. In M.E. Kuhl, N.M. Steiger, F.B. Armstrong, and J.A. Joines, eds.,Proc. of the 2005 Winter Simulation Conf. (WSC 2005), Orlando, FL, USA, Dec 4–7, 1567–1576. ACM, 2005.Google Scholar
  127. 127.
    S. Scheuerer. A tabu search heuristic for the truck and trailer routing problem.Computers & Operations Research, 33:894–909, 2006.CrossRefGoogle Scholar
  128. 128.
    G. Schneidereit, S. Voβ, A. Parra, and D. Steenken.A general pickup and delivery problem for automated guided vehicles with multiloads: A case study. Working paper, University of Hamburg, 2003.Google Scholar
  129. 129.
    F. Semet. A two-phase algorithm for the partial accessibility constrained vehicle routing problem.Annals of Operations Research, 61:45–65, 1995.CrossRefGoogle Scholar
  130. 130.
    X.N. Shi and S. Voβ.Container terminal operations under the influence of shipping alliances. Working paper, University of Hamburg, 2007.Google Scholar
  131. 131.
    K. Shintani, A. Imai, E. Nishimura, and S. Papadimitriou. The container shipping network design problem with empty container repositioning.Transportation Research-E, 43:39–59, 2007.CrossRefGoogle Scholar
  132. 132.
    D.P. Song. Characterizing optimal empty container reposition policy in periodic-review shuttle service systems.Journal of the Operational Research Society, 58:122–133, 2006.CrossRefGoogle Scholar
  133. 133.
    D. Steenken. Fahrwegoptimierung am Containerterminal unter Echtzeitbedingungen.OR Spektrum, 14:161–168, 1992.CrossRefGoogle Scholar
  134. 134.
    D. Steenken. Optimised vehicle routing at a seaport container terminal.ORbit, 4:8–14, 2003.Google Scholar
  135. 135.
    D. Steenken, A. Henning, S. Freigang, and S. Voβ. Routing of straddle carriers at a container terminal with the special aspect of internal moves.OR Spektrum, 15:167–172, 1993.CrossRefGoogle Scholar
  136. 136.
    D. Steenken, S. Voβ, and R. Stahlbock. Container terminal operations and operations research – a classification and literature review.OR Spectrum, 26:3–49, 2004.CrossRefGoogle Scholar
  137. 137.
    M. Taleb-Ibrahimi, B. de Castilho, and C.F. Daganzo. Storage space vs handling work in container terminals.Transportation Research-B, 27:13–32, 1993.CrossRefGoogle Scholar
  138. 138.
    K.C. Tan, Y.H. Chew, and L.H. Lee. A hybrid multi-objective evolutionary algorithm for solving truck and trailer vehicle routing problems.European Journal of Operational Research, 172:855–885, 2006.CrossRefGoogle Scholar
  139. 139.
    T. Thurston and H. Hu. Distributed agent architecture for port automation. InProc. of the 26th Annual Intern. Computer Software and Applications Conf. (COMPSAC′02), Oxford, UK, Aug 26–29, 81–87. IEEE Computer Society, Los Alamitos, CA, USA, 2002.Google Scholar
  140. 140.
    P. Toth and D. Vigo, eds.The Vehicle Routing Problem. Society for Industrial & Applied Mathematics, SIAM, Philadelphia, 2002.Google Scholar
  141. 141.
    United Nations Conference on Trade and Development–secretariat. Review of maritime transport, Dec 2006.–last check of URL: Jan 8, 2007.Google Scholar
  142. 142.
    R. van der Meer.Operational Control of Internal Transport. Phd, Erasmus University, Rotterdam, The Netherlands, 2000.Google Scholar
  143. 143.
    A.W. Veenstra, N. Lang, and B. van den Rakt. Economic analysis of a container terminal simulation.International Journal of Logistics, 7:263–279, 2004.CrossRefGoogle Scholar
  144. 144.
    M. Vidovic, T. Baltacioglu, Ö. Yurt, and G. Özkan. Matching algorithms for the vehicle routing in containers delivery and collecting problems. InProc. of The 7th Balkan Conf. on Operational Research (BACOR 05), Constanta, Romania, May 25–28, 2005.–last check of URL: Jan 14, 2007.Google Scholar
  145. 145.
    I.F.A. Vis. A comparative analysis of storage and retrieval equipment at a container terminal.International Journal of Production Economics, 103:680–693, 2006.CrossRefGoogle Scholar
  146. 146.
    I.F.A. Vis. Survey of research in the design and control of automated guided vehicle systems.European Journal of Operational Research, 170:677–709, 2006.CrossRefGoogle Scholar
  147. 147.
    I.F.A. Vis and R. de Koster. Transshipment of containers at a container terminal: An overview.European Journal of Operational Research, 147:1–16, 2003.CrossRefGoogle Scholar
  148. 148.
    I.F.A. Vis, R. de Koster, K.J. Roodbergen, and L.W.P. Peeters. Determination of the number of automated guided vehicles required at a semi-automated container terminal.Journal of the Operational Research Society, 52:409–417, 2001.CrossRefGoogle Scholar
  149. 149.
    I.F.A. Vis and I. Harika. Comparison of vehicle types at an automated container terminal.OR Spectrum, 26:117–143, 2004.CrossRefGoogle Scholar
  150. 150.
    B. Volk. Growth factors in container shipping, Apr 2002.–last check of URL: Jan 8, 2007.Google Scholar
  151. 151.
    S. Voβ and J.W. Böse. Innovationsentscheidungen bei logistischen Dienstleistern – Praktische Erfahrungen in der Seeverkehrswirtschaft. In W. Dangelmaier and W. Felser, eds.,Das reagible Unternehmen, 253–282. HNI, Paderborn, 2000.Google Scholar
  152. 152.
    S. Voβ and J.R. Daduna, eds.Computer-Aided Scheduling of Public Transport. Springer, Berlin, 2001.Google Scholar
  153. 153.
    J.C.F. Wong and J.M.Y. Leung.On a vehicle routing problem with time windows and stochastic travel times. Technical report, Department of Systems Engineering and Engineering Management, Chinese University of Hong Kong, China, 2002.Google Scholar
  154. 154.
    H. Zhang and K.H. Kim. Dual cycling quay crane optimization with constraints of twin lift, 2007. Paper presented at the Intern. Conf. on Intelligent Manufacturing & Logistics Systems (IML 2007), Kitakyushu, Japan, Feb 26–28.Google Scholar
  155. 155.
    J. Zhang, P.A. Ioannou, and A. Chassiakos. Intelligent transportation system for container movement between inland port and terminals, 2006. Paper presented at the METRANS National Urban Freight Conf., Feb. 1-3, Long Beach, CA, USA.–last check of URL: April 19, 2007.Google Scholar
  156. 156.
    Y. Zhu and A. Lim. Crane scheduling with spatial constraints: Mathematical model and solving approaches. InAI&M 30-2004, Eighth Intern. Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, FL, USA, Jan 4–6, 2004.Google Scholar
  157. 157.
    Y. Zhu and A. Lim. Crane scheduling with non-crossing constraint.Journal of the Operational Research Society, 57:1464–1471, 2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Robert Stahlbock
    • 1
    • 2
  • Stefan Voβ
    • 1
  1. 1.Institute of Information SystemsUniversity of HamburgGermany
  2. 2.Lecturer at the FOM University of Applied Sciences

Personalised recommendations