The SOMA Terror Organization Portal (STOP): social network and analytic tools for the real-time analysis of terror groups

  • Amy Sliva
  • V.S. Subrahmanian
  • Vanina Martinez
  • Gerardo I. Simari

Abstract

Stochastic Opponent Modeling Agents (SOMA) have been proposed as a paradigm for reasoning about cultural groups, terror groups, and other socioeconomic-political-military organizations worldwide. In this paper, we describe the SOMA Terror Organization Portal (STOP). STOP provides a single point of contact through which analysts may access data about terror groups world wide. In order to analyze this data, SOMA provides three major components: the SOMA Extraction Engine (SEE), the SOMA Adversarial Forecast Engine (SAFE), and the SOMA Analyst NEtwork (SANE) that allows analysts to find other analysts doing similar work, share findings with them, and let consensus findings emerge. This paper describes the STOP framework.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gerardo I. Simari, Amy Sliva, Dana S. Nau, V. S. Subrahmanian: A stochastic language for modeling opponent agents. Proc. AAMAS 2006, pages 244-246.Google Scholar
  2. 2.
    S. Khuller, V. Martinez, D. Nau, G. Simari, A. Sliva, V.S. Subrahmanian. Action Probabilistic Logic Programs, accepted for publication in Annals of Mathematics and Artificial Intelligence, 2007.Google Scholar
  3. 3.
    S. Khuller, V. Martinez, D. Nau, G. Simari, A. Sliva, V.S. Subrahmanian. Finding Most Probable Worlds of Logic Programs, Proc. 2007 Intl. Conf. on Scalable Uncertainty Management, Springer Lecture Notes in Computer Science Vol. 3442, pages 45-59, 2007.Google Scholar
  4. 4.
    A. Sliva, V. Martinez, G. Simari and V.S. Subrahmanian. SOMA Models of the Behaviors of Stakeholders in the Afghan Drug Economy: A Preliminary Report, Proc. 2007 Intl. Conf. on Computational Cultural Dynamics, pages 78-86, AAAI Press.Google Scholar
  5. 5.
    V.S. Subrahmanian. Cultural Modeling in Real-Time, Science, Vol. M317, Nr. 5844, pages 1509-1510.Google Scholar
  6. 6.
    A. Mannes, M. Michael, A. Pate, A. Sliva, V.S. Subrahmanian and J. Wilkenfeld. Stochastic Opponent Modeling Agents: A Case Study with Hezbollah, Proc. Intl. Conf. on Social and Behavioral Processing, Sedona, Arizona, April 2008, Springer Verlag Lectures Notes in Computer Science, to appear.Google Scholar
  7. 7.
    V. Asal, C. Johnson, J. Wilkenfeld. “Ethnopolitical Violence and Terrorism in the Middle East” in J.J. Hewitt, J. Wilkenfeld, T.R. Gurr (eds) Peace and Conflict 2008.Boulder, CO: Paradigm Publishers. 2007.Google Scholar
  8. 8.
    Minorities at Risk Project. College Park, MD: Center for International Development and Conflict Management. 2005 Retrieved from http://www.cidcm.umd.edu/mar/.Google Scholar
  9. 9.
    V.S. Subrahmanian, M. Albanese, V. Martinez, D. Nau, D. Reforgiato, G. I. Simari, A. Sliva and J. Wilkenfeld. CARA: A Cultural Reasoning Architecture, IEEE Intelligent Systems, Vol. 22, Nr. 2, pages 12-16, March/April 2007.Google Scholar
  10. 10.
    M. Albanese and V.S. Subrahmanian. T-REX: A System for Automated Cultural Information Extraction, Proc. 2007 Intl. Conf. on Computational Cultural Dynamics, pages 2-8, AAAI Press, Aug. 2007.Google Scholar
  11. 11.
    C. Cesarano, B. Dorr, A. Picariello, D. Reforgiato, A. Sagoff and V.S. Subrahmanian. Opinion Analysis in Document Databases, Proc. AAAI Spring Symposium on Computational Approaches to Analyzing Weblogs, Stanford, CA, March 2006.Google Scholar
  12. 12.
    V. Martinez, G. I. Simari, A. Sliva and V.S. Subrahmanian. CONVEX: Context Vectors as a Paradigm for Learning Group Behaviors based on Similarity, in preparation.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Amy Sliva
    • 1
  • V.S. Subrahmanian
    • 1
  • Vanina Martinez
    • 1
  • Gerardo I. Simari
    • 1
  1. 1.Lab for Computational Cultural Dynamics Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA

Personalised recommendations