Mercury pp 169-215 | Cite as

Earth-Based Visible and Near-IR Imaging of Mercury

  • Leonid Ksanfomality
  • John Harmon
  • Elena Petrova
  • Nicolas Thomas
  • Igor Veselovsky
  • Johan Warell
Part of the Space Sciences Series of ISSI book series (SSSI, volume 26)


New planned orbiter missions to Mercury have prompted renewed efforts to investigate the surface of Mercury via ground-based remote sensing. While the highest resolution instrumentation optical telescopes (e.g., HST) cannot be used at angular distances close to the Sun, advanced ground-based astronomical techniques and modern analytical and software can be used to obtain the resolved images of the poorly known or unknown part of Mercury. Our observations of the planet presented here were carried out in many observatories at morning and evening elongation of the planet. Stacking the acquired images of the hemisphere of Mercury, which was not observed by the Mariner 10 mission (1974–1975), is presented. Huge features found there change radically the existing hypothesis that the “continental” character of a surface may be attributed to the whole planet. We present the observational method, the data analysis approach, the resulting images and obtained properties of the Mercury’s surface.


Solar system Unknown side of Mercury Ground based observation Resolved images Regolith physical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.H. Acuna, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Reme, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment. Science 284(5415), 790 (1999) CrossRefADSGoogle Scholar
  2. L.A. Akimov, On the brightness distribution across the lunar disk and planets. Astron. Zh. 56, 412–418 (1979) (in Russian) ADSGoogle Scholar
  3. L.A. Akimov, Reflection of light by the Moon I. Kinematika Fiz. Nebesnikh Tel. 4(1), 3–10 (1988) (in Russian) ADSMathSciNetGoogle Scholar
  4. L.A. Akimov, Y.V. Kornienko, Light scattering by the lunar surface. Kinematika Fiz. Nebesnikh Tel. 10(2), 15–22 (1994) (in Russian) ADSGoogle Scholar
  5. N. Artemieva, L. Hood, B.A. Ivanov, Impact demagnetization of the Martian crust: Primaries versus secondaries. Geophys. Res. Lett. 32(22) (2005). doi: 10.1029/2005GL024385
  6. A. Balogh, G. Giampieri, The origin of Mercury’s magnetic field and its multipolar structure. EGS XXVII General Assembly, Nice, 21–26 April 2002, abstract #5959 Google Scholar
  7. J. Baumgardner, M. Mendillo, J.K. Wilson, Digital high-definition imaging system for spectral studies of extended planetary atmospheres. 1. Initial results in white light showing features on the hemisphere of Mercury unimaged by Mariner 10. Astron. J. 119, 2458–2464 (2000) CrossRefADSGoogle Scholar
  8. W. Benz, Space Sci. Rev. (2007, this issue) Google Scholar
  9. W. Benz, W.L. Slattery, A.G.W. Cameron, Collisional stripping of Mercury’s mantle. Icarus 74, 516–528 (1988) CrossRefADSGoogle Scholar
  10. B.J. Buratti, J. Veverka, Voyager photometry of Europa. Icarus 55, 93–110 (1983) CrossRefADSGoogle Scholar
  11. B.J. Butler, D.O. Muhleman, M.A. Slade, Mercury – Full-disk radar images and the detection and stability of ice at the North Pole. J. Geophys. Res. 98, 15003–15023 (1993) CrossRefADSGoogle Scholar
  12. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960) Google Scholar
  13. S.C. Chase, E.D. Miner, D. Morrison et al., Preliminary infrared radiometry of the night side of Mercury from Mariner 10. Science 185, 142–145 (1974) CrossRefADSGoogle Scholar
  14. J.E.P. Connerney, N.F. Ness, Mercury’s magnetic field and interior, in Mercury (University of Arizona Press, Tucson, 1988), pp. 494–513 Google Scholar
  15. J.E.P. Connerney, M.H. Acuña, P.J. Wasilewski, G. Kletetschka, N.F. Ness, H. Rème, R.P. Lin, D.L. Mitchell, The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett. 28(21), 4015–4018 (2001). doi: 10.1029/2001GL013619 CrossRefADSGoogle Scholar
  16. J.E.P. Connerney, M.H. Acuña, N.F. Ness, T. Spohn, G. Schubert, Mars crustal magnetism. Space Sci. Rev. 111(1), 1–32 (2004a) CrossRefADSGoogle Scholar
  17. J.E.P. Connerney, M.H. Acuna, N.F. Ness, D.L. Mitchell, R.P. Lin, H. Reme, A magnetic perspective on the Martian crustal dichotomy. Hemispheres Apart: the Origin and Modification of the Martian Crustal Dichotomy. LPI Contribution No. 1213. Proceedings of the conference held September 30–October 1, 2004, in Houston, TX, USA, 2004b, pp. 11–12 Google Scholar
  18. A.C. Cook, M.S. Robinson, Mariner 10 stereo image coverage of Mercury. J. Geophys. Res. 105(E4), 9429–9443 (2000) CrossRefADSGoogle Scholar
  19. A. Danjon, Photometrie et colorimetrie des planetes Mercure et Venus. Bull. Astron. 14, 315 (1949) Google Scholar
  20. R.F. Dantowitz, S.W. Teare, M.J. Kozubal, Ground based-based high-resolution imaging of Mercury. Astron. J. 119, 2455–2457 (2000) CrossRefADSGoogle Scholar
  21. M.E. Davies, S.E. Dwornik, D.E. Gault, R.G. Strom, Atlas of Mercury, in NASA Scientific and Technical Report, ed. by J. Dunn, NASA SP-42 (US Government Printing Office, Washington, 1978) Google Scholar
  22. A.Z. Dolginov, Magnetic fields and nonuniform structures of the Moon. Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F, 1993, pp. 411–412 Google Scholar
  23. A. Dollfus, Pic-du-Midi visual and photographic observations of planets, in Planets and Satellites, ed. by G.P. Kuiper, B.M. Middlehurst (The University of Chicago Press, Chicago, 1961), pp. 482–485 Google Scholar
  24. A. Dollfus, M. Auriere, Optical polarimetry of planet Mercury. Icarus 23, 465 (1974) CrossRefADSGoogle Scholar
  25. D. Domingue, B. Hapke, Fitting theoretical photometric functions to asteroid phase curves. The scattering properties of natural terrestrial snows versus icy satellite surfaces. Icarus 78, 330–336 (1989) CrossRefADSGoogle Scholar
  26. D. Domingue, B. Hartman, A. Verbiscer, The scattering properties of natural terrestrial snows versus icy satellite surfaces. Icarus 128, 28–48 (1997) CrossRefADSGoogle Scholar
  27. J.P. Emery, A.L. Sprague, F.C. Witteborn, J.E. Colwell, D.H. Kozlowski, R.W.H. Wooden, Mercury: Thermal modeling and mid-infrared (5–12 μm) observations. Icarus 136, 104 (1998) CrossRefADSGoogle Scholar
  28. D.L. Fried, Probability of getting a lucky short-exposure image through turbulence. J. Opt. Soc. Am. 68, 1651–1658 (1978) ADSCrossRefGoogle Scholar
  29. P.E. Geissler, A. McEwen, L. Keszthelyi, R. Lopes-Gautier, J. Granahan, D.P. Simonelli, Global color variations on Io. Icarus 140, 265–282 (1999) CrossRefADSGoogle Scholar
  30. G. Giampieri, A. Balogh, Modelling of magnetic field measurements at Mercury. Planet. Space Sci. 49(14–15), 1637–1642 (2001) CrossRefADSGoogle Scholar
  31. G. Giampieri, A. Balogh, Mercury’s thermoelectric dynamo model revisited. Planet. Space Sci. 50(7–8), 757–762 (2002) CrossRefADSGoogle Scholar
  32. G. Giampieri, J. Scuffham, A. Balogh, BepiColombo measurements of Mercury’s internal field. 35th COSPAR Scientific Assembly. Held 18–25 July 2004, in Paris, France, 2004, p. 2726 Google Scholar
  33. J. Gradie, J. Veverka, Photometric properties of powered sulfur. Icarus 58, 227–245 (1984) CrossRefADSGoogle Scholar
  34. J. Grosser, K.-H. Glassmeier, A. Stadelmann, Magnetic field effects at planet Mercury. Planet. Space Sci. 52(14), 1251–1260 (2004) CrossRefADSGoogle Scholar
  35. E.W. Guinness, R.E. Arvidson, I. Clark, M.K. Shepard, Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking Lander sites. J. Geophys. Res. 102, 28687–28703 (1997) CrossRefADSGoogle Scholar
  36. K. Gunderson, J.A. Whitby, N. Thomas, Visible and NIR BRDF Measurements of Lunar Soil Simulant, 36th Annual Lunar and Planetary Science Conference, abstract no. 1781, 2005 Google Scholar
  37. K. Gunderson, N. Thomas, J.A. Whitby, First measurements with the Physikalisches Institut Radiometric Experiment (PHIRE). Planet. Space Sci. 54(11), 1046–1056 (2006) CrossRefADSGoogle Scholar
  38. B. Hapke, Bidirectional reflectance spectroscopy. 1. Theory. J. Geophys. Res. 86, 3039–3054 (1981) CrossRefADSGoogle Scholar
  39. B. Hapke, Bidirectional reflectance spectroscopy. 3. Correction for macroscopic roughness. Icarus 59, 41–59 (1984) CrossRefADSGoogle Scholar
  40. B. Hapke, Bidirectional reflectance spectroscopy. 4. The extinction coefficient and the opposition effect. Icarus 67, 264–280 (1986) CrossRefADSGoogle Scholar
  41. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge Univ. Press, New York, 1993) CrossRefGoogle Scholar
  42. B. Hapke, Bidirectional reflectance spectroscopy. 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus 157, 523–534 (2002) CrossRefADSGoogle Scholar
  43. J.K. Harmon, Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9234-y Google Scholar
  44. J.K. Harmon, D.B. Campbell, Radar observations of Mercury, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (Univ. of Arizona, Tucson, 1988), pp. 101–117 Google Scholar
  45. J.K. Harmon, M.A. Slade, Radar mapping of Mercury: Full-disk images and polar anomalies. Science 258, 640–642 (1992) CrossRefADSGoogle Scholar
  46. J.K. Harmon, P.J. Perillat, M.A. Slade, High-resolution radar imaging of Mercury’s North Pole. Icarus 149, 1–15 (2001) CrossRefADSGoogle Scholar
  47. J.K. Harmon, M.A. Slade, B.J. Butler, J.W. Head, M.S. Rice, D.B. Campbell, Mercury: Radar images of the equatorial and mid-latitude zones. Icarus 187, 374 (2007) CrossRefADSGoogle Scholar
  48. W.K. Hartmann, Moons and Planets (Wadsworth Publishing Co., Belmont, 1983), Chap. 5, 510 p Google Scholar
  49. J.W. Head, III, Surfaces of the terrestrial planets, in The New Solar System, ed. by J.K. Beatty et al. (Sky Publishing Corporation, London, 1981), pp. 45–56 Google Scholar
  50. I.V. Holin, Space–time coherence of signal scattered by diffuse moving surface in case of arbitrary motion and monochromatic illumination. Radiophys. Quantum Electron. 31, 515–518 (1988) (in Russian) Google Scholar
  51. P. Helfenstein, J. Veverka, Photometric properties of lunar terrains derived from Hapke’s equation. Icarus 72, 342–357 (1987) CrossRefADSGoogle Scholar
  52. J.K. Hillier, J. Veverka, P. Helfenstein, P. Lee, Photometric diversity of terrains on Triton. Icarus 109, 296–312 (1994) CrossRefADSGoogle Scholar
  53. R.E. Hufnagel, Restoration of atmospherically degraded images. Proc. Nat. Acad. Sci. 3, App. 2, 11 (1966) Google Scholar
  54. J.R. Johnson, W.M. Grundy, M.T. Lemmon, J.F. Bell III, M.J. Johnson, R. Deen, R.E. Arvidson, W.H. Farrand, E. Guinness, A.G. Hayes, K.E. Herkenhoff, F. Seelos IV, J. Soderblom, S. Squyres, Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers. 1. Spirit. J. Geophys. Res. 111(E02S14) (2006). doi: 10.1029/2005JE002494
  55. V.O. Kakhiani, Astronomical image processor AIMAP (2003, unpublished) Google Scholar
  56. G. Kletetschka, N.F. Ness, J.E.P. Connerney, M.H. Acuna, P.J. Wasilewski, Grain size dependent potential for self-generation of magnetic anomalies on Mars via thermoremanent magnetic acquisition and magnetic interaction of hematite and magnetite. Phys. Earth Planet. Interiors 148(2–4), 149–156 (2005) CrossRefADSGoogle Scholar
  57. H. Korth, J.B. Anderson, M.H. Acuna, J.A. Slavin, N.A. Tsyganenko, S.C. Solomon, R.L. McNutt, Determination of the properties of Mercury’s magnetic field by the MESSENGER mission. Planet. Space Sci. 52(8), 733–746 (2004) CrossRefADSGoogle Scholar
  58. M.A. Kreslavsky, Y.G. Shkuratov, Y.I. Velikodsky, V.G. Kaydash, D.G. Stankevich, Photometric properties of the lunar surface derived from Clementine observations. J. Geophys. Res. 105(E8), 20281–20295 (2000) CrossRefADSGoogle Scholar
  59. L.V. Ksanfomality, Proper magnetic fields of planets and satellites (a review). Sol. Syst. Res. 32(1), 31–41 (1998a) ADSGoogle Scholar
  60. L.V. Ksanfomality, The magnetic field of Mercury: A revision of the Mariner 10 results. Sol. Syst. Res. 32(2), 115–121 (1998b) ADSGoogle Scholar
  61. L.V. Ksanfomality, Physical properties of the Hermean surface (a review). Sol. Syst. Res. 35(5), 339–353 (2001) CrossRefADSGoogle Scholar
  62. L.V. Ksanfomality, High-resolution imaging of Mercury using Earth-based facilities. Sol. Syst. Res. 36, 267–277 (2002) CrossRefADSGoogle Scholar
  63. L.V. Ksanfomality, Mercury: Image of the planet in the longitude interval 210–285°W obtained by method of short expositions. Sol. Syst. Res. 37, 514–525 (2003) Google Scholar
  64. L.V. Ksanfomality, A huge basin in the unknown portion of Mercury in the 250–290°W longitude range. Sol. Syst. Res. 38, 21–27 (2004) CrossRefADSGoogle Scholar
  65. L.V. Ksanfomality, Global asymmetry of large forms of Hermean relief. The 2nd AOGS session, 2005, June, Singapore, Paper ID: 58-PS-A0974, 2005 Google Scholar
  66. L.V. Ksanfomality, Earth-based optical imaging of Mercury. Adv. Space Res. 38, 594–598 (2006) CrossRefADSGoogle Scholar
  67. L. Ksanfomality, A.L. Sprague, New images of Mercury’s surface from 210° to 290°W longitudes with implications for Mercury’s global asymmetry. Icarus (2007). doi: 10.1016/j.icarus.2006.12.009 Google Scholar
  68. L.V. Ksanfomality, V.P. Dzhapiashvili, V.O. Kakhiani, A.K. Mayer, Experiment on obtaining of Mercury’s images by the short exposure method. Sol. Syst. Res. 35, 190–194 (2001) CrossRefADSGoogle Scholar
  69. L. Ksanfomality, G. Papamastorakis, N. Thomas, The planet Mercury: Synthesis of resolved images of unknown part in the longitude range 250–290°W. Planet. Space Sci. 53, 849–859 (2005) CrossRefADSGoogle Scholar
  70. J.H. Lambert, Photometria Sive de Mensura et Gradibus Luminis, Colorum et Umbrae. Detleffsen, Augsburg, 1760 Google Scholar
  71. B. Langlais, M.E. Purucker, M. Mandea, Crustal magnetic field of Mars, J. Geophys. Res. 109(E2) (2004). doi: 10.1029/2003JE002048
  72. P.G. Lucey, D.T. Blewett, B.L. Joliff, Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J. Geophys. Res. 105(20), 297 (2000a) Google Scholar
  73. P.G. Lucey, D.T. Blewett, G.J. Taylor, B.R. Hapke, Imaging of lunar surface maturity. J. Geophys. Res. 105(20), 377 (2000b) Google Scholar
  74. A. Mallama, D. Wang, R.A. Howard, Photometry of Mercury from SOHO/LASCO and Earth. The Phase Function from 2 to 170 deg. Icarus 155, 253 (2002) CrossRefADSGoogle Scholar
  75. Red Shift 4. Maris Multimedia Ltd, 2000.
  76. A.S. McEwen, Photometric functions for photoclinometry and other applications. Icarus 92, 298–311 (1991) CrossRefADSGoogle Scholar
  77. M. Mendillo, J. Warell, S.S. Limaye, J. Baumgardner, A. Sprague, J.K. Wilson, Imaging the surface of Mercury using ground-based telescopes. Planet. Space Sci. 49, 1501 (2001) CrossRefADSGoogle Scholar
  78. M. Minnaert, The reciprocity principle in lunar photometry. Astrophys. J. 93, 403–410 (1941) CrossRefADSGoogle Scholar
  79. D.L. Mitchell, I. de Pater, Microwave imaging of Mercury’s thermal emission at wavelengths from 0.3 to 20.5 cm. Icarus 110, 2 (1994) CrossRefADSGoogle Scholar
  80. J. Murray, A. Dollfus, B. Smith, Cartography of the surface markings of Mercury. Icarus 17, 576–584 (1972) CrossRefADSGoogle Scholar
  81. N.F. Ness, Mercury—Magnetic field and interior. Space Sci. Rev. 21, 527–553 (1978) CrossRefADSGoogle Scholar
  82. N.F. Ness, The magnetic field of Mercury. Phys. Earth Planet. Interiors 20, 209–217 (1979) CrossRefADSGoogle Scholar
  83. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, Magnetic field of Mercury confirmed. Nature 255, 204–205 (1975a) CrossRefADSGoogle Scholar
  84. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, The magnetic field of Mercury. I. J. Geophys. Res. 80, 2708–2716 (1975b) CrossRefADSGoogle Scholar
  85. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, Observations of Mercury’s magnetic field. Icarus 28, 479–488 (1976) CrossRefADSGoogle Scholar
  86. R.T. Pappalardo, J.W. Head, G.C. Collins, R.L. Kirk, G. Neukum, J. Oberst, B. Giese, R. Greeley, C.R. Chapman, P. Helfenstein, J.M. Moore, A. McEwen, B.R. Tufts, D.A. Senske, H.H. Breneman, K. Klaasen, Grooved terrain on Ganymede: First results from Galileo highresolution imaging. Icarus 135, 276–302 (1998) CrossRefADSGoogle Scholar
  87. N.C. Richmond, L.L. Hood, J.S. Halekas, D.L. Mitchell, R.P. Lin, M. Acuña, A.B. Binder, Correlation of a strong lunar magnetic anomaly with a high-albedo region of the Descartes mountains. Geophys. Res. Lett. 30(7), 48–51 (2003). doi: 10.1029/2003GLO16938 CrossRefGoogle Scholar
  88. S.K. Runcorn, An ancient lunar magnetic dipole field. Nature 253, 701–703 (1975a) CrossRefADSGoogle Scholar
  89. S.K. Runcorn, On the interpretation of lunar magnetism. Phys. Earth Planet. Interiors 10(4), 327–335 (1975b) CrossRefADSGoogle Scholar
  90. C.T. Russell, J.G. Luhmann, Mercury: Magnetic field and magnetosphere, in Enciclopedia of Planetary Sciences, ed. by J.H. Shirley, R.W. Fairbridge (Chapman & Hall, London, 1997), pp. 476–478 CrossRefGoogle Scholar
  91. G. Schubert, M.N. Ross, D.J. Stevenson, T. Spohn, Mercury’s thermal history and the generation of its magnetic field Mercury, in Mercury (University of Arizona Press, Tucson, 1988), pp. 429–460 Google Scholar
  92. J. Scuffham, A. Balogh, A new model of Mercury’s magnetospheric magnetic field. Adv. Space Res. 38, 616–626 (2006) CrossRefADSGoogle Scholar
  93. M.A. Slade, B.J. Butler, D.O. Muhleman, Mercury radar imaging—Evidence for polar ice. Science 258, 635 (1992) CrossRefADSGoogle Scholar
  94. W.R. Smythe, Static and Dynamic Electricity (McGraw-Hill, 1950) Google Scholar
  95. T. Spohn, D. Breuer, Core composition and the magnetic field of Mercury, American Geophysical Union, Spring Meeting 2005, abstract #P23A-01 Google Scholar
  96. A.L. Sprague, R.W.H. Kozlowski, D.M. Hunten, Caloris Basin: An enhanced source for potassium in Mercury’s atmosphere. Science 249, 1140–1143 (1990) CrossRefADSGoogle Scholar
  97. A.L. Sprague, L.K. Deutsch, J. Hora, G.G. Fazio, B. Ludwig, J. Emery, W.F. Hoffmann, Mid-infrared (8.1–12.5 μm) imaging of Mercury. Icarus 147, 421 (2000) CrossRefADSGoogle Scholar
  98. A.L. Sprague, J.P. Emery, K.L. Donaldson, R.W. Russell, D.K. Lynch, A.L. Mazuk, Mercury: Mid-infrared (3–13.5 μm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene. Meteorit. Planet. Sci. 37, 1255 (2002) ADSCrossRefGoogle Scholar
  99. A.L. Sprague, J. Warell, J. Emery, A. Long, R.W.H. Kozlowski, Mercury: First spectra from 0.7 to 5.5 μm support low FeO and feldspathic composition. 35th Lunar and Planetary Science Conference, 2004, abstract no. 1630 Google Scholar
  100. S.W. Squyres, J. Veverka, Voyager photometry of surface features on Ganymede and Callisto. Icarus 46, 137–155 (1981) CrossRefADSGoogle Scholar
  101. L.J. Srnka, Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. Phys. Earth Planet. Interiors 11(3), 184–190 (1976) CrossRefADSGoogle Scholar
  102. R. Stekelenburg, AstroStack manual (v. 0.90 beta), 1999, 2000.
  103. A. Stephenson, Crustal remanence and the magnetic moment of Mercury. Earth Planet. Sci. Lett. 28(3), 454–458 (1976) CrossRefADSGoogle Scholar
  104. D.J. Stevenson, Mercury’s magnetic field—A thermoelectric dynamo? Earth Planet. Sci. Lett. 82(1–2), 114–120 (1987) CrossRefADSGoogle Scholar
  105. J.A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941) Google Scholar
  106. R.G. Strom, A.L. Sprague, Exploring Mercury: The Iron Planet (Springer, Chichester, 2003), 216 pp Google Scholar
  107. F. Takahashi, M. Matsushima, Dipolar and non-dipolar dynamos in a thin shell geometry with implications for the magnetic field of Mercury. Geophys. Res. Lett. 33(10) (2006), CiteID L10202 Google Scholar
  108. T. Van Hoolst et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9202-6 Google Scholar
  109. J. Veverka, P. Helfenstein, B. Hapke, J. Goguen, Photometry and polarimetry of Mercury, in Mercury, ed. by F. Vilas, C. Chapman, M. Matthews (Univ. of Arizona Press, Tucson, 1988), pp. 37–58 Google Scholar
  110. F. Vilas, P.S. Cobian, N.G. Barlow, S.M. Lederer, How much material do the radar-bright craters at the mercurian poles contain? Planet. Space Sci. 53, 1496–1500 (2005) CrossRefADSGoogle Scholar
  111. J. Warell, Properties of the Hermean regolith: II. Disk-resolved multicolor photometry and color variations of the “unknown” hemisphere. Icarus 156, 303 (2002) CrossRefADSGoogle Scholar
  112. J. Warell, Properties of the Hermean regolith: III. Disk-resolved vis–NIR reflectance spectra and implications for the abundance of iron. Icarus 161, 199–222 (2003) CrossRefADSGoogle Scholar
  113. J. Warell, Properties of the Hermean regolith: IV. Photometric parameters of Mercury and the Moon contrasted with Hapke modelling. Icarus 167, 271 (2004) CrossRefADSGoogle Scholar
  114. J. Warell, D.T. Blewett, Properties of the Hermean regolith: V. New optical reflectance spectra, comparison with lunar anorthosites, and mineralogical modelling. Icarus 168, 257 (2004) CrossRefADSGoogle Scholar
  115. J. Warell, S.S. Limaye, Properties of the Hermean regolith: I. Global regolith albedo variation at 200 km scale from multicolor CCD imaging. Planet. Space Sci. 49, 1531 (2001) CrossRefADSGoogle Scholar
  116. J. Warell, P.-G. Valegård, Albedo–color distribution on Mercury: A study of the poorly known hemisphere. Astron. Astrophys. 460, 625 (2006) CrossRefADSGoogle Scholar
  117. J. Wicht et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9280-5 Google Scholar
  118. M.S. Zhdanov, Geophysical Inverse Theory and Regularization Problems (Elsevier, 2002) Google Scholar

Copyright information

© Springer Science+Business Media, BV 2008

Authors and Affiliations

  • Leonid Ksanfomality
    • 1
  • John Harmon
    • 2
  • Elena Petrova
    • 1
  • Nicolas Thomas
    • 3
  • Igor Veselovsky
    • 1
  • Johan Warell
    • 4
  1. 1.Physics of PlanetsSpace Research InstituteMoscowRussia
  2. 2.National Astronomy and Ionosphere CenterArecibo ObservatoryAreciboUSA
  3. 3.Physikalisches InstitutUniversity of BernBernSwitzerland
  4. 4.Astronomika ObservatorietUppsala UniversitetUppsalaSweden

Personalised recommendations