Wheat and Barley Genome Sequencing

Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)

Abstract

A high quality reference genome sequence is a prerequisite resource for accessing any gene, driving genomics-based approaches to systems biology, and for efficient exploitation of natural and induced genetic diversity of an organism. Wheat and barley possess genomes of a size that was long presumed to be not amenable for whole genome sequencing. So far, only limited genomic sequencing of selected loci has been performed, providing preliminary information about the organization of the Triticeae genomes. Driven by breakthrough technology improvements, whole genome sequencing of Triticeae genomes is poised to become a realistic undertaking. This chapter provides an overview of the history of plant genome sequencing, summarizes the status of Triticeae genome sequencing efforts, describes next generation sequencing technologies, and offers an outlook on the future of wheat and barley genome sequencing based on these technologies.

References

  1. Albert, T.J., Molla, M.N., Muzny, D.M., Nazareth, L., Wheeler, D., Song, X., Richmond, T.A., Middle, C.M., Rodesch, M.J., Packard, C.J. et al. (2007) Direct selection of human genomic loci by microarray hybridization. Nat. Meth. 4, 903.CrossRefGoogle Scholar
  2. Anderson, O.D., Rausch, C., Moullet, O. and Lagudah, E.S. (2003) The wheat D-genome HMW-glutenin locus: BAC sequencing gene distribution, and retrotransposon clusters. Funct. Integr. Genomics 3, 56–68.PubMedGoogle Scholar
  3. Barbazuk, W.B., Emrich, S.J., Chen, H.D., Li, L. and Schnable, P.S. (2007) SNP discovery via 454 transcriptome sequencing. Plant J. 51, 910–918.PubMedCrossRefGoogle Scholar
  4. Barry, G.F. (2001) The use of the Monsanto draft rice genome sequence in research. Plant Physiol. 125, 1164–1165.PubMedCrossRefGoogle Scholar
  5. Bennett, S.T., Barnes, C., Cox, A., Davies, L. and Brown, C. (2005) Toward the $1000 human genome. Pharmacogenomics 6, 373–382.PubMedCrossRefGoogle Scholar
  6. Bhat, P.R., Lukaszewski, A., Cui, X., Xu, J., Svensson, J.T., Wanamaker, S., Waines, J.G. and Close, T.J. (2007) Mapping translocation breakpoints using a wheat microarray. Nucl. Acids Res. 35, 2936–2943.PubMedCrossRefGoogle Scholar
  7. Biémont, C. and Vieira, C. (2006) Junk DNA as an evolutionary force. Nature 443, 521–524.PubMedCrossRefGoogle Scholar
  8. Binladen, J., Gilbert, M.T.P., Bollback, J.P., Panitz, F., Bendixen, C., Nielsen, R. and Willerslev, E. (2007) The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE 2, e197.PubMedCrossRefGoogle Scholar
  9. Britten, R.J. (2004) Coding sequences of functioning human genes derived entirely from mobile element sequences. Proc Natl Acad Sci USA 101, 16825–16830.PubMedCrossRefGoogle Scholar
  10. Brockman, W., Alvarez, P., Young, S., Garber, M., Giannoukos, G., Lee, W.L., Russ, C., Lander, E.S., Nusbaum, C. and Jaffe, D.B. (2008) Quality scores and SNP detection in sequencing-by-synthesis systems. Genome Res. gr.070227.070107.Google Scholar
  11. Buell, C.R. (2002) Obtaining the sequence of the rice genome and lessons learned along the way. Trends Plant Sci. 7, 538–542.PubMedCrossRefGoogle Scholar
  12. Burr, B. (1999) A report from Singapore, September 1997: An international collaboration to sequence the rice genome. Oryza: Newsletter for International Rice Genome Sequencing Project 1999, 4–9.Google Scholar
  13. Burr, B. (2002) Mapping and sequencing the rice genome. Plant Cell 14, 521–523.PubMedCrossRefGoogle Scholar
  14. Chaisson, M.J. and Pevzner, P.A. (2008) Short read fragment assembly of bacterial genomes. Genome Res. 18, 324–330.PubMedCrossRefGoogle Scholar
  15. Cheung, F., Haas, B.J., Goldberg, S.M., May, G.D., Xiao, Y. and Town, C.D. (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics 7, 272.PubMedCrossRefGoogle Scholar
  16. Clark, R.M., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., Warthmann, N., Hu, T.T., Fu, G., Hinds, D.A. et al. (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338–342.PubMedCrossRefGoogle Scholar
  17. Clark, R.M., Wagler, T.N., Quijada, P. and Doebley, J. (2006) A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat. Genet. 38, 594–597.PubMedCrossRefGoogle Scholar
  18. Close, T.J., Wanamaker, S.I., Caldo, R.A., Turner, S.M., Ashlock, D.A., Dickerson, J.A., Wing, R.A., Muehlbauer, G.J., Kleinhofs, A. and Wise, R.P. (2004) A new resource for cereal genomics: 22 K barley GeneChip comes of age. Plant Physiol. 134, 960–968.PubMedCrossRefGoogle Scholar
  19. Cokus, S.J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C.D., Pradhan, S., Nelson, S.F., Pellegrini, M. and Jacobsen, S.E. (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219.PubMedCrossRefGoogle Scholar
  20. Cordaux, R., Udit, S., Batzer, M.A. and Feschotte, C. (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA 103, 8101–8106.PubMedCrossRefGoogle Scholar
  21. Devos, K.M., Ma, J., Pontaroli, A.C., Pratt, L.H. and Bennetzen, J.L. (2005) Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc Natl Acad Sci USA 102, 19243–19248.PubMedCrossRefGoogle Scholar
  22. Dolinski, K. and Botstein, D. (2005) Changing perspectives in yeast research nearly a decade after the genome sequence. Genome Res. 15, 1611–1619.PubMedCrossRefGoogle Scholar
  23. Dubcovsky, J., Ramakrishna, W., SanMiguel, P.J., Busso, C.S., Yan, L.L., Shiloff, B.A. and Bennetzen, J.L. (2001) Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol. 125, 1342–1353.PubMedCrossRefGoogle Scholar
  24. Emberton, J., Ma, J., Yuan, Y., SanMiguel, P. and Bennetzen, J.L. (2005) Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res. 15, 1441–1446.PubMedCrossRefGoogle Scholar
  25. Emrich, S.J., Barbazuk, W.B., Li, L. and Schnable, P.S. (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res. 17, 69–73.PubMedCrossRefGoogle Scholar
  26. Gerstein, M.B., Bruce, C., Rozowsky, J.S., Zheng, D., Du, J., Korbel, J.O., Emanuelsson, O., Zhang, Z.D., Weissman, S. and Snyder, M. (2007) What is a gene, post-ENCODE? History and updated definition. Genome Res. 17, 669–681.PubMedCrossRefGoogle Scholar
  27. Goff, S.A., Ricke, D., Lan, T.-H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H. et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.PubMedCrossRefGoogle Scholar
  28. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M. et al. (1996) Life with 6000 genes. Science 274, 546–567.PubMedCrossRefGoogle Scholar
  29. Gronenborn, B. and Messing, J. (1978) Methylation of single-stranded DNA in vitro introduces new restriction endonuclease cleavage sites. Nature 272, 375–377.PubMedCrossRefGoogle Scholar
  30. Hanada, K., Zhang, X., Borevitz, J.O., Li, W.-H. and Shiu, S.-H. (2007) A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res. 17, 632–640.PubMedCrossRefGoogle Scholar
  31. Hardin, S., Gao, X., Briggs, J., Willson, R.and Tu, S.-C. (2004) Methods for real-time single molecule sequence determination. United States Patent, 7,329,492, Visigen Biotechnologies, Inc. (TX).Google Scholar
  32. Harris, T.D., Buzby, P.R., Babcock, H., Beer, E., Bowers, J., Braslavsky, I., Causey, M., Colonell, J., DiMeo, J., Efcavitch, J. W et al. (2008) Single-molecule DNA sequencing of a viral genome. Science 320, 106–109.PubMedCrossRefGoogle Scholar
  33. Hernandez, D., Francois, P., Farinelli, L., Osteras, M. and Schrenzel, J. (2008) De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res. 10.1101/gr.072033.072107.Google Scholar
  34. Hodges, E., Xuan, Z., Balija, V., Kramer, M., Molla, M.N., Smith, S.W., Middle, C.M., Rodesch, M.J., Albert, T.J., Hannon, G.J. et al. (2007) Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39, 1522.PubMedCrossRefGoogle Scholar
  35. Hutchison, C.A., III. (2007) DNA sequencing: bench to bedside and beyond. Nucl. Acids Res. 35, 6227–6237.PubMedCrossRefGoogle Scholar
  36. International Rice Genome Sequencing Project. (2005) The map-based sequence of the rice genome. Nature 436, 793–800.CrossRefGoogle Scholar
  37. Itoh, T., Tanaka, T., Barrero, R.A., Yamasaki, C., Fujii, Y., Hilton, P.B., Antonio, B.A., Aono, H., Apweiler, R., Bruskiewich, R. et al. (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res. 17, 175–183.PubMedCrossRefGoogle Scholar
  38. Jakobsson, M., Scholz, S.W., Scheet, P., Gibbs, J.R., VanLiere, J.M., Fung, H.-C., Szpiech, Z.A., Degnan, J.H., Wang, K., Guerreiro, R. et al. (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451, 998.PubMedCrossRefGoogle Scholar
  39. Kelleher, C.T., Chiu, R., Bosdet, H.S.I.E., Krzywinski, M.I., Fjell, C.D., Wilkin, J., Yin, T., DiFazio, S.P., Ali, J., Asano, J.K. et al. (2007) A physical map of the highly heterozygous Populus genome: integration with the genome sequence and genetic map and analysis of haplotype variation. Plant J. 50, 1063–1078.PubMedCrossRefGoogle Scholar
  40. Kidd, J.M., Cooper, G.M., Donahue, W.F., Hayden, H.S., Sampas, N., Graves, T., Hansen, N., Teague, B., Alkan, C., Antonacci, F. et al. (2008) Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56–64.PubMedCrossRefGoogle Scholar
  41. Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A. et al. (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104, 1424–1429.PubMedCrossRefGoogle Scholar
  42. Kondrashov, A.S. (2005) Fruitfly genome is not junk. Nature 437, 1106.PubMedCrossRefGoogle Scholar
  43. Korlach, J., Marks, P.J., Cicero, R.L., Gray, J.J., Murphy, D.L., Roitman, D.B., Pham, T.T., Otto, G.A., Foquet, M. and Turner, S.W. (2008) Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci USA 105, 1176–1181.PubMedCrossRefGoogle Scholar
  44. Lamoureux, D., Peterson, D.G., Li, W., Fellers, J.P. and Gill, B.S. (2005) The efficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.). Genome 48, 1120–1126.PubMedCrossRefGoogle Scholar
  45. Lazo, G.R., Chao, S., Hummel, D.D., Edwards, H., Crossman, C.C., Lui, N., Matthews, D.E., Carollo, V.L., Hane, D.L., You, F.M. et al. (2004) Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.): EST generation, unigene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map. Genetics 168, 585–593.PubMedCrossRefGoogle Scholar
  46. Mardis, E. (2008) The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141.PubMedCrossRefGoogle Scholar
  47. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.-J., Chen, Z. et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.PubMedGoogle Scholar
  48. Messing, J. (1999) The formation of an International Rice Genome Sequencing Project. Oryza: Newsletter for International Rice Genome Sequencing Project, 2–4.Google Scholar
  49. Messing, J., Bharti, A.K., Karlowski, W.M., Gundlach, H., Kim, H.R., Yu, Y., Wei, F., Fuks, G., Soderlund, C.A., Mayer, K.F.X. et al. (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101, 14349–14354.PubMedCrossRefGoogle Scholar
  50. Messing, J., Gronenborn, B., Müller-Hill, B. and Hopschneider, H.P. (1977) Filamentous coliphage M13 as a cloning vehicle: insertion of a HindII fragment of the lac regulatory region in M13 replicative form in vitro. Proc Natl Acad Sci USA 74, 3642–3646.PubMedCrossRefGoogle Scholar
  51. Messing, J. and Vieira, J. (1982) A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19, 269–276.PubMedCrossRefGoogle Scholar
  52. Metzker, M.L. (2005) Emerging technologies in DNA sequencing. Genome Res. 15, 1767–1776.PubMedCrossRefGoogle Scholar
  53. Meyer, M., Stenzel, U. and Hofreiter, M. (2008) Parallel tagged sequencing on the 454 platform. Nat. Protocols 3, 267–278.PubMedCrossRefGoogle Scholar
  54. Meyer, M., Stenzel, U., Myles, S., Prufer, K. and Hofreiter, M. (2007) Targeted high-throughput sequencing of tagged nucleic acid samples. Nucl. Acids Res. 35, e97.PubMedCrossRefGoogle Scholar
  55. Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J.H., Senin, P., Wang, W., Ly, B.V., Lewis, K.L.T. et al. (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991–996.PubMedCrossRefGoogle Scholar
  56. Morgante, M. (2006) Plant genome organisation and diversity: the year of the junk! Curr. Opin. Biotechnol. 17, 168–173.PubMedCrossRefGoogle Scholar
  57. Ogihara, Y., Mochida, K., Nemoto, Y., Murai, K., Yamazaki, Y., Shin-I, T. and Kohara, Y. (2003) Correlated clustering and virtual display of gene expression patterns in the wheat life cycle by large-scale statistical analyses of expressed sequence tags. Plant J. 33, 1001–1011.PubMedCrossRefGoogle Scholar
  58. Ohno, S. (1972) So much ‘junk’ DNA in our genome. Brookhaven Symp. Biol. 23, 366–370.Google Scholar
  59. Okou, D.T., Steinberg, K.M., Middle, C., Cutler, D.J., Albert, T.J. and Zwick, M.E. (2007) Microarray-based genomic selection for high-throughput resequencing. Nat. Meth. 4, 907.CrossRefGoogle Scholar
  60. Olson, M.V. (2008) Human genetics: Dr Watson’s base pairs. Nature 452, 819–820.PubMedCrossRefGoogle Scholar
  61. Ossowski, S., Schneeberger, K., Clark, R.M., Lanz, C., Warthmann, N. and Weigel, D. (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res. gr. 10.1101/080200.080108.Google Scholar
  62. Palmer, L. and McCombie, W.R. (2002) On the importance of being finished. Genome Biol. 3, comment2010.2011–comment2010.2014.Google Scholar
  63. Parameswaran, P., Jalili, R., Tao, L., Shokralla, S., Gharizadeh, B., Ronaghi, M. and Fire, A.Z. (2007) A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucl. Acids Res. 35, e130.PubMedCrossRefGoogle Scholar
  64. Paux, E., Roger, D., Badaeva, E., Gay, G., Bernard, M., Sourdille, P. and Feuillet, C. (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J. 48, 463–474.PubMedCrossRefGoogle Scholar
  65. Peterson, D.G., Schulze, S.R., Sciara, E.B., Lee, S.A., Bowers, J.E., Nagel, A., Jiang, N., Tibbitts, D.C., Wessler, S.R. and Paterson, A.H. (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res. 12, 795–807.PubMedCrossRefGoogle Scholar
  66. Pheasant, M. and Mattick, J.S. (2007) Raising the estimate of functional human sequences. Genome Res. 17, 1245–1253.PubMedCrossRefGoogle Scholar
  67. Pop, M. and Salzberg, S.L. (2008) Bioinformatics challenges of new sequencing technology. Trends Genet. 24, 142–149.PubMedCrossRefGoogle Scholar
  68. Qi, L.L., Echalier, B., Chao, S., Lazo, G.R., Butler, G.E., Anderson, O.D., Akhunov, E.D., Dvorak, J., Linkiewicz, A.M., Ratnasiri, A. et al. (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168, 701–712.PubMedCrossRefGoogle Scholar
  69. Rabinowicz, P.D. (2003) Constructing gene-enriched plant genomic libraries using methylation filtration technology. Methods Mol. Biol. 236, 21–36.PubMedGoogle Scholar
  70. Rabinowicz, P.D. and Bennetzen, J.L. (2006) The maize genome as a model for efficient sequence analysis of large plant genomes. Curr. Opin. Plant Biol. 9, 149–156.PubMedCrossRefGoogle Scholar
  71. Rabinowicz, P.D., Citek, R., Budiman, M.A., Nunberg, A., Bedell, J.A., Lakey, N., O’Shaughnessy, A.L., Nascimento, L.U., McCombie, W.R. and Martienssen, R.A. (2005) Differential methylation of genes and repeats in land plants. Genome Res. 15, 1431–1440.PubMedCrossRefGoogle Scholar
  72. Ramakrishna, W., Dubcovsky, J., Park, Y.J., Busso, C., Emberton, J., SanMiguel, P. and Bennetzen, J.L. (2002) Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 162, 1389–1400.PubMedGoogle Scholar
  73. Ronaghi, M. (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res. 11, 3–11.PubMedCrossRefGoogle Scholar
  74. Rostoks, N., Mudie, S., Cardle, L., Russell, J., Ramsay, L., Booth, A., Svensson, J., Wanamaker, S., Walia, H., Rodriguez, E. et al. (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol. Gen. Genomics 274, 515–527.CrossRefGoogle Scholar
  75. Rostoks, N., Park, Y., Ramakrishna, W., Ma, J., Druka, A., Shiloff, B., SanMiguel, P., Jiang, Z., Brueggeman, R., Sandhu, D. et al. (2002) Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Funct. Integr. Genomics 2, 51–59.PubMedCrossRefGoogle Scholar
  76. Rudd, S. (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci. 8, 321.PubMedCrossRefGoogle Scholar
  77. Ryan, D., Rahimi, M., Lund, J., Mehta, R. and Parviz, B. (2007) Toward nanoscale genome sequencing. Trends Biotechnol. 25, 385–389.PubMedCrossRefGoogle Scholar
  78. Salvi, S., Sponza, G., Morgante, M., Tomes, D., Niu, X., Fengler, K.A., Meeley, R., Ananiev, E.V., Svitashev, S., Bruggemann, E. et al. (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl. Acad. Sci. USA 104, 11376–11381.PubMedCrossRefGoogle Scholar
  79. Sanger, F. (1988) Sequences, sequences, and sequences. Annu. Rev. Biochem. 57, 1–29.PubMedCrossRefGoogle Scholar
  80. Sanger, F. (2001) The early days of DNA sequences. Nat. Med. 7, 267–268.PubMedCrossRefGoogle Scholar
  81. Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.PubMedCrossRefGoogle Scholar
  82. Sasaki, T. and Burr, B. (1999) Rice genome sequencing as a gold mining for all. Oryza: Newsletter for International Rice Genome Sequencing Project, 1–2.Google Scholar
  83. Sasaki, T. and Burr, B. (2000) International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr. Opin. Plant Biol. 3, 138–142.PubMedCrossRefGoogle Scholar
  84. Sasaki, T., Matsumoto, T., Yamamoto, K., Sakata, K., Baba, T., Katayose, Y., Wu, J., Niimura, Y., Cheng, Z., Nagamura, Y. et al. (2002) The genome sequence and structure of rice chromosome 1. Nature 420, 312–316.PubMedCrossRefGoogle Scholar
  85. Service, R.F. (2006) Gene sequencing: the race for the $1000 genome. Science 311, 1544–1546.PubMedCrossRefGoogle Scholar
  86. Shendure, J. and Ji, H. (2008) Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145.PubMedCrossRefGoogle Scholar
  87. Shendure, J., Mitra, R.D., Varma, C. and Church, G.M. (2004) Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–343.PubMedCrossRefGoogle Scholar
  88. Somerville, C. and Koornneef, M. (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat. Rev. Genet. 3, 883–889.PubMedCrossRefGoogle Scholar
  89. Stein, N. (2007) Triticeae genomics: advances in sequence analysis of large genome cereal crops. Chromosome Res. 15, 21–31.PubMedCrossRefGoogle Scholar
  90. Stein, N., Prasad, M., Scholz, U., Thiel, T., Zhang, H., Wolf, M., Kota, R., Varshney, R.K., Perovic, D. and Graner, A. (2007) A 1000 loci transcript map of the barley genome – new anchoring points for integrative grass genomics. Theor. Appl. Genet. 114, 823–839.PubMedCrossRefGoogle Scholar
  91. Swarbreck, D., Wilks, C., Lamesch, P., Berardini, T.Z., Garcia-Hernandez, M., Foerster, H., Li, D., Meyer, T., Muller, R., Ploetz, L. et al. (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucl. Acids Res. 36, D1009–D1014.PubMedCrossRefGoogle Scholar
  92. The C. elegans Sequencing Consortium. (1998) Genome sequence of the nematode C elegans: a platform for investigating biology. Science 282, 2012–2018.CrossRefGoogle Scholar
  93. The ENCODE Project Consortium. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816.CrossRefGoogle Scholar
  94. The French–Italian Public Consortium for Grapevine Genome Characterization. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467.CrossRefGoogle Scholar
  95. The International HapMap Consortium. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861.CrossRefGoogle Scholar
  96. Thurman, R.E., Day, N., Noble, W.S. and Stamatoyannopoulos, J.A. (2007) Identification of higher-order functional domains in the human ENCODE regions. Genome Res. 17, 917–927.PubMedCrossRefGoogle Scholar
  97. Timko, M., Rushton, P., Laudeman, T., Bokowiec, M., Chipumuro, E., Cheung, F., Town, C. and Chen, X. (2008) Sequencing and analysis of the gene-rich space of cowpea. BMC Genomics 9, 103.PubMedCrossRefGoogle Scholar
  98. Travis, J. (2008) Uncorking the grape genome. Science 320, 475–477.PubMedCrossRefGoogle Scholar
  99. Tuskan, G.A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A. et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604.PubMedCrossRefGoogle Scholar
  100. Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D.A., Cestaro, A., Pruss, D., Pindo, M., FitzGerald, L.M., Vezzulli, S., Reid, J. et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2, e1326.PubMedCrossRefGoogle Scholar
  101. Venter, J.C., Smith, H.O. and Hood, L. (1996) A new strategy for genome sequencing. Nature 381, 364.PubMedCrossRefGoogle Scholar
  102. Vij, S., Gupta, V., Kumar, D., Vydianathan, R., Raghuvanshi, S., Khurana, P., Khurana, J.P. and Tyagi, A.K. (2006) Decoding the rice genome. BioEssays 28, 421–432.PubMedCrossRefGoogle Scholar
  103. Wang, Y., Tang, X., Cheng, Z., Mueller, L., Giovannoni, J. and Tanksley, S.D. (2006) Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 172, 2529–2540.PubMedCrossRefGoogle Scholar
  104. Warren, W.C., Hillier, L.W., Graves, J.A.M., Birney, E., Ponting, C.P., Grützner, F., Belov, K., Miller, W., Clarke, L., Chinwalla, A.T. et al. (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175–183.PubMedCrossRefGoogle Scholar
  105. Weber, A.P.M., Weber, K.L., Carr, K., Wilkerson, C. and Ohlrogge, J.B. (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol. 144, 32–42.PubMedCrossRefGoogle Scholar
  106. Wei, F., Coe, E., Nelson, W., Bharti, A.K., Engler, F., Butler, F., Kim, H.R., Goicoechea, J.L., Chen, M., Lee, S. et al. (2008) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3, e123.CrossRefGoogle Scholar
  107. Wheeler, D.A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y.-J., Makhijani, V., Roth, G.T. et al. (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876.PubMedCrossRefGoogle Scholar
  108. Wicker, T., Matthews, D. and Keller, B. (2002) TREP, a database for Triticeae repetitive elements. Trends Plant Sci. 7, 561–562.CrossRefGoogle Scholar
  109. Wicker, T., Narechania, A., Sabot, F., Stein, J., Vu, G.T.H., Graner, A., Ware, D. and Stein, N. (2008) Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics 9, 518.PubMedCrossRefGoogle Scholar
  110. Wicker, T., Schlagenhauf, E., Graner, A., Close, T., Keller, B. and Stein, N. (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7, 275.PubMedCrossRefGoogle Scholar
  111. Wicker, T., Stein, N., Albar, L., Feuillet, C., Schlagenhauf, E. and Keller, B. (2001) Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J. 26, 307–316.PubMedCrossRefGoogle Scholar
  112. Wicker, T., Yahiaoui, N., Guyot, R., Schlagenhauf, E., Liu, Z.D., Dubcovsky, J. and Keller, B. (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and A(m) genomes of wheat. Plant Cell 15, 1186–1197.PubMedCrossRefGoogle Scholar
  113. Wicker, T., Zimmermann, W., Perovic, D., Paterson, A.H., Ganal, M., Graner, A. and Stein, N. (2005) A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-eIF4E locus: recombination, re-arrangements and repeats. Plant J. 41, 184–194.PubMedCrossRefGoogle Scholar
  114. Wilhelm, B.T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C.J., Rogers, J. and Bahler, J. (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453, 1239–1243.PubMedCrossRefGoogle Scholar
  115. Wilson, R.K., Ware, D., Wing, R.A., McCombie, W.R., Schnable, P.S., Clifton, S.W., Aluru, S., Stein, L.D., Martienssen, R. and Fulton, R. (2007) Sequencing the maize B73 genome. Progress Report (www.maizegdb.org/sequencing_project.php).
  116. Wu, R. and Kaiser, A.D. (1968) Structure and base sequence in the cohesive ends of bacteriophase lambda DNA. J. Mol. Biol. 35, 523–527.PubMedCrossRefGoogle Scholar
  117. Wu, R. and Taylor, E. (1971) Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. J. Mol. Biol. 57, 491–511.PubMedCrossRefGoogle Scholar
  118. Xiao, H., Jiang, N., Schaffner, E., Stockinger, E.J. and van der Knaap, E. (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319, 1527–1530.PubMedCrossRefGoogle Scholar
  119. Yamada, K., Lim, J., Dale, J.M., Chen, H., Shinn, P., Palm, C.J., Southwick, A.M., Wu, H.C., Kim, C., Nguyen, M. et al. (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302, 842–846.PubMedCrossRefGoogle Scholar
  120. Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T. and Dubcovsky, J. (2003) Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100, 6263–6268.PubMedCrossRefGoogle Scholar
  121. Yu, J., Hu, S., Wang, J., Wong, G.K.-S., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X. et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92.PubMedCrossRefGoogle Scholar
  122. Yu, J., Wang, J., Lin, W., Li, S., Li, H., Zhou, J., Ni, P., Dong, W., Hu, S., Zeng, C. et al. (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3, e38.PubMedCrossRefGoogle Scholar
  123. Zhang, H., Sreenivasulu, N., Weschke, W., Stein, N., Rudd, S., Radchuk, V., Potokina, E., Scholz, U., Schweizer, P., Zierold, U. et al. (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J. 40, 276–290.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Eversole AssociatesBethesdaUSA
  2. 2.Leibniz-Institute of Plant Genetics and Crop Plant Research(IPK)Genebank

Personalised recommendations