Genomics of Quality Traits

  • W. Ma
  • O. Anderson
  • H. Kuchel
  • Y. Bonnardeaux
  • H. Collins
  • M.K. Morell
  • P. Langridge
  • R. Appels
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)

Abstract

The quality attributes of cereal grains are valued in the context of a complex food chain that integrates outputs achievable by breeding, production, and processing. New processing technologies, environmental change, and changes in consumer preferences demand that quality attributes of wheat and barley need to be continually modified. The advances in the genomics of quality described in this chapter provide the basis for ensuring that the genetic approaches encompassing the complexities of the gene networks underpinning quality attributes can meet the challenges presented by the rapid changes occurring within the food chain.

Keywords

Glutenin Subunit High Molecular Weight Glutenin Subunit Repetitive Domain Diastatic Power Prolamin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmad, M. (2000) Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theor. Appl. Genet. 101, 892–896.Google Scholar
  2. Altenbach, S.B. and Kothari, K.M. (2007) Omega gliadin genes expressed in Triticum aestivum cv. Butte 86: effects of post-anthesis fertilizer on transcript accumulation during grain development. J. Cereal Sci. 46,169–177.Google Scholar
  3. Anderson, J.V. and Morris, C.F. (2003) Purification and analysis of wheat grain polyphenol oxidase (PPO) protein. Cereal Chem. 80, 135–143.Google Scholar
  4. Anderson, O.D. (1991) Characterization of members of a pseudogene subfamily of the wheat α-gliadin storage protein genes. Plant Mol. Biol. 16, 335–337.PubMedGoogle Scholar
  5. Anderson, O.D. and Greene, F.C. (1989) The characterization and comparative analysis of high-molecular-weight glutenin genes from genomes A and B of a hexaploid bread wheat. Theor. Appl. Genet. 77, 689–700.Google Scholar
  6. Anderson, O.D. and Greene, F.C. (1997) The α-gliadin gene family. II. DNA and protein sequence variation, subfamily structure and origins of pseudogenes. Theor. Appl. Genet. 95, 59–65.Google Scholar
  7. Anderson, O.D., Hsia, C.C., Adalstein, A.E., Lew, E.J.-L. and Kasarda, D.D. (2001) Identification of several new classes of low-molecular weight wheat gliadin-related proteins and genes. Theor. Appl. Genet. 103, 307–315.Google Scholar
  8. Anderson, O.D., Litts, J.C. and Greene, F.C. (1997) The α-gliadin gene family. I. Characterization of ten new wheat α-gliadin gene clones, evidence for limited sequence conservation of flanking DNA, and Southern analysis of the gene family. Theor. Appl. Genet. 95, 50–58.Google Scholar
  9. Anderson, O.D., Rausch, C., Moullet, O. and Lagudah, E.S. (2003) The wheat D-genome HMW glutenin locus: BAC sequencing, gene distribution and retrotransposon clusters. Funct. Integr. Genomics 3, 56–68.PubMedGoogle Scholar
  10. Appleford, N.E.J., Evans, D.J., Lenton, J.R., Gaskin, P., Croker, S.J., Devos, K.M., Phillips, A.L. and Hedden, P. (2006) Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223(3), 568–582.PubMedGoogle Scholar
  11. Appels, R., Francki, M. and Chibbar, R. (2003) Advances in cereal functional genomics. Funct. Integr. Genomics 3, 1–24.PubMedGoogle Scholar
  12. Baik, B.K., Czuchajowska, Z. and Pomeranz, Y. (1995) Discoloration of dough for oriential noodles. Cereal Chem. 72, 198–205.Google Scholar
  13. Bailey, P.C., McKibbin, R.S., Lenton, J.R., Holdsworth, M.J., Flintham, J.E. and Gale, M.D. (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor. Appl. Genet. 98(2), 281–284.Google Scholar
  14. Barr, A.R., Karakousis, A., Lance, R.C.M., Logue, S.J., Manning, S., Chalmers, K.J., Kretschmer, J.M., Boyd, W.J.R., Collins, H.M., Roumeliotis, S., Coventry, S.J., Moody, D.B., Read, B.J., Poulsen, D., Li, C.D., Platz, G.J., Inkerman, P.A., Panozzo, J.F., Cullis, B.R., Smith, A.B., Lim, P. and Langridge, P. (2003) Mapping and QTL analysis of the barley population Chebec x Harrington. Aust. J. Agric. Res. 54, 1125–1130.Google Scholar
  15. Beccari, J.B. (1745) De Frumento. De Bononiensi Scientarium et Artium. Instituto atque Academia Commentarii. Bologna 2, 122–127.Google Scholar
  16. Bezant, H., Laurie, D.A., Pratchett, N., ChoJ.ecki, J. and Kearsey, M.J. (1997) Mapping of QTL controlling NIR predicted hot water extract and grain nitrogen content in a spring barley cross using marker-regression. Plant Breeding 116, 141–145.Google Scholar
  17. Bird, A.R., Flory, C., Davies, D.A., Usher, S. and Topping, D.L. (2004a) A novel barley cultivar (Himalaya 292) with a specific gene mutation in starch synthase IIa raises large bowel starch and short-chain fatty acids in rats. J. Nutr. (April) 134, 831–835.Google Scholar
  18. Bird, A.R., Jackson, M., King, R.A., Davies, D.A., Usher, S. and Topping, D.L. (2004b) A novel high-amylose barley cultivar (Hordeum vulgare var. Himalaya 292) lowers plasma cholesterol and alters indices of large-bowel fermentation in pigs. Br. J. Nutr. (October), 92, 607–615.Google Scholar
  19. Bonnardeaux, Y., Li, C., Lance, R., Zhang, X.Q., Sivasithamparam, K. and Appels, R. (2008) Seed dormancy in barley: identifying superior genotypes through incorporating epistatic interactions. Aust J. Agr. Res. 59, 517–526.Google Scholar
  20. Branlard, G., Dardevet, M., Amiour, N. and Igrejas, G. (2003) Allelic diversity of HMW and LMW glutenin subunits and omega-gliadins in French bread wheat (Triticum aestivum L.). Genet. Reso. Crop Evol. 50, 669–679.Google Scholar
  21. Breseghello, F., Finney, P.L., Gaines, C., Andrews, L., Tanaka, J., Penner, G. and Sorrells, M.E. (2005) Genetic loci related to kernel quality differences between a soft and hard wheat cultivar. Crop Sci. 45, 1685–1695.Google Scholar
  22. Bucheli, C.S., Dry, I.B. and Robinson, S.M. (1996) Isolation of a full-length cDNA encoding polyphenol oxidase from sugarcane, a C4 grass. Plant Mol. Biol. 3, 1233–1238.Google Scholar
  23. Burton, R.A., Wilson, S.M., Hrmova, M., Harvey, A.J., Shirley, N.J., Medhurst, A., Stone, B.A., Newbigin, E.J., Bacic, A. and Fincher, G.B. (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science 311, 1940–1942.PubMedGoogle Scholar
  24. Butow, B.J., Ma, W., Gale, K.R., Cornish, G.B., Rampling, L., Larroque, O.R., Morell, M.K. and Bekes, F. (2003) Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular weight glutenin allele has a major impact on wheat flour strength. Theor. Appl. Genet. 107, 1524–1532.PubMedGoogle Scholar
  25. Caldwell, K.S., Langridge, P. and Powell, W. (2004) Comparative sequence analysis of the region harboring the hardness locus in barley and its colinear region in rice. Plant Physiol. 136, 3177–3190.PubMedGoogle Scholar
  26. Cane, K., Spackman, M. and Eagles, H.A. (2004) Puroindoline genes and their effects on grain quality traits in southern Australian wheat cultivars. Aust. J. Agric. Res. 55, 89–95.Google Scholar
  27. Cassidy, B.G., Dvorak, J. and Anderson, O.D. (1998) The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor. Appl. Genet. 96, 743–750.Google Scholar
  28. Chantret, N., Cenci, A., Sabot, F., Anderson, O. and Dubcovsky, J. (2004) Sequencing of the Triticum monococcum Hardness locus reveals good microcolinearity with rice. Mol. Genet. Gen. 271, 377–386.Google Scholar
  29. Chantret, N., Salse, J., Sabot, F., Rahman, S., Bellec, A., Laubin, B., Dubois, I., Dossat, C., Sourdille, P., J.oudrier, P., Gautier, M.F., Cattolico, L., Beckert, M., Aubourg, S., Weissenbach, J., Caboche, M., Bernard, M., Leroy, P. and Chalhoub, B. (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17, 1033–1045.PubMedGoogle Scholar
  30. Chao, S., Sharp, P.J., Worland, A.J., Warham, E.J., Koebner, R.M.D. and Gale, M.D. (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromomsomes. Theor. Appl. Genet. 78, 495–504.Google Scholar
  31. Chen, J., Lan, P., Tarr, A., Yan, Y.M., Francki, M., Appels, R. and Ma, W. (2007) MALDI-TOF based wheat gliadin protein peaks are useful molecular markers for wheat genetic study. Rapid Comm. Mass Spectrom. 21, 2913–2917.Google Scholar
  32. Choulet, F., Wicker, T., Paux, E., Saintenac, C., Sourdille, P., Keller, B., Appels, R. and Feuillet, C. (2008) Plant and Animal Genome XVI Conference w278, www.intl-pag.org
  33. Clarke, B.C., Hobbs, M., Skylas, D.J. and Appels, R. (2000) Genes active in developing endosperm. Funct. Integr. Genomics 1, 44–55.PubMedGoogle Scholar
  34. Clarke, B.C., Larroque, O.R., Bekes, F. and Appels, D. (2001) The frequent classes of expressed genes in wheat endosperm tissue as possible sources of genetic markers. Aust. J. Agric. Res. 52, 1181–1193.Google Scholar
  35. Clarke, B.C., Phongkham, T., Gianibelli, M.C., Beasley, H. and Békés, F. (2003) The characterisation and mapping of a family of LMW-gliadin genes: effects on dough properties and bread volume. Theor. Appl. Genet. 106, 629–635.Google Scholar
  36. Cloutier, S., Rampitsch, C., Penner, G.A. and Lukow, O.M. (2001) Cloning and expression of a LMW-i glutenin gene. J. Cereal Sci. 33, 143–154.Google Scholar
  37. Collins, H.M., Panozzo, J.F., Logue, S.J., Jefferies, S.P. and Barr, A.R. (2003) Mapping and validation of chromosome regions associated with high malt extract in barley (Hordeum vulgare L.). Aust. J. Agric. Res. 54, 1223–1240.Google Scholar
  38. Cooper, M., Woodruff, D.R., Phillips, I.G., Basford, K.E. and Gilmour, A.R. (2001) Genotype-by-management interactions for grain yield and grain protein concentration of wheat. Field Crops Res. 69, 47–67.Google Scholar
  39. Cornish, G.B., Skylas, D.J., Siriamornpun, S., Bekes, F., Larroque, O.R., Wrigley, C.W. and Wootton, M. (2001) Grain proteins as markers of genetics traits in wheat. Aust. J. Agric. Res. 52, 1161–1171.Google Scholar
  40. Crosbie, G.B. (1991) The relationship between starch swelling properties, paste viscosity and boiled noodle quality in wheat flours. J. Cereal Sci. 13, 145–150.Google Scholar
  41. Crosbie, G.B., Solah, V.A., Chiu, P. and Lambe, W.J. (1996) Selection for improved color stability in noodles. In: C.W. Wrigley (Ed.), Proceedings of the Australian Cereal Chemistry Conference 46th, Sydney, Royal Australian Chemist Institute, North Melbourne, VIC, Australia, pp. 120–122.Google Scholar
  42. D’Ovidio, R. and Anderson, O.D. (1994) PCR analysis to distinguish between alleles of a member of a multigene family correlated with wheat bread-making quality. Theor. Appl. Genet. 88, 759–763.Google Scholar
  43. D’Ovidio, R., Lafiandra, D. and Porceddu, E. (1996) Identification and molecular characterization of a large insertion within the repetitive domain of a high-molecular-weight glutenin subunit gene from hexaploid wheat. Theor. Appl. Genet. 93, 1048–1053.Google Scholar
  44. D’Ovidio, R. and Masci, S. (2004) The low-molecular-weight glutenin subunits of wheat gluten. J. Cereal Sci. 39, 321–339.Google Scholar
  45. D’Ovidio, R., Masci, S. and Porceddu, E. (1995) Development of a set of oligonucleotide primers specific for genes at the Glu-1 complex loci of wheat. Theor. Appl. Genet. 91, 189–194.Google Scholar
  46. D’Ovidio, R., Porceddu, E. and Lafiandra, D. (1994) PCR analysis of genes encoding allelic variants of high-molecular-weight glutenin subunits at the Glu-D1 locus. Theor. Appl. Genet. 88, 175–180.Google Scholar
  47. De Bustos, A., Rubio, P. and Jouve, N. (2000) Molecular characterisation of the inactive allele of the gene Glu-A1 and the development of a set of AS-PCR markers for HMW glutenins of wheat. Theor. Appl. Genet. 100, 1085–1094.Google Scholar
  48. DePauw, R.M., Townley-Smith, T.F., Humphreys, G., Knox, R.E., Clarke, F.R. and Clarke, J.M. (2005) Lillian hard red spring wheat. Can. J. Plant Sci. 85, 397–401.Google Scholar
  49. Demeke, T. and Morris, C.F. (2002) Molecular characterization of wheat polyphenol oxidase (PPO). Theor. Appl. Genet. 104, 813–818.PubMedGoogle Scholar
  50. Demeke, T., Morris, C.F., Campbell, K.G., King, G.E., Anderson, J.A. and Chang, H.-G. (2001) Wheat polyphenol oxidase distribution and genetic mapping in three inbred line populations. Crop Sci. 41, 1750–1757.Google Scholar
  51. Devos, K.M., Dubcovsky, J., Dvorák, J., Chinoy, C.N. and Gale, M.D. (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor. Appl. Genet. 91, 282–288.Google Scholar
  52. Devos, K.M., Ma, J., Pontaroli, A.C., Pratt, L.H. and Bennetzen, J.L. (2005) Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc. Natl. Acad. Sci. USA 102, 19243–19248.PubMedGoogle Scholar
  53. Distelfeld, A., Cakmak, I., Peleg, Z., Ozturk, L., Yazici, A.M., Budak, H., Saranga, Y. and Fahima, T. (2007) Multiple QTL effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiologia Plantarum 129, 635–643.Google Scholar
  54. Druka, A., Muehlbauer, G., Druka, I., Caldo, R., Baumann, U., Rostoks, N., Schreiber, A., Wise, R., Close, T., Kleinhofs, A., Graner, A., Schulman, A., Langridge, P., Sato, K., Hayes, P., McNicol, J., Marshall, D. and Waugh, R. (2006) An atlas of gene expression from seed to seed through barley development. Funct. Integr. Genomics 6, 202–211.PubMedGoogle Scholar
  55. Eagles, H.A., Eastwood, R.F., Hollamby, G.J., Martin, E.M. and Cornish, G.B. (2004) Revision of the estimates of glutenin gene effects at the Glu-B1 locus from southern Australian wheat breeding programs, Aust. J. Agric. Res. 55, 1093–1096.Google Scholar
  56. Eagles, H.A., Hollamby, G.J., Gororo, N.N. and Eastwood, R.F. (2002) Estimation and utilization of glutenin gene effects from the analysis of unbalanced data from wheat breeding programs. Aust. J. Agric. Res. 53, 367–377.Google Scholar
  57. Eglinton, J.K. (2003) Novel alleles from wild barley for breeding malting barley (Hordeum vulgare L.). PhD thesis, University of Adelaide.Google Scholar
  58. Eglinton, J.K., Langridge, P. and Evans, D.E. (1998) Thermostability variation in alleles of barley beta-amylase. J. Cereal Sci. 28, 301–309.Google Scholar
  59. Eliasson, A. and Larsson, K. (1993) Cereals in Breadmaking. Marcel Dekker, New York.Google Scholar
  60. Fabrizius, M.A., Cooper, M. and Basford, K.E. (1997) Genetic analysis of variation for grain yield and protein concentration in two wheat crosses. Aust. J. Agric. Res. 48, 605–614.Google Scholar
  61. Ferrante, P., Masci, S., D’Ovidio, R., Lafiandra, D., Volpi, C. and Mattei, B. (2006) A proteomic approach to verify in vivo expression of a novel γ-gliadin containing an extra cysteine residue. Proteomics 6, 1908–1914.PubMedGoogle Scholar
  62. Finkelstein, R., Reeves, W., Ariizumi, T. and Steber, C. (2008) Molecular aspects of seed dormancy. Ann. Rev. Plant Biol. 59, 387–415.Google Scholar
  63. Finney, K.F., Yamazaki, W.T., Youngs, V.L. and Rubenthaler G.L. (1987) Quality of hard, soft, and durum wheats. In: E.G. Heyne (Ed.), Wheat and Wheat Improvement, 2nd ed., Agronomy Monograph 13. ASA, CSSA, and SSSA, Madison, WI, pp. 677–748.Google Scholar
  64. Flurkey, W.H. (1989) Polypeptide composition and amino-terminal sequence of broad bean polyphenoloxidase. Plant Physiol. 91, 481–483.PubMedGoogle Scholar
  65. Fox, S.L., Townley-Smith, T.F., Humphreys, D.G., McCallum, B.D., Fetch, T.G., Gaudet, D.A., Gilbert, J.A., Menzies, J.G., Noll, J.S. and Howes, N.K. (2006) Somerset hard red spring wheat. Can. J. Plant Sci. 86, 163–167.Google Scholar
  66. Francki, M., Carter, M., Ryan, K., Hunter, A., Bellgard, M. and Appels, R. (2004) Comparative organization of wheat homoeologous group 3S and 7L using wheat-rice synteny and identification of potential markers for genes controlling xanthophyll content in wheat. Funct. Integr. Genomics 4, 118–130.PubMedGoogle Scholar
  67. Fu, D., Uauy, C., Blechl, A. and Dubcovsky, J. (2007) RNA interference for wheat functional gene analysis. Transgenic Res. 16, 689–701.PubMedGoogle Scholar
  68. Gale, K.R. (2005) Diagnostic DNA markers for quality traits in wheat. J. Cereal Sci. 41, 181–192.Google Scholar
  69. Gali, J.V., Brown, C. and Wegener, M. (1998) The value of barley protein in livestock feeding in Queensland. Aust. Agribusiness J. 6, ISSN 1442-6951.Google Scholar
  70. Gao, S., Gu, Y.Q., Wu, J., Coleman-Derr, D., Huo, N., Crossman, C., Jia, J., Ren, Z., Anderson, O.D. and Kong, X. (2007) Rapid evolution and complex structural organization in genomics regions harboring multiple prolamin genes in the polyploid wheat genome. Plant Mol. Biol. 65, 189–203.PubMedGoogle Scholar
  71. Gao, W., Clancy, J.A., Han, F., Prada, D., Kleinhoffs, A. and Ullrich, S.E. (2003) Molecular dissection of a dormancy QTL region near the chromosome 7 (5H) L telomere in barley. Theor. Appl. Genet. 107, 552–559.PubMedGoogle Scholar
  72. Gautier, M.F., Aleman, M.E., Guirao, A., Marion, D. and Joudrier, P. (1994) Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and development gene expression. Plant Mol. Biol. 25, 43–57.PubMedGoogle Scholar
  73. Ge, X.X., He, Z.H., Yang, J. and Zhang, Q.J. (2003) Polyphenol oxidase activities of Chinese winter wheat cultivars and correlations with quality characteristics. Acta Agronomica Sinica 29, 481–485.Google Scholar
  74. Gianibelli, M.C., Larroque, O.R., Macritchie, F. and Wrigley, C.W. (2001) Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal. Chem. 78, 635–646.Google Scholar
  75. Giroux, M.J. and Morris, C.F. (1997) A glycine to serine change in puroindoline b is associated with grain hardness and low levels of starch-surface friabilin. Theor. Appl. Genet. 95, 857–864.Google Scholar
  76. Giroux, M.J. and Morris, C.F. (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc. Natl. Acad. Sci. USA 95, 6262–6266.PubMedGoogle Scholar
  77. Giroux, M.J., Talbert, L.E., Habernicht, D.K., Lanning, S.P., Hemphill, A. and Martin, J.M. (2000) Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci. 40, 370–374.Google Scholar
  78. Gobaa, S., Bancel, E., Kleijer, G., Stamp, P. and Branlard, G. (2007) Effect of the 1BL.1RS translocation on the wheat endosperm as revealed by proteomic analysis. Proteomics 7, 4349–4357.PubMedGoogle Scholar
  79. Grando, S. (2002) Food barley gains long-overdue attention, http://www.icarda.org/Publications/Caravan/caravan16/focus/food.htm
  80. Gras, P.W., Anderssen, R.S., Keentok, M., Bekes, F. and Appels, R. (2001) Gluten protein functionality in wheat flour processing: a review. Aust. J. Agric. Res. 53, 1311–1323.Google Scholar
  81. Griffiths, S., Sharp, R., Foote, T.N., Bertin, I., Wanous, M., Reader, S., Colas, I. and Moore, G. (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752.PubMedGoogle Scholar
  82. Groos, C., Bervas, E. and Charmet, G. (2004) Genetic analysis of grain protein content, grain hardness and dough rheology in a hard x hard bread wheat progeny. J. Cereal Sci. 40, 93–100.Google Scholar
  83. Gu, Y.Q., Kong, X., Luo, M., You, F.M., Coleman-Derr, D., Dubcovsky, J. and Anderson, O.D. (2004) Genomic organization of the complex alpha-gliadin loci in wheat. Theor. Appl. Genet. 109, 648–657.PubMedGoogle Scholar
  84. Gu, Y.Q., Salse, J., Coleman-Derr, D., Dupin, A., Crossman, C., Lazo, G.R., Huo, N., Belcram, H., Ravel, C., Charmet, G., Charles, M., Anderson, O.D. and Chalhoub, B. (2006) Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes. Genetics 174, 1–12.Google Scholar
  85. Gupta, R.B. and MacRitchie, F. (1994) Allelic variation at the glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1, of common wheats. II. Biochemical basis of the allelic effects on dough properties. J. Cereal Sci. 19, 19–29.Google Scholar
  86. Gupta, R.B. and Shepherd, K.W. (1990) Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin. 1. Variation and genetic control of the subunits in hexaploid wheats. Theor. Appl. Genet. 80, 65–74.Google Scholar
  87. Hai, L., Yu, M.W., Ze, H.Y., Bernard, B., Eviatar, N. and You, L.Z. (2005) Classification of wheat low-molecular-weight glutenin sub-unit genes and its chromosome assignment by developing LMW-GS group-specific primers. Theor. Appl. Genet. 111, 1251–1259.Google Scholar
  88. Hamilton, D.M. and Lewis, M.J. (1974) Factors affecting wort extract and attenuation. MBAA Tech. Quart. 11, 31–35.Google Scholar
  89. Han, F., Ullrich, S.E., Clancy, J.A., Jitkov, V., Kilian, A. and Romagosa, I. (1996) Verification of barley seed dormancy loci via linked molecular markers. Theor. Appl. Genet. 92, 87–91.Google Scholar
  90. Han, F., Ullrich, S.E., Clancy, J.A. and Romagosa, I. (1999) Inheritance and fine mapping of a major barley seed dormancy QTL. Plant Sci. 143, 113–118.Google Scholar
  91. Hattori, T., Vasil, V., Rosenkrans, L., Hannah, C., McCarty, D.R. and Vasil, I.K. (1992) The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Devel. 6, 609–618.PubMedGoogle Scholar
  92. Hayes, P.M., Cerono, J., Witsenboer, H., Kuiper, M., Zabeau, M., Sato, K., Kleinhofs, A., Kudrna, D., Killian, A., Saghai-Maroof, M. and Hoffman, D. (1997) The Snorth American Barley Genome Mapping Project Characterizing and exploiting genetic diversity and quantitative traits in barley (Hordeum vulgare) using AFLP markers. J. Quant Trait Loci, http://probenalusda.gov.8000/other-docs/J.ql1997-02Google Scholar
  93. Hayes, P.M., Castro, A., Corey, A., Filichkin, T., Johnson, M., Rossi, C., Sandoval, S., Vales, I., Vivar, H.E. and Von Zitzewitz, J. (2001) In: H.E. Vivar and A. McNab (Eds.), Breeding Barley in the New Millennium. CIMMYT, Mexico, pp. 47–60.Google Scholar
  94. Hayes, P.M. and Iyamabo, O. (1994) The North American Barley Genome Mapping Project. Summary of QTL effects in the Steptoe x Morex population. Barley Genet. Newslttr. 23, 98–143.Google Scholar
  95. Hayes, P.M., Liu, B.H., Knapp, S.J., Chen, F., Jones, B., Blake, T., Franckowiak, J., Rasmusson, D., Sorrells, M., Ullrich, S.E., Wesenberg, D. and Kleinhofs, A. (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor. Appl. Genet. 87, 392–401.Google Scholar
  96. He, X.Y., He, Z.H., Zhang, L.P., Sun, D.J., Morris, C.F., Fuerst, E.P. and Xia, X.C. (2007a) Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor. Appl. Genet. 115, 47–58.Google Scholar
  97. He, X.Y., Zhang, Y.L., He, Z.H., Wu, Y.P., Xiao, Y.G., Ma, C.X. and Xia, X.C. (2007b) Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor. Appl. Genet. 116, 213–221.Google Scholar
  98. Hejgaard, J., Rasmussen, S.K., Brandt, A. and Svendson, I. (1985) Sequence homology between barley endosperm protein Z and protease inhibitors of the α1-antitrypsin family. FEBS Lett. 180, 89–94.Google Scholar
  99. Hessler, T.G., Thomson, M.J., Benscher, D., Nachit, M.M. and Sorrells, M.E. (2002) Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Sci. 42, 1695–1700.Google Scholar
  100. Hobo, T., Kowyama, Y. and Hattori, T. (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc. Natl. Acad. Sci. USA 96, 15348–15353.PubMedGoogle Scholar
  101. Howitt, C.A., Tamás, L., Solomon, R.G., Gras, P.W., Morell, M.K., Békés, F. and Appels, R. (2003) Modifying flour to target functionality to product attributes. In: S. Cauvain (Ed.), Bread Making: Improving Quality. Woodhead Publishing, Cambridge, UK, pp. 220–252.Google Scholar
  102. Hunter, P.J. and Borg, T.K. (2003) Integration from proteins to organs: the Physiome project. Nat. Rev. 4, 237–243.Google Scholar
  103. Igrejas, B., Gaborit, T., Oury, F., Chiron, H., Marion, D. and Branlard, G. (2002) Genetic and environmental effects on puroindoline-a and puroindoline-b content and their relationship to technological properties in French bread wheats. J. Cereal Sci. 34, 37–47.Google Scholar
  104. Ikeda, T.M., Araki, E., Fujita, Y. and Yano, H. (2006) Characterization of low-molecular-weight glutenin subunit genes and their protein products in common wheats. Theor. Appl. Genet. 112, 327–334.PubMedGoogle Scholar
  105. Ikeda, T.M., Nagamine, T., Fukuoka, H. and Yano, H. (2002) Identification of new low-molecular-weight glutenin subunit genes in wheat. Theor. Appl. Genet. 104, 1432–1442.Google Scholar
  106. Jackson, E.A., Holt, L.M. and Payne, P.I. (1983) Characterisation of high-molecular-weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and chromosomal localisation of their controlling genes. Theor. Appl. Genet. 66, 29–37.Google Scholar
  107. Jackson, E.A., Holt, L.M. and Payne, P.I. (1985) Glu-B2, a storage protein locus controlling the D group of LMW glutenin subunits in bread wheat. Genet. Res. 46, 11–17.Google Scholar
  108. Jimenez, M. and Dubcovsky, J. (1999) Chromosome location of genes affecting polyphenol oxidase activity in seeds of common and durum wheat. Plant Breeding 118, 395–398.Google Scholar
  109. Joppa, L.R., Du, C., Hart, G.E. and Hareland, G.A. (1997) Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci. 37, 1586–1589.Google Scholar
  110. Juhász, A., Gárdonyi, M., Tamás, L. and Bedõ, Z. (2003) Characterisation of the promoter region of Glu-1Bx7 gene from overexpressing lines of an old Hungarian wheat variety. Proceedings of the Xth International Wheat Genetics Symposium, 1–6 September 2003, Paestum, Italy, pp. 1348–1350.Google Scholar
  111. Jukanti, A.K., Bruckner, P.L. and Fischer, A.M. (2004) Evaluation of wheat polyphenol oxidase genes. Cereal Chem. 81, 481–485.Google Scholar
  112. Karakousis, A., Barr, A.R., Chalmers, K.J., Ablett, G.A., Holton, T.A., Henry, R.J., Lim, P. and Langridge, P. (2003a) Potential of SSR markers for plant breeding and variety identification in Australian barley germplasm. Aust. J. Agric. Res. 54, 1197–1210.Google Scholar
  113. Karakousis, A., Barr, A.R., Kretschmer, J.M., Manning, S., Logue, S.J., Roumeliotis, S., Collins, H.M., Chalmers, K.J., Li, C.D., Lance, R.C.M. and Langridge, P. (2003b) Mapping and QTL analysis of the barley population Galleon x Haruna Nijo. Aust. J. Agric. Res. 54, 1131–1135.Google Scholar
  114. Kasarda, D.D. (1994) Defining cereals toxicity in coeliac disease. In: C. Feighery and F. OFarrelly (Eds.), Gastrointestinal Immunology and Gluten-Sensitive Disease. Oak Tree Press, Dublin, pp. 203–220.Google Scholar
  115. Kasarda, D.D., Tao, H.P., Evans, P.K., Adalsteins, A.E. and Yuen, S.W. (1988) Sequencing of protein from a single spot of a 2-D gel pattern: N-terminal sequence of a major wheat LMW-glutenin subunit. J. Exp. Bot. 39, 899–906.Google Scholar
  116. Khan, M.A., Hussain, I. and Baloch, M.S. (2000) Wheat yield potential current status and future strategies. Pak. J. Bio. Sci. 3, 82–86.Google Scholar
  117. Kleinhofs, A. and Han, F. (2002) Molecular mapping of the barley genome. In: G.A. Slafer, J.L. Molina-Cano, R. Savin, J.L. Araus and I. Romagosa (Eds.), Barley Science: Recent Advances from Molecular Biology to Agronomy of Yield and Quality. Food Products Press, New York, pp. 31–63.Google Scholar
  118. Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, G., Wicker, T., Tagiri, A., Lundqvist, U., Fujimura, T., Matsuoka, M., Matsumoto, T. and Yano, M. (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. USA 104, 1424–1429.PubMedGoogle Scholar
  119. Kong, X., Gu, Y.Q., You, F.M., Dubcovsky, J. and Anderson, O.D. (2003) Dynamics of the evolution of orthologous and paralogous portions of a complex locus regions in two genomes of allopolyploid wheat. Plant Mol. Biol. 54, 56–69.Google Scholar
  120. Konik, C.M. and Miskelly, D.M. (1992) Contribution of starch and non-starch parameters to the eating quality of Japanese white salted noodles. J. Sci. Food Agric. 58, 403–406.Google Scholar
  121. Konik-Rose, C., Thistleton, J., Chanvrier, H., Tan, I., Halley, P., Gidley, M., Kosar-Hashemi, B., Wang, H., Larroque, O., Ikea, J., Mcmaugh, S., Regina, A., Rahman, S., Morell, M. and Li, Z. (2007) Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat. Theor. Appl. Genet. 115, 1053–1065.PubMedGoogle Scholar
  122. Kruger, J.E., Anderson, M.H. and Dexter, J.E. (1994a) Effect of flour refinement on raw Cantonese noodle color and texture. Cereal Chem. 71, 177–182.Google Scholar
  123. Kruger, J.E., Hatcher, D.W. and DePauw, R. (1994b) A whole seed assay for polyphenol oxidase in Canadian prairie spring wheats and its usefulness as a measure of noodle darkening. Cereal Chem. 71, 324–326.Google Scholar
  124. Lafiandra, D., D’Ovidio, R., Porceddu, E., Margiotta, B. and Colaprico, G. (1993) New data supporting high Mr glutenin subunit 5 as determinant of qualitative differences in the pairs 5+10 vs 2+12. J. Cereal Sci. 18, 197–205.Google Scholar
  125. Lee, S.C., Cheng, H., King, K.E., Wang, W.F., He, Y.W., Hussain, A., Lo, J., Harberd, N.P. and Peng, J.R. (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev. 16(5), 646–658.PubMedGoogle Scholar
  126. Lei, Z.S., Gale, K.R., He, Z.H., Gianibelli, M.C., Larroque, O., Xia, X.C., Butow, B.J. and Ma, W.J. (2006) Y-type gene specific markers for enhanced discrimination of high-molecular-weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. J. Cereal Sci. 43, 94–101.Google Scholar
  127. Lerouxel, O., Cavalier, D.M., Liepman, A.H. and Keegstra, K. (2006) Biosynthesis of plant cell wall polysaccharides – a complex process. Curr. Opin. 9, 621–630.Google Scholar
  128. Lew, E.J.L., Kuzmicky, D.D. and Kasarda, D.D. (1992) Characterization of low molecular weight glutenin subunits by reversed-phase high-performance liquid chromatography, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing. Cereal Chem. 69, 508–515.Google Scholar
  129. Li, C., Ni, P., Francki, M., Hunter, A., Zhang, Y., Schibeci, D., Li, H., Tarr, A., Wang, J., Cakir, M., Yu, J., Bellgard, M., Lance, R. and Appels, R. (2004) Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct. Integr. Genomics 4, 84–93.PubMedGoogle Scholar
  130. Lindsay, M.P. and Skerritt, J.H. (2000) The glutenin macropolymer of wheat flour doughs structure-function perspectivies. Trends Food Sci. Technol. 10, 247–253.Google Scholar
  131. Liu, C.Y. and Shepherd, K.W. (1995) Inheritance of B subunits of glutenin and ώ- and γ-gliadins in tetraploid wheats. Theor. Appl. Genet. 90, 1149–1157.Google Scholar
  132. Liu, Z., Yan, Z., Wan, Y., Liu, K., Zheng, Y. and Wang, D. (2003) Analysis of HMW glutenin subunits and their coding sequences in two Aegilops species. Theor. Appl. Genet. 106, 1368–1378.PubMedGoogle Scholar
  133. Ma, W., Zhang, W. and Gale, K.R. (2003) Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica 134, 51–60.Google Scholar
  134. Ma, W.Q. (1999) Current status and evaluation of crop fertilization in Shandong Province. Ph.D. Thesis (in Chinese), China Agricultural University, Beijing, p. 116.Google Scholar
  135. Ma, Y., Eglinton, J.K., Evans, D.E., Logue, S.J. and Langridge, P. (2000) Removal of the four C-terminal glycine-rich repeats enhances thermostability and substrate binding affinity of barley β-amylase. Biochemistry 39, 13350–13355.PubMedGoogle Scholar
  136. Ma, Y.F., Evans, D.E., Logue, S.J. and Langridge, P. (2001) Mutations of barley β-amylase that improve its thermostability and substrate-binding affinity. Mol. Gen. Genet. 266, 345–352.Google Scholar
  137. MacGregor, A.W., Bazin, S.L., Macri, L.J. and Babb, J.C. (1999) Modelling the contribution of alpha-amylase, beta-amylase and limit dextrinase to starch degradation during mashing. J. Cereal Sci. 29, 161–169.Google Scholar
  138. MacGregor, A.W., LaBerge, D.E. and Meredith, O.S. (1971) Changes in barley kernels during growth and maturation. Cereal Chem. 48, 255–269.Google Scholar
  139. Macritchie, F., du Cros, D.L. and Wrigley, C.W. (1990) Flour polypeptides related to wheat quality. Adv. Cereal Sci. Technol. 10, 79–145.Google Scholar
  140. Mantovani, M.S., Bellini, M.F., Angeli, J.P.F., Oliveira, R.J., Silva, A.F. and Ribeiro, L.R. (2008) β-Glucans in promoting health: prevention against mutation and cancer. Mutat. Res.-Rev. Mutat. 658, 154–161.Google Scholar
  141. Mares, D.J. and Mrva, K. (2001) Mapping quantitative trait loci associated with variation in grain dormancy in Australian wheat. Aust. J. Agric. Res. 52, 1257–1265.Google Scholar
  142. Marquez-Cedillo, L.A., Hayes, P.M., Jones, B.L., Kleinhofs, A., Legge, W.G., Rossnagel, B.G., Sato, K., Ullrich, S.E. and Wesenberg, D.M. (2000) QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor. Appl. Genet. 101, 173–184.Google Scholar
  143. Martin, J.M., Frohberg, R.C., Morris, C.F., Talbert, L.E. and Giroux, M.J. (2001) Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci. 41, 228–234.Google Scholar
  144. Martinant, J.P., Cadalen, T., Billot, A., Chartier, S., Leroy, P., Bernard, M., Saulnier, L. and Branlard, G. (1998) Genetic analysis of water-extractable arabinoxylans in bread wheat endosperm. Theor. Appl. Genet. 97, 1069–1075.Google Scholar
  145. Massa, A.N., Beecher, B. and Morris, C.F. (2007) Phenol oxidase (PPO) in wheat and wild relatives: molecular evidence for a multigene family. Theor. Appl. Genet. 114, 1239–1247.PubMedGoogle Scholar
  146. Mather, D.E., Tinker, N.A., La Berge, D.E., Edney, M., J.ones, B.L., Rossnagel, B.G., Legge, W.G., Briggs, K.G., Irvine, R.B., Falk, D.E. and Kasha, K.J. (1997) Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci. 37, 544–554.Google Scholar
  147. Mattern, P.J., Morris, R., Schmidt, J.W. and Johnson, V.A. (1973) Location of genes for kernal properties in wheat variety ‘Cheyenne’ using chromosome substitution lines. Proceedings of the 4th International Wheat Genetics Symposium, Columbia, Missouri, USA, pp. 803–708.Google Scholar
  148. McIntosh, R.A., Yamazaki, Y., Devos, K.M., Dubcovsky, J., Rogers, W.J. and Appels, R. (2003) Catalogue of gene symbols for wheat (MacGene 2003) [CD-ROM]. In: N.E. Pogna et al. (Eds.), Proceedings of the 10th International Wheat Genetics Symposium, Vol. 4, 1–6 September 2003, Pasetum, Italy. Istituto Sperimentale per la Cerealicoltura, Rome, Italy.Google Scholar
  149. McKibbin, R.S., Wilkinson, M.D., Bailey, P.C., Flintham, J.E., Andrew, L.M., Lazzeri, P.A., Gale, M.D., Lenton, J.R. and Holdsworth, M.J. (2002) Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species. Proc. Natl. Acad. Sci. USA 99, 10203–10208.PubMedGoogle Scholar
  150. Mclauchlan, A., Ogbonnaya, F.C., Hollingsworth, B., Carter, M., Gale, K.R., Henry, R.J., Holten, T.A., Morell, M.K., Rampling, L.R., Sharp, P.J., Shariflou, M.R., J.ones, M.G.K. and Appels, R. (2001) Development of PCR-based DNA markers for each homoeo-allele of granule-bound starch synthase and their application in wheat breeding programs. Aust. J. Agric. Res. 52, 1409–1416.Google Scholar
  151. Meyer, F.D., Talbert, L.E., Martin, J.M., Lanning, S.P., Greene, T.W. and Giroux, M.J. (2007) Field evaluation of transgenic wheat expressing a modified Adp-glucose pyrophosphorylase large subunit. Crop Sci. 47, 336–342.Google Scholar
  152. Miles, M.J., Carr, H.J., McMaster, T.C., I’Anson, K.J., Belton, P.S., Morris, V.J., Field, J.M., Shewry, P.R. and Tatham, A.S. (1991) Scanning tunneling microscopy of a wheat storage protein reveals details of an unusual super-secondary structure. Proc. Natl. Acad. Sci. USA 88, 68–71.PubMedGoogle Scholar
  153. Miskelly, D.M. and Moss, H.J. (1985) Flour quality requirements for Chinese noodle manufacture. J. Cereal Sci. 3, 379–387.Google Scholar
  154. Morell, M., Kosar-Hashemi, B., Samuel, M.S., Chandler, P., Rahman, A., Buleon, A., Batey, I. and Li, Z. (2003) Identification of the molecular basis of mutations at the barley Sex6 locus and their novel starch phenotype. Plant J. 33, 1–13.Google Scholar
  155. Morell, M.K. and Myers, A.M. (2005) Rational design of cereal starches. Curr. Opin. Plant Biol. 8, 204–210.PubMedGoogle Scholar
  156. Morris, C.F. (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol. 48, 633–647.Google Scholar
  157. Nakamura, T., Yamamori, M., Hirano, H., Hidaka, S. and Nagamine, T. (1995) Production of waxy (amylose-free) wheats. Mol. Gen. Genet. 248, 253–259.PubMedGoogle Scholar
  158. Oberthur, L., Blake, T.K., Dyer, W.E. and Ullrich, S.E. (1995) Genetic analysis of seed dormancy in barley (Hordeum vulgare L.). J. Quant Trait Loci, http://www.ncgr.org/jag/
  159. Oda, M., Yasuda, Y., Okazaki, S., Yamauchi, Y. and Yokoyama, Y. (1980) A method of flour quality assessement for Japanese noodles. Cereal Chem. 57, 253–254.Google Scholar
  160. Okita, T.W., Cheesbrough, V. and Reeves, C.D. (1985) Evolution and heterogeneity of the α-/β-type and γ-type gliadin DNA sequences. J. Biol. Chem. 260, 8203–8213.PubMedGoogle Scholar
  161. Okot-Kotber, M., Liavoga, A., Yong, K.J. and Bagorogoza, K. (2002) Activation of polyphenol oxidase in extracts of bran from several wheat (Triticum aestivum) cultivars using organic solvents, detergents, and chaotropes. J. Agric. Food Chem. 50, 2410–2417.PubMedGoogle Scholar
  162. Osborne, T.B. (1907) The Protein of the Wheat Kernel. Publication No. 84. Carnegie Institute, Washington, DC.Google Scholar
  163. Ozdemir, N. and Cloutier, S. (2005) Expression analysis and physical mapping of low-molecular-weight glutenin loci in hexaploid wheat (Triticum aestivum L.). Genome 48, 401–410.PubMedGoogle Scholar
  164. Oziel, A., Hayes, P.M., Chem, F.Q. and Jones, B. (1996) Application of quantitative trait locus mapping to the development of winter-habit malting barley. Plant Breeding 115, 43–51.Google Scholar
  165. Palotta, M.A., Asayama, S., Reinheimer, J.M., Davies, P.A., Barr, A.R., Jeffries, S.P., Chalmers, K.J., Lewis, J., Collins, H.M., Roumeliotis, S., Logue, S.J., Coventry, S.J., Lance, R.C.M., Karakousis, A., Lim, P., Verbyla, A.P. and Eckermann, P.J. (2003) Mapping and QTL analysis of the barley population Amagi Nijo x W12585. Aust. J. Agric. Res. 54, 1141–1144.Google Scholar
  166. Panozzo, J.F. and McCormick, K.M. (1993) The rapid viscoanalyzer as a method of testing for noodle quality in a wheat breeding programme. J. Cereal Sci. 17, 25–32.Google Scholar
  167. Park, W.J., Shelton, D.R., Peterson, C.J., Martin, T.J., Kachman, S.D. and Wehling, R.L. (1997) Variation in polyphenol oxidase activity and quality characteristics among hard white wheat and hard red winter wheat samples. Cereal Chem. 74, 7–11.Google Scholar
  168. Parker, G.D., Chalmers, K.J., Rathjen, A.J. and Langridge, P. (1998) Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor. Appl. Genet. 97, 238–245.Google Scholar
  169. Payne, P.I., Corfield, K.G. and Blackman, J.A. (1981) Correlation between the inheritance of certain high-molecular-weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J. Sci. Food Agric. 32, 51–60.Google Scholar
  170. Payne, P.I., Holt, L.M., J.ackson, E.A. and Law, C.N. (1984) Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Philos. Trans. R. Soc. Lond. B 304, 359–371.Google Scholar
  171. Payne, P.I. and Lawrence, G.J. (1983) Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for the high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun. 11, 29–35.Google Scholar
  172. Payne, P.I., Nightingale, M.A., Krattiger, A.F. and Holt, L.M. (1987) The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric. 40, 51–65.Google Scholar
  173. Pitts, E.G., Rafalski, J.A. and Hedgcoth, C. (1988) Nucleotide sequence and encoded amino-acid sequence of a genomic gene region for a low-molecular-weight glutenin. Nucleic Acids Res. 16, 11376.PubMedGoogle Scholar
  174. Potokina, E., Prasad, M., Malysheva, L., Roeder, M.S. and Graner, A. (2006) Expression genetics and haplotype analysis reveal cis regulation of serine carboxypeptidase I (Cxp1), a candidate gene for malting quality in barley (Hordeum vulgare L.). Funct. Integr. Genomics 6, 25–35.PubMedGoogle Scholar
  175. Potokina, E., Sreenivasulu, N., Altschmied, L., Mickalek, W. and Graner, A. (2002) Differential gene expression during seed germination in barley (Hordeum vulgare L.). Funct. Integr. Genomics 2, 28–39.PubMedGoogle Scholar
  176. Powell, W., Thomas, W.T.B., Baird, E., Lawrence, P., Booth, A., Harrower, B., McNicol, J.W. and Waugh, R. (1997) Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms. Heredity 79, 48–59.Google Scholar
  177. Pozniak, C.J., Knox, R.E., Clarke, F.R. and Clarke, J.M. (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor. Appl. Genet. 114, 525–537.PubMedGoogle Scholar
  178. Prada, D., Ullrich, S.E., Molina-Cano, J.L., Cistue, L., Clancy, J.A. and Romagosa, I. (2004) Genetic control of dormancy in a Triumph/Morex cross in barley. Theor. Appl. Genet. 109, 62–70.PubMedGoogle Scholar
  179. Prasad, M., Kumar, N., Kulwal, P.L., Röder, M., Balyan, H.S., Dhaliwal, H.S. and Gupta, P.K. (2003) QTL analysis for grain protein content using SSR markers and validation of associated markers using NILs in bread wheat. Theor. Appl. Genet. 106, 659–667.PubMedGoogle Scholar
  180. Radovanovic, N. and Cloutier, S. (2003) Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programs. Mol. Breeding 12, 51–59.Google Scholar
  181. Rahman, S., Bird, A., Regina, A., Li, Z., Ral, J.P., Mcmaugh, S., Topping, D. and Morell, M. (2007) Resistant starch in cereals: exploiting genetic engineering and genetic variation. J. Cereal Sci. 46, 251–260.Google Scholar
  182. Raman, R., Raman, H. and Martin, P. (2007) Functional gene markers for polyphenol oxidase locus in bread wheat (Triticum aestivum L.). Mol. Breeding 19, 315–328.Google Scholar
  183. Ravel, C., Nagy, I.J., Martre, P., Sourdille, P., Dardevet, M., Balfourier, F., Pont, C., Giancola, S., Praud, S. and Charmet, G. (2006) Single nucleotide polymorphism, genetic mapping and expression of genes coding for the DOF wheat prolamin-box binding factor. Funct. Integr. Genomics 6, 310–321.PubMedGoogle Scholar
  184. Regina, A., Bird, A., Topping, D., Bowden, S., Freeman, J., Barsby, T., Kosar-Hashemi, B., Li, Z., Rahman, S. and Morell, M.K. (2006) High amylose wheat generated by RNA-interference improves indices of large bowel health in rats. Proc. Nat. Acad. Sci. USA 103, 3546–3551.PubMedGoogle Scholar
  185. Regina, A., Kosar-Hashemi, B., Li, Z., Rampling, L., Cmiel, M., Gianibelli, M.C., Konik-Rose, C., Larroque, O., Rahman, S. and Morell, M.K. (2004) Multiple isoforms of starch branching enzyme-I in wheat: lack of the major SBE-I isoform does not alter starch phenotype. Funct. Plant Biol. 31, 591–601.Google Scholar
  186. Röder, M.S., Huang, X-Q. and Börner, A. (2007) Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct. Integr. Genomics 8, 79–86.PubMedGoogle Scholar
  187. Sabelli, P.A. and Shewry, P.R. (1991) Characterization and organization of gene families at the Gli-1 loci of bread and durum wheats by restriction fragment analysis. Theor. Appl. Genet. 83, 209–216.Google Scholar
  188. Sakulsingharoj, C., Choi, S.B., Hwang, S.K., Edwards, G.E., Bork, J., Meyer, C.R., Preiss, J. and Okita, T.W. (2004) Engineering starch biosynthesis for increasing rice seed weight: the role of the cytoplasmic Adp-glucose pyrophosphorylase. Plant Sci. 167, 1323–1333.Google Scholar
  189. Sasaki, T., Yasui, T. and Matsuki, J. (2000) Effect of amylase content on gelatinization, retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal Chem. 77, 58–63.Google Scholar
  190. Shewry, P.R. and Casey, R. (Eds.). (1999) Seed Proteins. Kluwer, Dordrecht, pp. 1–10.Google Scholar
  191. Shewry, P.R. and Halford, N.G. (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot. 53, 947–958.PubMedGoogle Scholar
  192. Shewry, P.R., Halford, N.G. and Lafiandra, D. (2003) The genetics of wheat gluten proteins. In: J.C. Hall, J.C. Dunlap and T. Friedman (Eds.), Advances in Genetics, Vol. 49. Academic Press, San Diego, pp. 111–184.Google Scholar
  193. Shewry, P.R., Halford, N.G. and Tatham, A.S. (1989) The high molecular weight subunits of wheat, barley and rye: genetics, molecular biology, chemistry and role of wheat gluten structure and functionality. In: B.J. Miflin (Ed.), Oxford Surveys of Plant Molecular and Cell Biology, Vol. 6. Oxford University Press, Oxford, pp. 163–219.Google Scholar
  194. Shewry, P.R., Halford, N.G. and Tatham, A.S. (1992) High-molecular-weight subunits of wheat glutenin. J. Cereal Sci. 15, 105–120.Google Scholar
  195. Shewry, P.R. and Morell, M. (2001) Manipulating cereal endosperm structure, development and composition to improve end-use properties. In: P.R. Shewry, P.A. Lazzeri, and K.J. Edwards (Eds.), Advances in Botanical Research, Vol. 34. Academic Press, San Diego, San Francsico, New York, Boston, London, Sydney, Tokyo, pp. 165–236.Google Scholar
  196. Shewry, P.R. and Tatham, A.S. (1997) Disulphide bonds in wheat gluten proteins. J. Cereal Sci. 25, 135–146.Google Scholar
  197. Shogren, M.D., Hashimota, S. and Pomeranz, Y. (1987) Cereal pentosans: their estimation and significance. II. Pentosans and breadmaking characteristics of hard red winter wheat flours. Cereal Chem. 64, 35–41.Google Scholar
  198. Simmonds, D.H. (1989) Inherent quality factors in wheat. Wheat and Wheat Quality in Australia. Australian Wheat Board, pp. 31–61.Google Scholar
  199. Singh, N.K., Shepherd, K.W. and Cornish, G.B. (1991) A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J. Cereal Sci. 14, 203–208.Google Scholar
  200. Skylas, D.J., Copeland, L., Rathmell, W.G. and Wrigley, C.W. (2001) The wheat-grain proteome as a basis for more efficient cultivar identification Proteomics 1, 1542–1546.Google Scholar
  201. Slade, A.J., Fuerstenberg, S.I., Loeffler, D., Steine, M.N. and Facciotti, D.A. (2005) Reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat. Biotechnol. 23, 75–81.PubMedGoogle Scholar
  202. Smith, R.L., Schweder, M.E., Barnett, R.D. (1994) Identification of glutenin alleles in wheat and triticale using PCR-generated DNA markers. Crop Sci. 34, 1373–1378.Google Scholar
  203. Sourdille, P., Perretant, M.R., Charmet, G., Leroy, P., Gautier, M.F., Joudrier, P., Nelson, J.C., Sorrells, M.E. and Bernard, M. (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor. Appl. Genet. 93, 580–586.Google Scholar
  204. Sreeramulu, G. and Singh, N.K. (1997) Genetic and biochemical characterization of novel low molecular weight glutenin subunits in wheat (Triticum aestivum L.). Genome 40, 41–48.PubMedGoogle Scholar
  205. Sugiyama, T., Rafalski, A. and Söll, D. (1986) The nucleotide sequence of A wheat gamma-gliadin genomic clone. Plant Sci. 44, 205–209.Google Scholar
  206. Sun, D.J., He, Z.H., Xia, X.C., Zhang, L.P., Morris, C.F., Appels, R., Ma, W.J. and Wang, H. (2005) A novel STS marker for polyphenol oxidase activity in bread wheat. Mol. Breeding 16, 209–218.Google Scholar
  207. Sun, X., Hu, S., Liu, X., Qian, W., Hao, S., Zhang, A. and Wang, D. (2006) Characterization of the HMW glutenin subunits from Aegilops searsii and identification of a novel variant HMW glutenin subunit. Theor. Appl. Genet. 113, 631–641.PubMedGoogle Scholar
  208. Susuki, M., Ketterling, M.G., Li, Q-B. and McCarty, D.R. (2003) Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol. 132, 1664–1677.Google Scholar
  209. Symes, K.J. (1965) The inheritance of grain hardness in wheat as measured by the particle size index. Aust. J. Agric. Res. 16, 113–123.Google Scholar
  210. Taketa, S., Amano, S., Tsujino, Y., Sato, T., Saisho, D., Kakeda, K., Nomura, M., Suzuki, T., Matsumoto, T., Sato, K., Kanamori, H., Kawasaki, S. and Takeda, K. (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl. Acad. Sci. USA 105, 4062–4067.PubMedGoogle Scholar
  211. Tao, H.P. and Kasarda, D.D. (1989) Two-dimensional gel mapping and N-terminal sequencing of LMW-glutenin subunits. J. Exp. Bot. 40, 1015–1020.Google Scholar
  212. Tatham, A.S., Miflin, B.J. and Shewry, P.R. (1985) The beta-turn conformation in wheat gluten proteins: relationship to gluten elasticity. Cereal Chem. 62, 405–442.Google Scholar
  213. Thipyapong, P., Joel, D.M. and Steffens, J.C. (1997) Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiol. 113, 707–718.PubMedGoogle Scholar
  214. Thomas, W.T.B., Powell, W., Swanston, J.S., Ellis, R.P., Chalmers, K.J., Barua, U.M., Jack, P., Lea, V., Forster, B.P., Waugh, R. and Smith, D.B. (1996) Quantitative trait loci for germination and malting quality characters in a spring barley cross. Crop Sci. 36, 265–273.Google Scholar
  215. Topping, D. (2007) Cereal complex carbohydrates and their contribution to human health. J. Cereal Sci. 46, 220–229.Google Scholar
  216. Topping, D.L., Morell, M.K., King, R.A., Li, Z., Bird, A.R. and Noakes, M. (2003) Resistant starch and health – Himalaya 292, a novel barley cultivar to deliver benefits to consumers. Starke 55, 539–545.Google Scholar
  217. Turner, A.S., Bradburne, R.P., Fish, L. and Snape, J.W. (2004) New quantitative trait loci influencing grain texture and protein content in wheat. J. Cereal Sci. 40, 51–60.Google Scholar
  218. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A. and Dubcovsky, J. (2006) A NAC gene regulating senescence improves grain protein, zinc and iron content in wheat. Science 314, 1298–1301.PubMedGoogle Scholar
  219. Udall, J. (1997) Important alleles for noodle quality in winter wheat as identified by molecular markers. M.S. Thesis, University of Idaho, Moscow, ID.Google Scholar
  220. Udall, J.A., Souza, E., Anderson, J., Sorrells, M.E. and Zemetra, R.S. (1999) Quantitative trait loci for flour viscosity in winter wheat. Crop Sci. 39, 238–242.Google Scholar
  221. Ullrich, S.E., Han, F. and Jones, B.L. (1997) Genetic complexity of the malt extract trait in barley suggested by QTL analysis. J. Am. Soc. Brew. Chem. 55, 1–4.Google Scholar
  222. van Heel, D.A. and West, J. (2006) Recent advances in coeliac disease. Gut 55, 1037–1046.PubMedGoogle Scholar
  223. Varghese, J.P., Struss, D. and Kazman, M.E. (1996) Rapid screening of selected European winter wheat varieties and segregating populations for the Glu-D1d allele using PCR. Plant Breeding 115, 451–454.Google Scholar
  224. Walia, H., Wilson, C., Wahid, A., Condamine, P., Cui, X. and Close, T.J. (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct. Integr. Genomics 6, 143–156.PubMedGoogle Scholar
  225. Wall, J.S. (1979) The role of wheat proteins in determining baking quality. In: D.L. Laidman and R.G. Wyn Jones (Eds.), Recent Advances in the Biochemistry of Cereals. Academic Press, New York, pp. 275–311.Google Scholar
  226. White, C.L., Staines, V.E. and Staines, M.H. (2007) A review of the nutritional value of lupins for dairy cows. Aust. J. Agric. Res. 58, 185–202.Google Scholar
  227. Wicker, T., Yahiaoui, N., Guyot, R., Schlagenhauf, E., Liu, Z.D., Dubcovsky, J. and Keller, B. (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15, 1186–1197.PubMedGoogle Scholar
  228. Wieser, H. (2007) Chemistry of gluten proteins. Food Microbiol. 24, 115–119.PubMedGoogle Scholar
  229. Wrigley, C.W., Bushuk, W. and Gupta, R. (1996) Nomenclature: establishing a common gluten language. In: C.W. Wrigley (Ed.), Gluten 96. RACI, Melbourne, Australia, pp. 403–407.Google Scholar
  230. Yamamori, M., Fujita, S., Hayakawa, K., Matsuki, J. and Yasui, T. (2000) Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theor. Appl. Genet. 101, 21–29.Google Scholar
  231. Yoshigi, N., Okada, Y., Maeba, H., Sahara, H. and Tamaki, T. (1995) Construction of a plastid used for the expression of a seven-fold mutant barley β-amylase with thermostability in Escherichia coli and properties of the sevenfold mutant β-amylase. J. Biochem. 118, 562–567.PubMedGoogle Scholar
  232. Zhang, L.P., Ge, X.X., He, Z.H., Wang, D.S., Yan, J., Xia, X.C. and Sutherland, M.W. (2005) Mapping QTLs for polyphenol oxidase activity in a DH population from common wheat. Acta Agronomica Sinica 31, 7–10.Google Scholar
  233. Zhang, W. and Dubcovsky, J. (2008) Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor. Appl. Genet. 116, 635–645.PubMedGoogle Scholar
  234. Zhang, W., Gianibelli, M.C., Rampling, L. and Gale, K.R. (2004) Characterisation and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 108, 1409–1419.PubMedGoogle Scholar
  235. Zhao, X.C., Batey, I.L., Sharp, P.J., Crosbie, G., Barclay, I., Wilson, R., Morell, M.K. and Appels, R. (1996) A single genetic locus associated with starch granule and noodle quality in wheat. J. Cereal Sci. 27, 7–13.Google Scholar
  236. Zhao, X.L., Xia, X.C., He, Z.H., Gale, K.R., Lei, Z.S., Appels, R. and Ma, W. (2006) Characterization of three low-molecular-weight Glu-D3 subunit genes in common wheat. Theor. Appl. Genet. 113(7), 1247–1259.PubMedGoogle Scholar
  237. Zhao, X.L., Xia, X.C., He, Z.H., Lei, Z.S., Appels, R., Yang, Y., Sun, Q.X. and Ma, W. (2007) Novel DNA variations to characterize low molecular weight glutenin Glu-D3 genes and develop STS markers in common wheat. Theor. Appl. Genet. 114(3), 451–460.PubMedGoogle Scholar
  238. Zolla, L., Rinalducci, S., Timperio, A.M. and Huber, C. (2002) Proteomics of light-harvesting proteins in different plant species. Analysis and comparison by liquid chromatography-electrospray ionization mass spectrometry. Photosystem I. Plant Physiol. 130, 1938–1950.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • W. Ma
    • 1
  • O. Anderson
    • 2
  • H. Kuchel
    • 3
  • Y. Bonnardeaux
    • 4
  • H. Collins
    • 5
  • M.K. Morell
    • 6
  • P. Langridge
    • 7
  • R. Appels
    • 8
  1. 1.USDA-ARSAlbanyUSA
  2. 2.Department of Agriculture and FoodPerthWestern Australia
  3. 3.Australian Grain TechnologiesAdelaideAustralia
  4. 4.CSIRO Mining and ExplorationPerthAustralia
  5. 5.Australian Centre for Plant Functional GenomicsAdelaideAustralia
  6. 6.CSIRO Food Futures FlagshipCanberraAustralia
  7. 7.University of AdelaideAustralian Centre for Plant Functional GenomicsAustralia
  8. 8.Murdoch UniversityCentre for Comparative Genomics, Department of AgricultureAustralia

Personalised recommendations