Sizing of Heijunka-controlled Production Systems with Unreliable Production Processes

  • Christian R. Lippolt
  • Kai Furmans
Part of the IFIP – The International Federation for Information Processing book series (IFIPAICT, volume 257)

Heijunka is the notion to level a production system by removing ups and downs in volume caused by batch processing and customer order fluctuation in order to reach a mixed model production system with a constant flow of parts. We show how to implement lean production principles in systems with unreliable production processes. Process unreliabilities occur because tool machines may have small overall equipment effectiveness. Our present results were derived during performed implementation projects, where supermarketpull- systems had to be dimensioned. In particular, the calculation of required inventory levels is presented which uses analytical mathematical models on the basis of discrete time queuing systems. By considering variable capacities we essentially extend the content of reference [1]. The application of our model is demonstrated by an example.


Finished Good Customer Order Production Order Machine Breakdown Lean Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Furmans, K. (2005): Models of Heijunka-levelled Kanban-Systems. In: C.T. Papadopoulos (Ed.): 5th International Conference on Analysis of Manufacturing Systems - Production and Management 2005, Zakynthos Island, Greece, pp. 243–248. Publishing Ziti, Thessaloniki, Greece,
  2. 2.
    Yan, H. (1995): The optimal number of kanbans in a manufacturing system with general machine breakdowns and stochastic demands, Internat. Journal of Operations & Production Management, Vol. 15, Nr. 9, pp. 89–103.CrossRefGoogle Scholar
  3. 3.
    Ohno, T. (1988): The Toyota Production System: beyond large scale production, Productivity Press, Portland, OR, Cambridge, Mass.Google Scholar
  4. 4.
    Hopp, W. J., Spearman, M. L. (1996): Factory Physics, Foundation of Manufacturing Management. Irwin/McGraw-Hill, Boston, Mass., 2nd edition 2000, 668 p.Google Scholar
  5. 5.
    Adams, M., Schroer, B. J., Gunter, L. (2001): Impact of process variability on lean manufacturing systems. Proceedings of the Huntsville Simulation Conference, 2001, Huntsville, AL.Google Scholar
  6. 6.
    Koch, T., Kornicki, L. (2003): Minimizing variability in manufacturing systems in the context of lean manufacturing implementation. Modern trends in manufacturing. 2nd Internat. CAMT Conference. Wrocáaw, Poland.Google Scholar
  7. 7.
    Liker, J. K. (2004): The Toyota way: 14 management principles from the world’s greatest manufacturer. McGraw-Hill, New York. 350 p.Google Scholar
  8. 8.
    Monden Y. (1983): Toyota Production System, practical approach to production management. Industrial Engineering and Managment Press, Institute of Industrial Engineers, Norscross, GA. USA.Google Scholar
  9. 9.
    Rother, M., Shook, J. (1999): Learning to see: Value-Stream Mapping to Create Value and Eliminate Muda, Lean Enterprise Institute (LEI), Brookline, Mass., 112 p.; ISBN: 0966784308.Google Scholar
  10. 10.
    Takeda, H. (1996): Das System der Mixed Production, flexibel, rationell, kundenorientiert. Verlag Moderne Industrie, Landsberg, Deutschland.Google Scholar
  11. 11.
    Smalley, A. (2004): Creating level pull: a lean production-system improvement guide for production-control, operations, and engineering professionals. LeanManagement-Institut (LMI), Aachen, Deutschland. ISBN: 0–9743225–0–4 (englisch); 0–9763152–4–6 (deutsch). c. 110 p.Google Scholar
  12. 12.
    Miltenburg, J., Sinnamon, G. (1989): Scheduling mixed-model multi-level justin-time production systems. Internat Journal of Production Research 27, pp. 1487–1509.CrossRefGoogle Scholar
  13. 13.
    Lödding, H. (2004): Verfahren der Fertigungssteuerung: Grundlagen, Beschreibung, Konfiguration. Buch der VDI-Reihe, Springer, Heidelberg, Berlin. 540 p.Google Scholar
  14. 14.
    Günther, H.-O., Tempelmeier, H. (2005): Produktion und Logistik (6. Auflage; Erstauflage 1995), Springer-Lehrbuch. Springer, Heidelberg.Google Scholar
  15. 15.
    Grassmann, J. L., Jain, W. K. (1989): Numerical solutions of the waiting time distribution and idle time distribution of the arithmetic GI|G|1 queue, Operations Research 37 (1989), No 1, pp. 141–150.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© International Federation for Information Processing 2008

Authors and Affiliations

  • Christian R. Lippolt
    • 1
  • Kai Furmans
    • 1
  1. 1.Institut für Fördertechnik und Logistiksysteme (IFL)Universität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations