Cost Allocation in Combinatorial Optimization Games

  • Yannis Marinakis
  • Athanasios Migdalas
  • Panos M. Pardalos

Cooperative game theory is concerned primarily with groups of players who coordinate their actions and pool their winnings. One of the main concerns is how to divide the extra earnings (or cost savings) among the members of the coalitions. Thus a number of solution concepts for cooperative games have been proposed. In this chapter, a selection of basic notions and solution concepts for cooperative games are presented and analyzed in detail. The paper is particularly concerned with cost allocation methods in problems that arise from the field of combinatorial (discrete) optimization.

Keywords

cost allocation combinatorial optimization games 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts. H.: Minimum Cost Spanning Tree Games and Sets Games. PhD Thesis, University of Twente. The Netherlands (1994)Google Scholar
  2. 2.
    Aumann, R.J., Maschler. M.: The Bargaining Set for Cooperative Games. In: Dresher, M., Shapley, L.S., Tucker, A. (eds) Advances in Game Theory. Princeton University Press, 443–476 (1964)Google Scholar
  3. 3.
    Balinski, M.L., Gale, D.: On the Core of the Assignment Game. In: Functional Analysis, Optimization and Mathematical Economics. Oxford University Press, New York, 274–289 (1990)Google Scholar
  4. 4.
    Bird, C.G.: Cost Allocation for a Spanning Tree. Networks 6, 335–350 (1976)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Borm, P., Fiestras–Janeiro, G., Hamers, H., Sanchez, E., Voorneveld, M.: On the Convexity of Games Corresponding to Sequencing Situations with Due Dates. European Journal of Operational Research, 136(3), 616–634 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Borm, P., Hamers, H., Hendrickx, R.: Operations Research Games: A Survey TOP. 9, 139–216 (2001)MATHMathSciNetGoogle Scholar
  7. 7.
    Bodin, L.D., Golden, B.L., Assad, A.A., Ball, M.O.: Routing and Scheduling of Vehicles and Crews. Computers and Operations Research, 10, 63–211 (1983)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Cachon, G, Netessine, S.: Game Theory in Supply Chain Analysis. In: Simchi-Levi, D., Wu, S.D., Chen, Z.M. (eds) Handbook of Quantitave Supply Chain Analysis: Modeling in the E-Business Area. 13–65, (2004)Google Scholar
  9. 9.
    Chardaire, P.: Facility Location Optimization and Cooperative Games PhD Thesis, University of East Anglia (1998)Google Scholar
  10. 10.
    Chardaire, P.: On the Core of the Facility Location Games. Unpublished manuscript available from http://www.sys.uea.ac.uk/people/pc
  11. 11.
    Claus, A., Kleitman, D.J.: Cost Allocation for a Spanning tree. Networks, 3, 289–304 (1973)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Curiel, I., Pederzoli, G., Tijs, S.: Sequencing Games. European Journal of Operational Research, 40, 344–351 (1989)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Curiel, I.: Cooperative Games and Applications, Cooperative Games Arising from Combinatorial Optimization. Kluwer Academic Publishers (1997)Google Scholar
  14. 14.
    Denavur, N.R., Mihail, M., Vazirani, V.V.: Strategyproof Cost-sharing Mechanisms for Set Cover and Facility Location Games. EC03, June 9–12 (2003)Google Scholar
  15. 15.
    Deng, X.: Combinatorial Optimization and Coalition Games. In: Du, D.Z., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Kluwer Academic Publishers, 77–103 (1998)Google Scholar
  16. 16.
    Deng, X., Ibaraki, T., Nagamochi, H.: Combinatorial Optimization Games. Proceedings 8th Annual ACM-SIAM Symposium on Discrete Algorithms, 720–729 (1997)Google Scholar
  17. 17.
    Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic Aspects of the Core of Combinatorial Optimization Problems. Mathematics of Operations Research, 24, 751–766 (1999)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Derigs, U., Grabenbauer, G.: Intime - A New Heuristic Approach to the Vehicle Routing Problem with Time Windows, with a Bakery Fleet Size. American Journal of Mathematical and Management Sciences, 13(3–4), 249–266 (1993)MATHGoogle Scholar
  19. 19.
    Derks, J., Kuipers, J.: On the core of Routing Games, International Journal of Game Theory, 26, 193–205 (1997)MATHMathSciNetGoogle Scholar
  20. 20.
    Driessen, T.: Cooperative Games, Solutions and Applications. Kluwer Academic Publishers (1988)Google Scholar
  21. 21.
    Dror, M.: Cost Allocation: The Traveling Salesman, Bin Packing, and the Knapsack. Appl. Math. Comput., 35, 195–207, (1990)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Dror, M.: Arc Routing Theory, Solutions and Applications. Kluwer Academic Publishers (2000)Google Scholar
  23. 23.
    Engevall, S.: Cost Allocation in Distribution Planning. Licentiate Thesis, Linkoping Institute of Technology (1996)Google Scholar
  24. 24.
    Engevall, S.: Cost Allocation in Some Routing Problems - A Game Theoretic Approach. PhD Thesis, Linkoping Institute of Technology (2002)Google Scholar
  25. 25.
    Faigle, U., Kern, W.: On Some Approximately Balanced Combinatorial Cooperation Games. Methods and Models of Operations Research, 38, 141–152 (1993)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Faigle, U., Kern, W., Kuippers, J.: On the Computation of the Nucleolus of a Cooperative Game. International Journal of Game Theory, 30(1), 79–98 (2001)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Faigle, U., Fekete, S., Hochstarrler, W., Kern, W.: On the Complexity of Testing Membership in the Core of Min Cost Spanning Tree Games. Int. Journal of Game Theory, 26, 361–366 (1997)MATHGoogle Scholar
  28. 28.
    Faigle, U., Fekete, S., Hochstarrler, W., Kern, W.: The Nukleon of Cooperative Games and an Algorithm for Matching Games. Mathematical Programming, 98, 195–211 (1997)Google Scholar
  29. 29.
    Faigle, U., Fekete, S., Hochstarrler, W., Kern, W.: On Approximately Fair Cost Allocation in Euclidean TSP Games. OR Spektrum, 20, 29–37 (1998)MATHCrossRefGoogle Scholar
  30. 30.
    Fekete, S.: Geometric Ideas for Graph Representation and for Cooperative Game Theory. Habilitation Thesis, Mathematisches Institut zu Koln (1997)Google Scholar
  31. 31.
    Fekete, S., Pulleyblank, W.: A Note on the Traveling Preacher Problem. Available online: http://citeseer.ist.psu.edu/271198.html
  32. 32.
    Fernandez, F.R., Hinojosa, M.A., Puerto, J.: Multi-Criteria Minimum Cost Spanning Tree Games. European Journal of Operational Research, 158, 399–408 (2004)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Goemans, M.X., Skutella, M.: Cooperative Facility Location Games. Journal of Algorithms, 50, 194–214 (2004)MATHCrossRefGoogle Scholar
  34. 34.
    G\ddot{o}the-Lundgren, M., J\ddot{o}rnsten, K., V\ddot{a}rbrand, P.: On the Nucleolus of the Basic Vehicle Routing Game. Mathematical Programming, 72, 83–100 (1996)Google Scholar
  35. 35.
    Granot, D., Granot, F.: Computational Complexity of a Cost Allocation Approach to a Fixed Cost Spanning Forest Problem. Mathematics of Operations Research, 17, 765–780 (1992)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Granot, D., Huberman, G.: On the Core and Nucleolus of Minimum Cost Spanning Tree Games. Mathematical Programming, 29, 323–347 (1984)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Gutin, G., Punnen, A.: The Traveling Salesman Problem and Its Variations. Kluwer Academic Publishers, Dordrecht (2002)MATHGoogle Scholar
  38. 38.
    Hamers, H.: Sequencing and Delivery Situations: A Game Theoretic Approach. PhD Thesis, Tilburg University,Tilburg , The Netherlands (1995)Google Scholar
  39. 39.
    Hamers, H.: On the Concavity of Delivery Games. European Journal of Operational Research, 99, 445–458 (1997)MATHCrossRefGoogle Scholar
  40. 40.
    Hamers, H., Klijn, F., Suijs, J.: On the Balancedness of Multimachine Sequencing Games. European Journal of Operational Research, 119, 678–691 (1999)MATHCrossRefGoogle Scholar
  41. 41.
    Hamers, H., Borm, P., Leensel, R., Tijs, S.: Cost Allocation in the Chinese Postman Problem. European Journal of Operational Research, 118, 153–163 (1999)MATHCrossRefGoogle Scholar
  42. 42.
    Hamers, H., Suijs, J., Tijs, S.H., Borm, P.: The Split Core for Sequencing Games. Games and Economic Behavior, 15, 165–176 (1996)MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Hamers, H., Klijn, F., Solymosi, T., Tijs, S., Vermeulen, D.: On the Nucleolus of Neighbor Games. European Journal of Operational Research, 146, 1–18 (2003)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Hartman, B.C., Dror, M., Shaked, M.: Cores of Inventory Centralization Games. Games and Economic Behavior, 31, 26–49 (2000)MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Hochstattler, W.: Duality in Combinatorial Optimization - Sometimes it Works, Sometimes it Won’t. Available online: http://citeseer.ist.psu.edu/227010.html
  46. 46.
    Kalai, E., Zemel, E.: Generalized Network Problems Yielding Totally Balanced Games. Operations Research, 30, 998–1008 (1982)MATHCrossRefGoogle Scholar
  47. 47.
    Kuipers, J.: A Note on the 5-Person Traveling Salesman Game. Mathematical Methods of Operations Research, 38, 131–140 (1993)MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Kuipers, J., Feltkamp, V., Tijs, S.H.: Vertex Weighted Steiner Tree Games. Report M96-07, Department of Mathematics, Maastricht University (1996)Google Scholar
  49. 49.
    Kolen, A.: Solving Covering Problems and the Uncapacitated Plant Location Algorithms. European Journal of Operational Research, 12, 266-278 (1983)MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Lawer, E.L., Lenstra, J.K., Rinnoy Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley and Sons (1985)Google Scholar
  51. 51.
    Lawer, E.L., Lenstra, J.K., Rinnoy Kan, A.H.G., Shmoys, D.B.: Sequencing and Scheduling: Algorithms and Complexity. In: Graves, S., Rinnooy Kan, A., Zipkin, P. (eds) Logistics of Production and Inventory. North Holland, Amsterdam, 445–522 (1993)CrossRefGoogle Scholar
  52. 52.
    Markakis, E., Saberi, A.: On the Core of the Multicommodity Flow Game. Decision Support Systems, 39, 3–10 (2005)CrossRefGoogle Scholar
  53. 53.
    Matsui, T.: A Minimum Taxrate Core Allocation of Bin Packing Problems. Available online: http://citeseer.ist.psu.edu/matsui99minimum.html
  54. 54.
    Megiddo, N.: Cost Allocation for Steiner Trees. Networks, 8, 1–6 (1978)MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Megiddo, N.: Computational Complexity of the Game Theory Approach to Cost Allocation for a Tree. Mathematics of Operations Research, 3, 189–196 (1978)MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Nouweland, A.V.D., Krabbenborg, M., Potters, J.: Flowshop with a Dominant Machine. Europena Journal of Operational Research, 62, 38–46 (1992)MATHCrossRefGoogle Scholar
  57. 57.
    Nunez, M., Rafels, C.: Characterization of the Extreme Core Allocations of the Assignment Game. Games and Economic Behavior, 44, 311–331 (2001)CrossRefMathSciNetGoogle Scholar
  58. 58.
    Okamoto, Y.: Traveling Salesman Games with the Monge Property. Discrete Applied Mathematics, 138, 349–369 (2004)MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Potters, J., Curiel, I., Tijs, S.: Traveling Salesman Games. Mathematical Programming, 53, 199–211 (1992)MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Schmeidler, D.: The Nucleolus of a Characteristic Function Game. SIAM J. Appl. Math., 17, 1163 – 1170 (1969)MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Shapley, L.S.: A Value for n-Persons Games. In: Contributions to the theory of games II, Annals of Mathematical Studies 28. Princeton University Press, 307–317 (1953)Google Scholar
  62. 62.
    Shapley, L.S., Shubik, M.: The Assignment Game I: the Core. International Journal of Game Theory, 1, 111–130 (1971)MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Solymosi, T., Raghavan, T.E.S.: An Algorithm for Finding the Nucleolus of an Assignment Game. International Journal of Game Theory, 23, 119–143 (1994)MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Suijs, J.: Cost Allocation in Spanning Network Enterprises with Stochastic Connection Costs. Games and Economic Behavior, 42, 156–171 (2003)MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Tamir, A.: On the Core of Traveling Salesman Cost Allocation Games. Operations Research Letters, 8, 31–34 (1989)MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Tamir, A.: On the Core of Network Synthesis Games. Mathematical Programming, 50, 123–135 (1991)MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    Tijs, S., Parthasarathy, T., Potters, J., Prasad, V.R.: Permutation Games: Another Class of Totally Balanced Games. OR Spektrum, 6, 119–123 (1984)MATHCrossRefGoogle Scholar
  68. 68.
    Vidal, C., Goetschalckx, M.: A Global Supply Chain Model with Transfer Pricing and Transportation Cost Allocation. European Journal of Operational Research, 129, 134–158 (2001)MATHCrossRefGoogle Scholar
  69. 69.
    Wang, Q., Parlar, M.: A Three-Person Game Theory Model Arising in Stochastic Inventory Control Theory. European Journal of Operational Research, 42, 1–21 (1994)CrossRefMathSciNetGoogle Scholar
  70. 70.
    Woeginger, G.J.: On the Rate of Taxation in a Cooperative Bin Packing Game. Methods and Models of Operations Research, 42, 315–324 (1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yannis Marinakis
    • 1
  • Athanasios Migdalas
    • 1
  • Panos M. Pardalos
    • 2
  1. 1.Department of Production Engineering and ManagementTechnical University of CreteGreece
  2. 2.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations