Advertisement

Algorithms for Network Interdiction and Fortification Games

  • J. Cole Smith
  • Churlzu Lim
Part of the Springer Optimization and Its Applications book series (SOIA, volume 17)

This chapter explores models and algorithms applied to a class of Stackelberg games on networks. In these network interdictiongames, a network exists over which an operator wishes to execute some function, such as finding a shortest path, shipping a maximum flow, or transmitting a minimum cost multicommodity flow. The role of the interdictor is to compromise certain network elements before the operator acts, by (for instance) increasing the cost of flow or reducing capacity on an arc. We begin by reviewing the field of network interdiction and its related theoretical and mathematical foundations. We then discuss recent applications of stochastic models, valid inequalities, continuous bilinear programming techniques, and asymmetric analysis to network interdiction problems. Next, note that interdiction problems can be extended to a three-stage problem in which the operator fortifies the network (by increasing capacities, reducing flow costs, or defending network elements from the interdictor) before the interdictor takes action. We devote one section to ongoing research in this area and conclude by discussing areas for future research.

Keywords

network interdiction network fortification bilinear programming Stackelberg games mixed-integer programming duality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alarie, S., Audet, C., Jaumard, B., Savard, G.: Concavity Cuts for Disjoint Bilinear Programming. Mathematical Programming, 90(2), 373–398 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alevras, D., Grotschel, M., Jonas, P., Paul, U., Wessaly, R.: Survivable Mobile Phone Network Architectures: Models and Solution Methods. IEEE Communications Magazine, 36, 88–93 (1998)CrossRefGoogle Scholar
  3. 3.
    Anandalingam, G., Apprey, V.: Multi-Level Programming and Conflict Resolution. European Journal of Operational Research, 51(2), 233–247 (1991)zbMATHCrossRefGoogle Scholar
  4. 4.
    Armbruster, B., Smith, J.C., Park, K.: The Optimization of Packet Filter Placements to Combat Distributed Denial of Service Attacks. European Journal of Operational Research, 176(2), 1283–1292 (2007)zbMATHCrossRefGoogle Scholar
  5. 5.
    Assimakopoulos, N.: A Network Interdiction Model for Hospital Infection Control. Computers in Biology and Medicine, 17(6), 413–422 (1987)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Audet, C., Hansen, P., Jaumard, B., Savard, G.: A Symmetrical Linear Maxmin Approach to Disjoint Bilinear programming. Mathematical Programming, 85(3), 573–592 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bard, J.F.: An Algorithm for Solving the General Bilevel Programming Problem. Mathematics of Operations Research, 8(2), 260–272 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academic Publishers, Norwell, MA (1998)zbMATHGoogle Scholar
  9. 9.
    Bard, J.F., Falk, J.E.: An Explicit Solution to the Multilevel Programming Problem. Computers and Operations Research, 9(1), 77–100 (1982)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bayrak, H., Bailey, M.D.: Shortest Path Network Interdiction with Asymmetric Information, Networks, to appear (2008)Google Scholar
  11. 11.
    Benson, H.P.: A Finite Algorithm for Concave Minimization over a Polyhedron. Naval Research Logistics, 32(1), 165–177 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ben-Ayed, O., Blair, C.E.: Computational Difficulties of Bilevel Linear Programming. Operation Rresearch, 38(3), 556–560 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Belvaux, G., Boissin, N., Sutter, A., Wolsey, L.A.: Optimal Placement of Add/Drop Multiplexers: Static and Dynamic Models. European Journal of Operational Research, 108, 26–35 (1998)zbMATHCrossRefGoogle Scholar
  14. 14.
    Bialas, W.F., Karwan, M.H.: Two-Level Linear Programming. Management Science, 30(8), 1004–1020 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Bialas, W.F., Karwan, M.H.: On Two-Level Optimization. IEEE Transactions on Automatic Control, 27(1), 211–214 (1982)zbMATHCrossRefGoogle Scholar
  16. 16.
    Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer, New York, NY (1997)zbMATHGoogle Scholar
  17. 17.
    Bracken, J., McGill, J.T.: Mathematical Programs with Optimization Problems in the Constraints. Operations Research, 21(1), 37–44 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Brown, G.G., Carlyle, W.M., Salmerón, J., Wood, K.: Analyzing the vul-nerability of critical infrastructure to attack and planning defenses. In: Greenberg, H.J., Smith, J.C. (eds.). Tutorials in Operations Research: Emerging Theory, Methods, and Applications, 102–123. INFORMS, Hanover, MD (2005)Google Scholar
  19. 19.
    Burch, C., Carr, R., Krumke, S., Marathe, M., Phillips, C., Sundberg, E.: A Decomposition-Based Approximation for Network Inhibition. In: Woodruff, D.L. (ed). Network Interdiction and Stochastic Integer Programming, Kluwer Academic Publishers, Boston, 51–69 (2002)Google Scholar
  20. 20.
    Candler, W., Townsley, R.: A Linear Two-Level Programming Problem. Computers and Operations Research, 9(1), 59–76 (1982)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Cabot, A.V., Francis, R.L.: Solving Certain Nonconvex Quadratic Minimization Problems by Ranking the Extreme Points. Operations Research, 18(1), 82–86 (1970)zbMATHCrossRefGoogle Scholar
  22. 22.
    Church, R.L., Scaparra, M.P.: Protecting Critical Assets: The r-Interdiction Median Problem with Fortification, Geographical Analysis, 39(2), 129–146 (2007)CrossRefGoogle Scholar
  23. 23.
    Church, R.L., Scaparra, M.P., Middleton, R.: Identifying Critical Infrastructure: The Median and Covering Interdiction Models. Annals of the Association of American Geographers, 94, 491–502 (2004)CrossRefGoogle Scholar
  24. 24.
    Clarke, L.W., Anandalingam, G.: A Bootstrap Heuristic for Designing Minimum Cost Survivable Networks. Computers and Operations Research, 22, 921–934 (1995)zbMATHCrossRefGoogle Scholar
  25. 25.
    Computer Emergency Response Team (CERT). Advisory CA-2000-01 Denial- of-service developments, 2000. Downloadable from website http://www.cert.org/advisories/CA-2000-01.html
  26. 26.
    Cormican, K.J., Morton, D.P., Wood, R.K.: Stochastic Network Interdiction. Operations Research, 46(2), 184–197 (1998)zbMATHCrossRefGoogle Scholar
  27. 27.
    Colson, B., Marcotte, P., Savard, G.: Bilevel Programming: A survey. A Quarterly Journal of Operations Research, 3(2), 87–107 (2005)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Corley, H.W., Chang, H.: Finding the n Most Vital Nodes in a Flow Network. Management Science, 21, 362–364 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Corley, H.W., Sha, D.Y.: Most Vital Links and Nodes in Weighted Networks. Operations Research Letters, 1, 157–160 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Dahl, G., Stoer, M.: A Cutting Plane Algorithm for Multicommodity Survivable Network Design Problems. INFORMS Journal on Computing, 10, 1–11 (1998)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Falk, J.E., Soland, R.M.: Algorithm for Separable Nonconvex Programming Problems. Management Science, 15(9), 550–569 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Ferguson, P., Senie, D.: Network Ingress Filtering: Defeating Denial of Service Attacks which Employ IP Source Address Spoofing. RFC 2827 (2000)Google Scholar
  33. 33.
    Fortuny-Amat, J., McCarl, B.: A Representation and Economic Interpretation of a Two-Level Programming Problem. Journal of the Operational Research Society, 32(9), 783–792 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Fulkerson, D.R., Harding, G.C.: Maximizing Minimum Source-Sink Path Subject to a Budget Constraint. Mathematical Programming, 13(1), 116–118 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Garg, M., Smith, J.C.: Models and Algorithms for the Design of Survivable Networks with General Failure Scenarios. Omega (to appear)Google Scholar
  36. 36.
    Ghare, P.M., Montgomery, D.C., Turner, W.C.: Optimal Interdiction Policy for a Flow Network. Naval Research Logistics Quarterly, 18(1), 37–45 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Gilmore, P.C.: Optimal and Suboptimal Algorithms for the Quadratic Assignment Problem. Journal of the Society for Industrial and Applied Mathematics, 10(2), 305–313 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Glover, F.: Polyhedral Convexity Cuts and Negative Edge Extensions. Zeitschrift fur Operations Research, 18, 181–186 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Glover, F.: Convexity Cuts and Cut Search. Operations Research, 21(1), 123–134 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Golden, B.: A Problem in Network Interdiction. Naval Research Logistics Quarterly, 25(4), 711–713 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Goldschmidt, O., Hochbaum, D.S., Levin, A., Olinick, E.V.: The SONET Edge-Partition Problem. Networks, 41, 13–23 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Goldschmidt, O., Laugier, A., Olinick, E.V.: SONET/SDH Ring Assignment with Capacity Constraints. Discrete Applied Mathematics, 129, 99–128 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Goetschalckx, M., Vidal, C.J., Dogan, K.: Modeling and Design of Global Logistics Systems: A Review of Integrated Strategic and Tactical Models and Design Algorithms. European Journal of Operational Research, 143(1), 1–18 (2002)zbMATHCrossRefGoogle Scholar
  44. 44.
    Grotschel, M., Monma, C.L.: Integer Polyhedra Arising from Certain Network Design Problems with Connectivity Constraints. SIAM Journal on Discrete Mathematics, 3, 502–523 (1990)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Grotschel, M., Monma, C.L., Stoer, M.: Polyhedral and Computational Investigations for Designing Communication Networks with High Survivability Requirements. Operations Research, 43, 1012–1024 (1995)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Hansen, P., Jaumard, B., Savard, G.: New Branch-and-Bound Rules for Linear Bilevel Programming. Siam Journal of Scientific and Statistical Computing, 13(5), 1194–1217 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Held, H., Hemmecke, R., Woodruff, D.L.: A Decomposition Algorithm Applied to Planning the Interdiction of Stochastic Networks. Naval Research Logistics, 52, 321–328 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Held, H., Woodruff, D.L.: Heuristics for Multi-Stage Interdiction of Stochastic Networks. Journal of Heuristics, 11, 483–500 (2005)zbMATHCrossRefGoogle Scholar
  49. 49.
    Hemmecke, R., Schultz, R., Woodruff, D.L.: Interdicting Stochastic Networks. In: Woodruff, D.L. (ed.). Network Interdiction and Stochastic Integer Programming. Kluwer Academic Publishers, Boston, MA, 71–80 (2002)Google Scholar
  50. 50.
    Horst, R.: Algorithms for Nonconvex Programming Problems. Mathematical Programming, 10(1), 312–321 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. 3rd ed. Springer, New York, NY (1996)zbMATHGoogle Scholar
  52. 52.
    Iri, M.: Extension of the Maximum-flow Minimum-cut Theorem to Multicommodity Flows. Journal of the Operations Research Society of Japan, 13, 129–135 (1971)zbMATHMathSciNetGoogle Scholar
  53. 53.
    Israeli, E., Wood, R.K.: Shortest-Path Network Interdiction. Networks, 40(2), 97–111 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Jacobsen, S.E.: Convergence of a Tuy-Type Algorithm for Concave Minimization Subject to Linear Inequality Constraints. Applied Mathematics and Optimization, 7(1), 1–9 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Jeroslow, R.G.: The Polynomial Hierarchy and a Simple Model for Competitive Analysis. Mathematical Programming, 32(2), 146–164 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Kall, P., Wallace, S.W.: Stochastic Programming. John Wiley and Sons, Chichester, UK (1994)zbMATHGoogle Scholar
  57. 57.
    Khang, D.B., Fujiwara, O.: A New Algorithm to Find All Vertices of a Polytope. Operations Research Letters, 8(5), 261–264 (1989)CrossRefMathSciNetGoogle Scholar
  58. 58.
    Konno, H.: Bilinear Programming. Stanford University, Technical Report, 71-9, 71-10, Stanford, CA (1971)Google Scholar
  59. 59.
    Koopmans, T.C., Beckmann, M.: Assignment Problems and the Location of Economic Activities. Econometrica, 25(1), 53–76 (1957)zbMATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Kydland, F.: Hierarchical Decomposition in Linear Economic Models. Management Science, 21(9), 1029–1039 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Lim, C., Smith, J.C.: Algorithms for Discrete and Continuous Multicommodity Flow Network Interdiction Problems. IIE Transactions, 39(1), 15–26 (2007)CrossRefGoogle Scholar
  62. 62.
    Lee, Y., Sherali, H.D., Han, J., Kim, S.: A Branch-and-Cut Algorithm for Solving an Intra-Ring Synchronous Optical Network Design Problem. Networks, 35, 223–232 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Malik, K., Mittal, A.K., Gupta, S.K.: The k Most Vital Arcs in the Shortest Path Problem. Operations Research Letters, 8, 223–227 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Mangasarian, O.L.: Equilibrium Points of Bimatrix Games. Journal of the Society for Industrial and Applied Mathematics, 12(4), 778–780 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Matheiss, T.H., Rubin, D.S.: A Survey and Comparison of Methods for Finding All Vertices of Convex Polyhedral Sets. Mathematics of Operations Research, 5(2), 167–185 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    McKeown, P.G.: Solving Incremental Quantity Discounted Transportation Problems by Vertex Ranking. Naval Research Logistics, 27(3), 437–445 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    McMasters, A.W., Mustin, T.M.: Optimal Interdiction of a Supply Network. Naval Research Logistics Quarterly, 17(3), 261–268 (1970)zbMATHCrossRefGoogle Scholar
  68. 68.
    Mofya, E.C., Smith, J.C.: The Optimal Deployment of Filters to Limit Forged Address Attacks in Communication Networks. Lecture Notes on Computer Science, 3073, 239–251 (2004)CrossRefGoogle Scholar
  69. 69.
    Mofya, E.C., Smith, J.C.: Algorithms for the Generalized Minimum Filter Placement Problem on Special Structures. Technical Report, Department of Systems and Industrial Engineering, The University of Arizona, Tucson, AZ (2006)Google Scholar
  70. 70.
    Mofya, E.C., Smith, J.C.: Exact and Heuristic Algorithms for Solving the Generalized Minimum Filter Placement Problem. Technical Report, Department of Systems and Industrial Engineering, The University of Arizona, Tucson, AZ (2006)Google Scholar
  71. 71.
    Mofya, E.C.: Exact and Heuristic Algorithms for Solving the Generalized Minimum Filter Placement Problem. PhD Thesis, Department of Systems and Industrial Engineering, The University of Arizona, Tucson, AZ (2005)Google Scholar
  72. 72.
    Morton, D.P., Pan, F., Saeger, K.J.: Models for Nuclear Smuggling Interdiction. IIE Transactions, 39(1), 3–14 (2007)CrossRefGoogle Scholar
  73. 73.
    Murty, K.G. Solving the Fixed Charge Problem by Ranking the Extreme Points. Operations Research, 16(2), 268–279 (1968)zbMATHCrossRefGoogle Scholar
  74. 74.
    Myung, Y.S., Kim, H.J., Tcha, D.W.: Design of Communication Networks with Survivability Constraints. Management Science, 45, 238–252 (1999)CrossRefGoogle Scholar
  75. 75.
    Ouveysi, I., Wirth, A.: On Design of a Survivable Network Architecture for Dynamic Routing: Optimal Solution Strategy and Efficient Heuristic. European Journal of Operational Research, 117, 30–44 (1999)zbMATHCrossRefGoogle Scholar
  76. 76.
    Pan, F., Charlton, W., Morton, D.P.: Interdicting Smuggled Nuclear Material. In: Woodruff, D.L. (ed.). Network Interdiction and Stochastic Integer Programming, Kluwer Academic Publishers, Boston, MA, 1–20 (2003)CrossRefGoogle Scholar
  77. 77.
    Pan, F., Morton, D.P.: Minimizing a Stochastic Maximum-Reliability Path. Newtorks, to appear (2008)Google Scholar
  78. 78.
    Pardalos, P.M.: An Algorithm for a Class of Nonlinear Fractional Problems Using Ranking of the Vertices. BIT, 26(3), 392–395 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    Paul, G., Tanizawa, T., Havlin, S., Stanley, H.E.: Optimization of Robustness of Complex Networks. The European Physical Journal B, 38, 187–191 (2004)CrossRefGoogle Scholar
  80. 80.
    Phillips, A.T., Rosen, J.B.: A Parallel Algorithm for Constrained Concave Quadratic Global Minimization. Mathematical Programming, 42(2), 421–448 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  81. 81.
    Porembski, M.: Cone Adaptation Strategies for a Finite and Exact Cutting Plane Algorithm for Concave Minimization. Journal of Global Optimization, 24(1), 89–107 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  82. 82.
    Park, K., Lee, H.: On the Effectiveness of Route-based Packet Filtering for Distributed DoS Attack Prevention in Power-law Internets. Proc. of ACM SIGCOMM, 15–26 (2001)Google Scholar
  83. 83.
    Rajan, D., Atamtürk, A.: Survivable network design: Routing of Flows and Slacks. In: Anandalingam, G., Raghavan, S. (ed.). Telecommunications Network Design and Management. Kluwer, 65–81 (2002)Google Scholar
  84. 84.
    Ratliff, H.D., Sicilia, G.T., Lubore, S.H.: Finding the n Most Vital Links in Flow Networks. Management Science, 21, 531–539 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    Ríos, M., Marianov, V., Gutierrez, M.: Survivable Capacitated Network Design Problem: New Formulation and Lagrangian Relaxation. Journal of the Operational Research Society, 51, 574–582 (2000)zbMATHCrossRefGoogle Scholar
  86. 86.
    Sadagopan, S., Ravindran, A.: A Vertex Ranking Algorithm for the Fixed-Charge Transportation Problem. Journal of Optimization Theory and Applications, 37(2), 221–230 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  87. 87.
    Shaio, J.: Constraint Generation for Network Reliability Problems. Annals of Operations Research, 106, 155–180 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  88. 88.
    Sherali, H.D., Dickey, S.E.: An Extreme-Point-Ranking Algorithm for the Extreme-Point Mathematical Programming Problem. Computers and Operations Research, 13(4), 465–476 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  89. 89.
    Sherali, H.D., Shetty, C.M.: A Finitely Convergent Algorithm for Bilinear Programming Problems Using Polar Cuts and Disjunctive Face Cuts. Mathematical Programming, 19, 14–31 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  90. 90.
    Sherali, H.D., Smith, J.C., Lee, Y.: Enhanced Model Representations for an Intra-Ring Synchronous Optical Network Design Problem Allowing Demand Splitting. INFORMS Journal on Computing, 12, 284–298 (2000)CrossRefGoogle Scholar
  91. 91.
    Smith, J.C., Lim, C., Sudargho, F.: Survivable Network Design under Optimal and Heuristic Interdiction Scenarios, Journal of Global Optimization, 38(2), 181–199 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  92. 92.
    Smith, J.C., Schaefer, A.J., Yen, J.W.: A Stochastic Integer Programming Approach to Solving a Synchronous Optical Network Ring Design Problem. Networks, 44, 12–26 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  93. 93.
    Soland, R.M.: Optimal Facilty Location with Concave Costs. Operations Research, 22(2), 373–382 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  94. 94.
    Stoer, M., Dahl, G.: A Polyhedral Approach to Multicommodity Survivable Network Design. Numerische Mathematik, 68, 149–167 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  95. 95.
    Storøy, S.: Ranking of Vertices in the Linear Fractional Programming Problem. BIT Numerical Mathematics, 23(3), 403–405 (1983)zbMATHCrossRefGoogle Scholar
  96. 96.
    von Stackelberg, H.: The Theory of the Market Economy. William Hodge and Co., London, U.K. (1952)Google Scholar
  97. 97.
    Sutter, A., Vanderbeck, F., Wolsey, L.A.: Optimal Placement of Add/Drop Multiplexers: Heuristic and Exact Algorithms. Operations Research, 46, 719–728 (1998)zbMATHCrossRefGoogle Scholar
  98. 98.
    Taha, H.A.: Concave Minimization over a Convex Polyhedron. Naval Research Logistics Quarterly, 20, 533–548 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  99. 99.
    Thoai, N.V., Tuy, H.: Convergent Algorithms for Minimizing a Concave Function. Mathematics of Operations Research, 5(4), 556–566 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  100. 100.
    Tuy, H.: Concave Programming Under Linear Constraints. Soviet Mathematics, 5(1), 1437–1440 (1964)Google Scholar
  101. 101.
    Vaish, H., Shetty, C.M.: The Bilinear Programming Problem. Naval Research Logistics Quarterly, 23(2), 303–309 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  102. 102.
    Vicente, L.N., Calamai, P.H.: Bilevel and Multilevel Programming – A Bibliography Review. Journal of Global Optimization, 5(3), 291–306 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  103. 103.
    Washburn, A., Wood, R.K.: Two-Person Zero-Sum Games for Network Interdiction. Operations Research, 43(2), 243–251 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  104. 104.
    Wollmer, R.D.: Removing Arcs from a Network. Operations Research, 12(6), 934–940 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  105. 105.
    Wollmer, R.D.: Algorithms for Targeting Strikes in a Lines-Of-Communication Network. Operations Research, 18, 497–515 (1970)CrossRefGoogle Scholar
  106. 106.
    Wood, R.K.: Deterministic Network Interdiction. Mathematical and Computer Modelling, 17(2), 1–18 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  107. 107.
    Wu, T.-H.: Fiber Network Service Survivability. Artech House, Boston, MA (1992)Google Scholar
  108. 108.
    Wu, T.-H., Burrowes, M.E.: Feasibility Study of a High-Speed SONET Self-Healing Ring Architecture in Future Interoffice Networks. IEEE Communications Magazine, 11, 33–43 (1990)CrossRefGoogle Scholar
  109. 109.
    Zwart, P.B.: Nonlinear Programming – Counterexamples to Two Global Optimization Algorithms. Operations Research, 21(6), 1260–1266 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  110. 110.
    Zwart, P.B.: Global Maximization of a Convex Function with Linear Inequality Constraints. Operations Research, 22(3), 602–609 (1974)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. Cole Smith
    • 1
  • Churlzu Lim
    • 2
  1. 1.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Systems Engineering and Engineering ManagementUniversity of North Carolina at CharlotteCharlotteUSA

Personalised recommendations