# The Extended Linear Complementarity Problem and Its Applications in Analysis and Control of Discrete-Event Systems

• Bart De Schutter
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 17)

In this chapter, we give an overview of complementarity problems with a special focus on the extended linear complementarity problem (ELCP) and its applications in analysis and control of discrete-event systems such as traffic signal controlled intersections, manufacturing systems, railway networks, etc. We start by giving an introduction to the (regular) linear complementarity problem (LCP). Next, we discuss some extensions, with a particular emphasis on the ELCP, which can be considered to be the most general linear extension of the LCP. We then discuss some algorithms to compute one or all solutions of an ELCP. Next, we present a link between the ELCP and max-plus equations. This is then the basis for some applications of the ELCP in analysis and model-based predictive control of a special class of discrete-event systems. We also show that — although the general ELCP is NP-hard — the ELCP-based control problem can be transformed into a linear programming problem, which can be solved in polynomial time.

## Keywords

linear complementarity problem extended linear complementarity problem algorithms control applications discrete-event systems maxplus-linear systems

## References

1. 1.
Andreani, R., Martínez, J.M.: On the Solution of the Extended Linear Complementarity Problem. Linear Algebra and Its Applications, 281, 247–257 (1998)
2. 2.
Atamtürk, A., Savelsbergh, M.W.P.: Integer-Programming Software Systems. Annals of Operations Research, 140(1), 67–124 (2005)
3. 3.
Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity. John Wiley & Sons, New York (1992)
4. 4.
Bai, Z.Z.: On the Convergence of the Multisplitting Methods for the Linear Complementarity Problem. SIAM Journal on Matrix Analysis and Applications, 21(1), 67–78 (1999)
5. 5.
Bemporad, A., Morari, M.: Control of Systems Integrating Logic, Dynamics, and Constraints. Automatica, 35(3), 407–427 (1999)
6. 6.
Chen, C., Mangasarian, O.L.: Smoothing Methods for Convex Inequalities and Linear Complementarity Problems. Mathematical Programming, 71(1), 51–69 (1995)
7. 7.
Chung, S.: NP-Completeness of the Linear Complementarity Problem. Journal of Optimization Theory and Applications, 60(3), 393–399 (1989)
8. 8.
Cordier, C., Marchand, H., Laundy, R., Wolsey, L.A.: bc-opt: A branch-and-Cut Code for Mixed Integer Programs. Mathematical Programming, Series A, 86(2), 335–353 (1999)
9. 9.
Cottle, R.W., Dantzig, G.B.: A Generalization of the Linear Complementarity Problem. Journal of Combinatorial Theory, 8(1), 79–90 (1970)
10. 10.
Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)
11. 11.
Cuninghame-Green, R.A.: Minimax Algebra. Lecture Notes in Economics and Mathematical Systems. Vol 166, Springer-Verlag, Berlin, Germany (1979)Google Scholar
12. 12.
Cutler, C.R., Ramaker, B.L.: Dynamic Matrix Control. A Computer Control Algorithm. In: Proceedings of the 86th AIChE National Meeting, Houston, Texas (1979)Google Scholar
13. 13.
De Moor, B., Vandenberghe, L., Vandewalle, J.: The Generalized Linear Complementarity Problem and an Algorithm to Find All Its Solutions. Mathematical Programming, 57, 415–426 (1992)
14. 14.
De Schutter, B.: Max-Algebraic System Theory for Discrete Event Systems. PhD thesis, Faculty of Applied Sciences, K.U. Leuven, Leuven, Belgium (1996)Google Scholar
15. 15.
De Schutter, B.: Optimal Control of a Class of Linear Hybrid Systems with Saturation. SIAM Journal on Control and Optimization, 39(3), 835–851 (2000)
16. 16.
De Schutter, B.: Optimizing Acyclic Traffic Signal Switching Sequences Through an Extended Linear Complementarity Problem Formulation. European Journal of Operational Research, 139(2), 400–415 (2002)
17. 17.
De Schutter, B., De Moor, B.: The Extended Linear Complementarity Problem. Mathematical Programming, 71(3), 289–325 (1995)
18. 18.
De Schutter, B., De Moor, B.: Minimal Realization in the Max Algebra is an Extended Linear Complementarity Problem. Systems & Control Letters, 25(2), 103–111 (1995)
19. 19.
De Schutter, B., De Moor, B.: A Method to Find All Solutions of a System of Multivariate Polynomial Equalities and Inequalities in the Max Algebra. Discrete Event Dynamic Systems: Theory and Applications, 6(2), 115–138 (1996)
20. 20.
De Schutter, B., De Moor, B.: The Linear Dynamic Complementarity Problem is a Special Case of the Extended Linear Complementarity Problem. Systems & Control Letters, 34, 63–75 (1998)
21. 21.
De Schutter, B., De Moor, B.: Optimal Traffic Light Control for a Single Intersection. European Journal of Control, 4(3), 260–276 (1998)
22. 22.
De Schutter, B., De Moor, B.: The QR Decomposition and the Singular Value Decomposition in the Symmetrized Max-Plus Algebra. SIAM Journal on Matrix Analysis and Applications, 19(2), 378–406 (1998)
23. 23.
De Schutter, B., Heemels, W.P.M.H., Bemporad, A.: On the Equivalence of Linear Complementarity Problems. Operations Research Letters, 30(4), 211–222 (2002)
24. 24.
De Schutter, B., van den Boom, T.: Model Predictive Control for Max-Min-Plus Systems. In Boel, R. and Stremersch, G., editors, Discrete Event Systems: Analysis and Control, Kluwer International Series in Engineering and Computer Science, Vol. 569, 201–208. Kluwer Academic Publishers, Boston (2000)Google Scholar
25. 25.
De Schutter, B., van den Boom, T.: Model Predictive Control for Max-Plus-Linear Discrete Event Systems. Automatica, 37(7), 1049–1056 (2001)
26. 26.
De Schutter, B., van den Boom, T.J.J.: Model Predictive Control for Max-Min-Plus-Scaling Systems. In Proceedings of the 2001 American Control Conference, 319–324, Arlington, Virginia (2001)Google Scholar
27. 27.
Eaves, B.C.: The Linear Complementarity Problem. Management Science, 17(9), 612–634 (1971)
28. 28.
Ebiefung, A.A., Kostreva, M.K.: Global Solvability of Generalized Linear Complementarity Problems and a Related Class of Polynomial Complementarity Problems. In: Floudas, C.A., Pardalos, P.M. (eds) Recent Advances in Global Optimization, Princeton Series in Computer Science, 102–124. Princeton University Press, Princeton, New Jersey (1992)Google Scholar
29. 29.
Ferris, M.C., Mangasarian, O.L., Pang, J.S. (eds): Complementarity: Applications, Algorithms and Extensions, Applied Optimization, Vol. 50, Springer, New York, (2001)Google Scholar
30. 30.
Ferris, M.C., Pang, J.S. (eds): Complementarity and Variational Problems: State of the Art. Philadelphia, Pennsylvania: SIAM. Proceedings of the International Conference on Complementarity Problems, Baltimore, Maryland, November 1995, (1997)Google Scholar
31. 31.
Ferris, M.C., Pang, J.S.: Engineering and Economic Applications of Complementarity Problems. SIAM Review, 39(4), 669–713 (1997)
32. 32.
Fletcher, R., Leyffer, S.: Numerical Experience with Lower Bounds for MIQP Branch-and-Bound. SIAM Journal on Optimization, 8(2), 604–616 (1998)
33. 33.
Gowda, M.S.: On the Extended Linear Complementarity Problem. Mathematical Programming, 72, 33–50 (1996)
34. 34.
Gowda, M.S., Sznajder, R.: The Generalized Order Linear Complementarity Problem. SIAM Journal on Matrix Analysis and Applications, 15(3), 779–795 (1994)
35. 35.
Heemels, W.P.M.H., De Schutter, B., Bemporad, A.: Equivalence of Hybrid Dynamical Models. Automatica, 37(7), 1085–1091 (2001)
36. 36.
Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: Linear Complementarity Systems. SIAM Journal on Applied Mathematics, 60(4), 1234–1269 (2000)
37. 37.
Isac, G.: Complementarity Problems. Springer-Verlag, Berlin, Germany (1992)
38. 38.
Isac, G., Bulavsky, V.A., Kalashnikov, V.V.: Complementarity, Equilibrium, Efficiency and Economics, Nonconvex Optimization and Its Applications, Vol. 63, Springer (2002)Google Scholar
39. 39.
Júdice, J.J., Vicente, L.N.: On the Solution and Complexity of a Generalized Linear Complementarity Problem. Journal of Global Optimization, 4(4), 415–424 (1994)
40. 40.
Kaliski, J.A., Ye, Y.: An Extension of the Potential Reduction Algorithm for Linear Complementarity Problems with Some Priority Goals. Linear Algebra and Its Applications, 193, 35–50 (1993)
41. 41.
Kanzow, C.: Some Noninterior Continuation Methods for Linear Complementarity Problems. SIAM Journal on Matrix Analysis and Applications, 17(4), 851–868 (1996)
42. 42.
Kočvara, M., Zowe, J.: An Iterative Two-Step Algorithm for Linear Complementarity Problems. Numerische Mathematik, 68(1), 95–106 (1994)
43. 43.
Kremers, H., Talman, D.: A New Pivoting Algorithm for the Linear Complementarity Problem Allowing for an Arbitrary Starting Point. Mathematical Programming, 63(2), 235–252 (1994)
44. 44.
Li, T.Y.: Numerical Solution of Polynomial Systems by Homotopy Continuation Methods. In: Cucker, F. (ed) Handbook of Numerical Analysis, Vol. XI, Special Volume: Foundations of Computational Mathematics, 209–304. North-Holland, Amsterdam (2003)Google Scholar
45. 45.
Linderoth, J., Ralphs, T.: Noncommercial Software for Mixed-Integer Linear Programming. Optimization Online. (2004) See http://www.optimization-online.org/DBHTML/2004/12/1028.html.
46. 46.
Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, Harlow, England (2002)Google Scholar
47. 47.
Mangasarian, O.L. The Linear Complementarity Problem as a Separable Bilinear Program. Journal of Global Optimization, 6(2), 153–161 (1995)
48. 48.
Mangasarian, O.L., Pang, J.S.: The Extended Linear Complementarity Problem. SIAM Journal on Matrix Analysis and Applications, 16(2), 359–368 (1995)
49. 49.
Mangasarian, O.L., Solodov, M.V.: Nonlinear Complementarity as Unconstrained and Constrained Minimization. Mathematical Programming, 62(2), 277–297 (1993)
50. 50.
McShane, K.: Superlinearly Convergent $$O(\sqrt{n}L)$$-Iteration Interior-Point Algorithms for Linear Programming and the Monotone Linear Complementarity Problem. SIAM Journal on Optimization, 4(2), 247–261 (1994)
51. 51.
Mehrotra, S., Stubbs, R.A.: Predictor-Corrector Methods for a Class of Linear Complementarity Problems. SIAM Journal on Optimization, 4(2), 441–453 (1994)
52. 52.
Mohan, S.R., Neogy, S.K., Sridhar, R.: The Generalized Linear Complementarity Problem Revisited. Mathematical Programming, 74, 197–218 (1996)
53. 53.
Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R.M.: The Double Description Method. In: Kuhn, H.W., Tucker, A.W. (eds) Contributions to the Theory of Games, Annals of Mathematics Studies, number 28, 51–73. Princeton University Press, Princeton, New Jersey (1953)Google Scholar
54. 54.
Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Helderman Verlag, Berlin, Germany (1988)
55. 55.
Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia, Pennsylvania (1994)
56. 56.
Pardalos, P.M., Resende, M.G.C. (eds): Handbook of Applied Optimization. Oxford University Press, Oxford, UK (2002)
57. 57.
Richalet, J., Rault, A., Testud, J.L., Papon, J.: Model Predictive Heuristic Control: Applications to Industrial Processes. Automatica, 14(5), 413–428 (1978)
58. 58.
Schäfer, U.: On the Modulus Algorithm for the Linear Complementarity Problem. Operations Research Letters, 32(4), 350–354 (2004)
59. 59.
Schumacher, J.M.: Some Modeling Aspects of Unilaterally Constrained Dynamics. In: Proceedings of the ESA International Workshop on Advanced Mathematical Methods in the Dynamics of Flexible Bodies, ESA-ESTEC, Noordwijk, The Netherlands (1996)Google Scholar
60. 60.
Sheng, R., Potra, F.A.: A Quadratically Convergent Infeasible-Interiorpoint Algorithm for LCP with Polynomial Complexity. SIAM Journal on Optimization, 7(2), 304–317 (1997)
61. 61.
Sontag, E.D.: Nonlinear Regulation: The Piecewise Linear Approach. IEEE Transactions on Automatic Control, 26(2), 346–358 (1981)
62. 62.
Sznajder, R., Gowda, M.S.: Generalizations of P 0- and P-Properties; Extended Vertical and Horizontal Linear Complementarity Problems. Linear Algebra and Its Applications, 223/224, 695–715 (1995)Google Scholar
63. 63.
Taha, H.A.: Operations Research: An Introduction. 4th edition, Macmillan Publishing Company, New York (1987)Google Scholar
64. 64.
Vandenberghe, L., De Moor, B., Vandewalle, J.: The Generalized Linear Complementarity Problem Applied to the Complete Analysis of Resistive Piecewise-Linear Circuits. IEEE Transactions on Circuits and Systems, 36(11), 1382–1391 (1989)
65. 65.
Wright, S.J.: An Infeasible-Interior-Point Algorithm for Linear Complementarity Problems. Mathematical Programming, 67(1), 29–51 (1994)
66. 66.
Ye, Y.: A Fully Polynomial-Time Approximation Algorithm for Computing a Stationary Point of the General Linear Complementarity Problem. Mathematics of Operations Research, 18(2), 334–345 (1993)
67. 67.
Yuan, D., Song, Y.: Modified AOR Methods for Linear Complementarity Problem. Applied Mathematics and Computation, 140(1), 53–67 (2003)
68. 68.
Zhang, Y.: On the Convergence of a Class of Infeasible Interior-Point Methods for the Horizontal Linear Complementarity Problem. SIAM Journal on Optimization, 4(1), 208–227 (1994)