Interpersonal Computers for Higher Education

  • Frédéric Kaplan
  • Son DoLenh
  • Khaled Bachour
  • Gloria Yi-ing Kao
  • Clément Gault
  • Pierre Dillenbourg
Part of the Computer-Supported Collaborative Learning Series book series (CULS, volume 10)


An interpersonal computer is a computer on which several persons can interact at the same time, in the same place. Whereas personal computers’ input devices (keyboard and mouse) and displays (individual screen) are adapted to a single user, interpersonal computers enable distributed control by multiple inputs and are equipped with public displays, where the result of a computation can be shared by a group of users. In this chapter, we explore the design and use of interpersonal computers for higher education through the discussion of two specific examples developed in our lab – a table and a lamp. In particular, we discuss how the introduction of these novel pieces of technology coherently complements the use of personal computers in an integrated learning scenario.


Collaborative co-located learning Multi-user interfaces Augmented furniture 



The authors would like to thank former members of the CRAFT team, Jean-Baptiste Haué, Andrina Brun, Annick Plancherel, Guillaume Raymondon and Michael Ruflin who contributed at different stages of the projects discussed in this chapter.


  1. Ashdown, M. & Robinson, P. (2005). Escritoire: A personal projected display. IEEE MultiMedia 12 (1), 34–42.CrossRefGoogle Scholar
  2. Baker, M. J. (1999). Argumentation and constructive interaction. In Rijlaarsdam & G. Espéret E. Pierre Coirier Jerry AndriessenStudies in Writing: Vol. 5. Foundations of Argumentative Text Processing (pp. University of Amsterdam Press. Amsterdam: 179–202). (Series Eds.) & (Vol. Eds.),Google Scholar
  3. Bandyopadhyay, D., Raskar, R. & Fuchs, H. (2001). Dynamic shader lamps (2001): Painting on movable objects. In IEEE and ACM International Symposium on Augmented Reality (ISAR’01). IEEE Computer Society Washington, DC, USA.Google Scholar
  4. Berard, F. (2003). The magic table: Computer vision based augmentation of a whiteboard for creative meetings. In IEEE International Conference in Computer Vision, Workshop on Projector-Camera Systems. Nice, France.Google Scholar
  5. Bier, E. & Freeman, S. (1991). Mmm: A user interface architecture for shared editors on a single screen. In UIST’91 Proceedings of the 4th annual ACM symposium on User interface software and technology, Hilton Head, South Carolina, United States, ACM New York, NY, USA (pp. 79–86). Google Scholar
  6. Blaye, A. (1988). Confrontation socio-cognitive et résolution de problèmes. Doctoral dissertation, , Centre de Recherche en Psychologie Cognitive Université de Provence, France.Google Scholar
  7. Bly, S. (1988). A use of drawing surfaces in different collaborative settings. In Proceedings of the 1988 ACM Conference on Computer-Supported Cooperative Work, Portland, Oregon, USA The publisher is ACM New York, NY, USA (pp. 250–256). Google Scholar
  8. Bolt, R. A. (1980). Put-that-there: Voice and gesture at the graphics interface. SIGGRAPH Computer Graphics 14 (3), 262–270.CrossRefGoogle Scholar
  9. Cantarella, L. & Guallart, V. (2005). The media house project. The house is the computer, the structure is the network. Actar Google Scholar
  10. Dietz, P. H. & Leigh, D. L. (2001), Diamond Touch: A multi-user touch technology. In ACM Symposium on User Interface Software and Technology (UIST’01) ACM New York, NY, USA (pp. 219–226). Google Scholar
  11. Dillenbourg, P. & Traum, D. (2006). Sharing solutions: Persistence and grounding in multi-modal collaborative problem solving. Journal of the Learning Sciences 15 (1).Google Scholar
  12. Dillenbourg, P., Baker, M., Blaye, A. & O’Malley, C. (1996). The evolution of research on collaborative learning. In Spada & E. Reimann (Eds.), P. Learning in Humans and Machine: Towards an Interdisciplinary Learning Science (pp. Oxford: Elsevier. 189–211).Google Scholar
  13. Dillenbourg, P., Ott, D., Wehrle, T., Bourquin, Y., Jermann, P., Corti, D. & Salo, P. (2002). The socio-cognitive functions of community mirrors. In F. Flückiger, C. Jutz, P. Schulz & L. Cantoni (Eds.), Proceedings of the 4th International Conference on New Educational Environments, Lugano, May 8–11, 2002. Google Scholar
  14. DiMicco, J. (2005). Changing Small Group Interaction through Visual Reflections of Social Behavior. PhD thesis, MIT Media Laboratory. Google Scholar
  15. Doise, M., Mugny, G. & Perret-Clermont, A.-N. (1975). Social interactions and the development of cognitive operations. European Journal of Social Psychology 5, 367–383.CrossRefGoogle Scholar
  16. Donath, J. (2002) A semantic approach to visualizing online conversations. Communications of the ACM , 45(4)45–49.(SPECIAL ISSUE: Supporting Community and Building Social Capital)CrossRefGoogle Scholar
  17. Donath, J., Karahalios, K. & Viegas, F. (1997). Visualizing conversation. Journal of Computer Mediated Communication 2(4).Google Scholar
  18. Fitzmaurice, G. W., Ishii, H. & Buxton, W. (1995). Bricks: Laying the foundations for graspable user interfaces. In Proceedings of the ACMSIGCHI Conference on Human Factors in Computing Systems (CHI’95) ACM Press, New York, NY. (pp. 442–449).Google Scholar
  19. Gorniak, P. & Roy, D. (2003). Augmenting user interfaces with adaptive speech commands. In Proceedings of the 5th International Conference on Multimodal Interfaces, November 05–07, 2003, Canada (ICMI’03) ACM Press, New York, NY, USA. (pp. 176–179). Google Scholar
  20. Greenfield, A. (2006). Everyware: The Dawning Age of Ubiquitous Computing. Berkeley, CA: New Riders.Google Scholar
  21. Greenberg, S. & Rounding, M. (2001). The Notification Collage: Posting information to public and personal displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’01) ACM Press, New York, NY, USA (pp. 514–521).Google Scholar
  22. Guimbretière, F., Stone, M. & Winograd, T. (2001). Fluid interaction with high-resolution wall-size displays. In Proceedings of the 14th Annual ACM Symposium on User interface Software and Technology (UIST’01) (pp. 21–30). Google Scholar
  23. Han, J. (2005). Low-cost multi-touch sensing through frustrated total internal reflection. In UIST’05, , October 23–27 Seattle, Washington, USA. Proceedings of the 18th annual ACM Symposium on User Interface Software and Technology, ACM Press, New York, NY, USA.Google Scholar
  24. Hillis, W. (1982). A high resolution imaging touch sensor. International Journal of Robotics Research 1 (2), 33–44.CrossRefGoogle Scholar
  25. Hoppe, H. U., Lingnau, A., Machado, I., Paiva, A., Prada, R. & Tewissen, F.. (2000) Supporting collaborative activities in computer integrated classrooms – the NIMIS Approach. In Proceedings of the 6th International Workshop on Groupware, CRIWG 2000. IEEE CS Press. Madeira, Portugal:Google Scholar
  26. Hourcade, J. P. & Bederson, B. B. (1999). Architecture and implementation of a java package for multiple input devices (mid). Tech Report HCIL-99-08. Google Scholar
  27. Ing, R. & Fink, M. (1998). Time-Reversed lamb waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 45, 1032–1043.CrossRefGoogle Scholar
  28. Inkpen, K. M., Ho-Ching, W., Kuederle, O., Scott, S. D. & Shoemaker, G. B. (1999). This is fun! We’re all best friends and we’re all playing: supporting children’s synchronous collaboration. In Hoadley and C. M. Roschelle (Eds.), J. Proceedings of the 1999 Conference on Computer Support for Collaborative Learning, December 12–15, 1999, International Society of the Learning Sciences. Palo Alto, California, (p. 31).CrossRefGoogle Scholar
  29. Ishiii, H. & Kobayahi, M. (1992). ClearBoard: A seamless medium for shared drawing and conversation with eye contact. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems Monterey, California, United States, ACM Press, New York, NY, USA. (pp. 525–532). Google Scholar
  30. Izadi, S., Brignull, H., Rodden, T., Rogers, Y. & Underwood, M. (2003). Dynamo: A public interactive surface supporting the cooperative sharing and exchange of media. In Proceedings of the 16th Annual ACM Symposium on User interface Software and Technology (UIST’03) ACM Press, New York, NY. (pp. 159–168). Google Scholar
  31. JermannP. (2004) Computer Support for Interaction Regulation in Collaborative Problem-Solving Unpublished Doctoral Dissertation University of GenevaGoogle Scholar
  32. Kamiyama, K., Vlack, K., Mizota, T., Kajimoto, H., Kawakami, N. & Tachi, S. (2005). Vision-based sensor for real-time measuring of surface traction fields. IEEE Computer Graphics and Application 25 (1), 68–75.CrossRefGoogle Scholar
  33. Kaplan, F. & Hafner, V. (2006). Information-theoretic framework for unsupervised activity classification. Advanced Robotics 20 (10), 1087–1103CrossRefGoogle Scholar
  34. Karahalios, K., Bergstrom, T. (2006). Visualizing audio in group table conversation. In Tabletop, Proceedings of the First IEEE International Workshop on Horizontal Interactive Human-Computer System. IEEE Computer Society. Google Scholar
  35. Kerr, S. T. (1991). Lever and Fulcrum: Educational technology in teachers’ thought and practice. Teachers College Record 93 (1), 114–136.Google Scholar
  36. Koike, H., Sato, Y., Kobayashi, Y., Tobita, H. & Kobayashi, M. (2000). Interactive textbook and interactive Venn diagram: natural and intuitive interfaces on augmented desk system. In SIGCHI Conference on Human Factors in Computing Systems (CHI’00) ACM Press, New York, NY, USA. (pp. 121–128). Google Scholar
  37. Lathoud, G. & McCowan, I. A. (2004). A sector-based approach for localization of multiple speakers with microphone arrays. In Workshop on Statistical and Perceptual Audio Processing SAPA-2004, , October 3, 2004 Jeju, Korea.Google Scholar
  38. Leganchuk, A., Zhai, S. & Buxton, W. (1998). Manual and cognitive benefits of two-handed input: An experimental study. Transactions on Human-Computer Interaction 5 (4), 326–359.CrossRefGoogle Scholar
  39. Letessier, J. & Bérard, F. (2004). Visual tracking of bare fingers for interactive surfaces. In ACM Symposium on User interface Software and Technology (UIST’04) (pp. 119–122). Google Scholar
  40. Li, W., Tang, H. & Zhu, Z. (2006). Vision-based projection-handwriting integration in classroom. In Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (June 17–22, 2006). Google Scholar
  41. MacIntyre, B., Mynatt, E. D., Voida, S., Hansen, K. M., Tullio, J. & Corso, G. M. (2001) Support for multitasking and background awareness using interactive peripheral displays. In Proceedings of the 14th Annual ACM Symposium on User interface Software and Technology (UIST’01) ACM Press, New York, NY. (pp. 41–50). Google Scholar
  42. Malik, S. & Laszlo, J. (2004). Visual Touchpad: a two-handed gestural input device. In Proceedings of the 6th International Conference on Multimodal Interfaces (ICM’04 (pp. ) NY: ACM Press. New York, 289–296).Google Scholar
  43. Malik, S., Ranjan, A. & Balakroshnana, R. (2005). Interacting with large displays from a distance with vision-tracked multi-finger gesturual input. In Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology, Seattle, WA ACM Press, New York, NY. (pp. 43–52). Google Scholar
  44. Matsushita, N. & Rekimoto, J. (1997). HoloWall: Designing a finger, hand, body and object sensitive wall. In Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology (UIST 1997 (pp. ) NY: ACM Press. New York, 209–210).Google Scholar
  45. McDonald, C., Roth, G. & Marsh, S. (2004). Red-Handed: Collaborative gesture interaction with a projection table, In Sixth IEEE International Conf. on Automatic Face and Gesture Recognition (FG’04) (p. 773–778). Google Scholar
  46. Morris, M. R., Huang, A., Paepcke, A. & Winograd, T. (2006). Cooperative gestures: Multi-user gestural interactions for co-located groupware. In CHI 2006 Proceedings of ACM CHI 2006 Conference on Human Factors in Computing Systems 2006. pp. 1201–1210. ACM Press, New York NY. (pp. 22–27). Google Scholar
  47. Norman D. (1998). The Invisible Computer. MIT Press. Cambridge, Mass.:Google Scholar
  48. Paek, T., Agrawala, M., Basu, S., Drucker, S., Kristjansson, T., Logan, R., Toyama, K. & Wilson, A. (2004). Toward universal mobile interaction for shared displays. In Proceedings of the 2004 ACM Conference on Computer Supported Cooperative Work, CSCW 2004, Chicago, Illinois, USA, ACM Press, New York, NY. (pp. 266–269).Google Scholar
  49. Pawar, U., Pal, J. & Toyoma, K. (2006). Multiple mice for computers in education in developing countries. In International Conference on Information and Communication Technologies and Development 2006. Google Scholar
  50. Pedersen, E. R., McCall, K., Moran, T. P. & Halasz, F. G. (1993). Tivoli: An electronic whiteboard for informal workgroup meetings. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’93) ACM Press, New York, NY. (pp. 391–398). Google Scholar
  51. Pelgrum, W. & Plomp, T. (1991). The Use of Computers in Education Worldwide. Oxford: Pergamon Press.Google Scholar
  52. Prante, T., Streitz, N. & Tandler, P. (2004). Roomware: Computers disappear and interaction evolves. IEEE Computer, 47–54. Google Scholar
  53. Metoyer, R. A., Xu, L. & Srinivasan, M. (2003). A tangible interface for high-level direction of multiple animated characters. In Proceedings of Graphics Interface 2003, Halifax, Canada.Google Scholar
  54. Rekimoto, J. (2002). SmartSkin: An infrastructure for freehand manipulation on interactive surfaces. In CHI’02 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, New York, NY. (pp. 113–120). Google Scholar
  55. Rhodes, V. & Cox, M.. (1990) Current Practice and Policies for Using Computers in Primary Schools: Implications for Training. ESRC, University of Lancaster.Google Scholar
  56. Rogers, Y. (2006). Moving on from Weiser’s vision of calm computing: Engaging UbiComp experiences. In P. Dourish & A. Friday (Eds.), Ubicomp 2006, LNCS 4206 (pp. 404–421). Google Scholar
  57. Ryall, K., Forlines, C., Shen, C. & Ringel-Morris, M. (2004). Exploring the effects of group size and table size on interactions with tabletop shared-display groupware. In ACM Conference on Computer Supported Cooperative Work (CSCW) ACM Press, New York, NY. (pp. 284–293).Google Scholar
  58. Sandholtz, J. H., Ringstaff, C. & Dwyer, D. C. (1990). Teaching in High-Tech Environments: Classroom Management Revisited: First-Fourth Year Findings. Apple Computer Inc. Cupertino:Google Scholar
  59. Schmandt. C. (1982). Voice interaction: Putting intelligence into the interface. In Proceedings, IEEE International Conference on Cybernetics and Society, IEEE, Seattle, WA.Google Scholar
  60. Scott, S. D., Grant, K. D. & Mandryk, R. L. (2003). System guidelines for co-located collaborative work on a tabletop display. In Proceedings of European Computer-Supported Cooperative Work (ECSCW 2003) Springer (pp. 159–178). Google Scholar
  61. C. C., Shih, M., Crone, A. & Fox, Winograd (2004). T. Teamspace: A simple, low-cost and self-sufficient workspace for small-group collaborative computing. In CSCW 2004 Interactive Poster, Chicago, IL, ACM Press, New York, NY. USA.Google Scholar
  62. Slavin, R. E. (1983). Cooperative Learning. Longman. New York:Google Scholar
  63. Stewart, J., Raybourn, E. M., Bederson, B. & Druin, A. (1998). When two hands are better than one: Enhancing collaboration using single display groupware. In Proceedings of CHI’98 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, New York, NY. (pp. 287–288). Google Scholar
  64. Stewart, J., Bederson, B. & Druin, A. (1999). Single display groupware: A model for co-present collaboration. In Proceedings of CHI 1999 (pp. 286–293). Google Scholar
  65. Tang, J. (1991). Findings from observational studies of collaborative work. International Journal of Man-Machine Studies 34 (2), 143–160.CrossRefGoogle Scholar
  66. Tennenhouse, D. L. (2000). Proactive computing. Communication of the ACM 43(5), 43–50.CrossRefGoogle Scholar
  67. Tse, E. & Greenberg, S. (2002). Sdgtoolkit: A toolkit for rapidly prototyping single display groupware. In CSCW’02, ACM Press, New York, NY. November 2002. Google Scholar
  68. Ullmer, B. & Ishii, H. (1997). The metaDESK: Models and prototypes for tangible user interfaces. ACM Symposium on User interface Software and Technology (UIST’97) ACM Press, New York, NY, USA. (pp. 223–232). Google Scholar
  69. Webb, N. M. (1991). Task related verbal interaction and mathematical learning in small groups. Research in Mathematics Education 22 (5), 366–389.Google Scholar
  70. Weimer, D. & Ganapathy, S. K. (1989). A synthetic visual environment with hand gesturing and voice input. In Bice & K. Lewis (Eds.), C. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Wings For the Mind CHI’89(pp. NY: ACM Press. New York, 235–240).CrossRefGoogle Scholar
  71. Weiser, M. (1991). The computer of the 21st century. Scientific American 94–104. Google Scholar
  72. Weiser, M. & Brown, J. S. (1997). The Coming Age of Calm Technolgy, Beyond Calculation: The Next Fifty Years. Copernicus. New York:Google Scholar
  73. Wellner, P. (1993). Interacting with paper on the Digital Desk. Communications of the ACM 36(7), 87–96.CrossRefGoogle Scholar
  74. Wilson, A. (2004). TouchLight: An imaging touch screen and display for gesture-based interaction. In Proceedings of the 6th International Conference on Multimodal Interfaces, ICMI’04 (pp. NY: ACM Press. New York, 69–76).Google Scholar
  75. Wilson, A. D. (2005). PlayAnywhere: A compact interactive tabletop projection-vision system. In ACM Symposium on User Interface Software and Technology (UIST’05) ACM Press, New York, NY, USA. (pp. 83–92). Google Scholar
  76. Wilson, A. D. & Agrawala, M. (2006). Text entry using a dual joystick game controller. In R. Grinter, T. Rodden, P. Aoki, E. Cutrell, R. Jeffries, and G. Olson (Eds.), Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’06) ACM Press, New York, NY. (pp. 475–478). CrossRefGoogle Scholar
  77. Zumbach, J., Mühlenbrock, M., Jansen, M., Reimann, P. & Hoppe, H. U. (2002). Multi-dimensional tracking in virtual learning teams: An exploratory study. In Stahl (Ed.), G. Computer Support for Collaborative Learning: Foundations for a CSCL Community (pp. NJ: Lawrence Erlbaum Associates. Mahwah, 650–651).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Frédéric Kaplan
    • Son DoLenh
    • Khaled Bachour
    • Gloria Yi-ing Kao
    • Clément Gault
    • Pierre Dillenbourg

    There are no affiliations available

    Personalised recommendations