Agricultural Decision Making in the Argentine Pampas: Modeling the Interaction between Uncertain and Complex Environments and Heterogeneous and Complex Decision Makers

  • Guillermo Podestá
  • Elke U. Weber
  • Carlos Laciana
  • Federico Bert
  • David Letson
Part of the Springer Optimization and Its Applications book series (SOIA, volume 21)

Simulated outcomes of agricultural production decisions in the Argentine Pampas were used to examine “optimal” land allocations among different crops identified by maximization of the objective functions associated with expected utility and prospect theories. We propose a more mathematically tractable formulation for the prospect theory value-function maximization, and explore results for a broad parameter space. Optimal actions differ among some objective functions and parameter values, especially for land tenants, whose enterprise allocation is less constrained by rotations. Our results demonstrate in a nonlaboratory decision context that psychologically plausible deviations from EU maximization matter.

Keywords

Risk Aversion Prospect Theory Land Tenant Loss Aversion Initial Wealth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Anderson and J. L. Dillon. Risk Analysis in Dryland Farming Systems. Number 2 in Farm Systems Management Series. FAO, Rome, 1992.Google Scholar
  2. 2.
    A. G. Barnston, M. H. Glantz, and Y. He. Predictive skill of statistical and dynamical climate models in SST forecast during the 1997–98 El Niño episode and the 1998 La Niña onset. Bulletin of the American Meteorological Society, 80:217–243, 1999.CrossRefGoogle Scholar
  3. 3.
    K. J. Boote and J. W. Jones. Simulation of crop growth: CROPGRO model. In R. M. Peart and R. B. Curry, editors, Agricultural Systems Modeling and Simulation, pages 651–692. Marcel Dekker, New York, 1998.Google Scholar
  4. 4.
    C. Camerer. Prospect theory in the wild. In D. Kahneman and A. Tversky, editors, Choice, Values, and Frames, pages 288–300. Cambridge University Press, New York, 2000.Google Scholar
  5. 5.
    C. Camerer. Three cheers—psychological, theoretical, empirical—for loss aversion. Journal of Marketing Research, 42:129–133, 2005.CrossRefGoogle Scholar
  6. 6.
    D. Díaz. Una fábrica de empleos. Clarín Rural, page 4, 2002.Google Scholar
  7. 7.
    J. A. Dutton. Opportunities and priorities in a new era for weather and climate services. Bulletin of the American Meteorological Society, 83:1303–1311, 2002.Google Scholar
  8. 8.
    D. M. Eddy. Probabilistic reasoning in medicine: Problems and opportunities. In D. Kahneman, P. Slovic, and A. Tversky, editors, Judgment Under Uncertainty: Heuristics and Biases, pages 249–267. Cambridge University Press, New York, 1982.Google Scholar
  9. 9.
    H. P. Fennema and P. P. Wakker. Original and cumulative prospect theory: A discussion of empirical differences. Journal of Behavioral Decision Making, 10:53–64, 1997.CrossRefGoogle Scholar
  10. 10.
    P. E. Gill, W. Murray, B. A. Murtagh, M. A. Saunders, and M. Wright. GAMS/MINOS. In GAMS–The Solver Manuals. GAMS Development Corporation, 2000.Google Scholar
  11. 11.
    L. Goddard, S. Mason, S. Zebiak, C. Ropelewski, R. Basher, and M. Cane. Current approaches to seasonal-to-interannual climate predictions. International Journal of Climatology, 21:1111–1152, 2001.CrossRefGoogle Scholar
  12. 12.
    E. Guevara, S. Meira, M. Maturano, and G. Coco. Maize simulation for different environments in Argentina. In International Symposium: Modelling Cropping Systems, pages 193–194. European Society of Agronomy, University of Lleida, Catalonia, Spain, 1999.Google Scholar
  13. 13.
    I. Hacking. The Emergence of Probability. Cambridge University Press, New York, 1975.MATHGoogle Scholar
  14. 14.
    A. J. Hall, C. M. Rebella, C. M. Ghersa, and J. P. H. Culot. Field crops systems of the Pampas. In C. J. Pearson, editor, Field Crops Systems: Ecosystems of the World, pages 413–449. Elsevier, Amsterdam, 1992.Google Scholar
  15. 15.
    G. Hammer, J. Hansen, J. Phillips, J. Mjelde, H. Hill, A. Love, and A. Potgieter. Advances in application of climate prediction in agriculture. Agricultural Systems, 70:515–553, 2001.CrossRefGoogle Scholar
  16. 16.
    J. B. Hardaker, R. B. M. Huirne, J. R. Anderson, and G. Lien. Coping with Risk in Agriculture. CABI Publishing, Cambridge, MA, 2004.Google Scholar
  17. 17.
    J. Jones, G. Tsuji, G. Hoogenboom, L. Hunt, P. Thornton, P. Wilkens, D. Imamura, W. Bowen, and U. Singh. Decision support system for agrotechnology transfer. In G. Tsuji, G. Hoogenboom, and P. Thornton, editors, Understanding Options for Agricultural Production, chapter Dordrecht, The Netherlands, pages 157–177. Kluwer, Boston, 1998.Google Scholar
  18. 18.
    J. W. Jones, J. W. Hansen, F. S. Royce, and C. D. Messina. Potential benefits of climate forecasting to agriculture. Agriculture, Ecosystems and Environment, 82:169–184, 2000.CrossRefGoogle Scholar
  19. 19.
    D. Kahneman. Perspective on judgment and choice: Mapping bounded rationality. American Psychologist, 58:697–720, 2003.CrossRefGoogle Scholar
  20. 20.
    D. Kahneman and A. Tversky. Prospect theory: An analysis of decision under risk. Econometrica, 47:263–291, 1979.MATHCrossRefGoogle Scholar
  21. 21.
    C. E. Laciana and E. U. Weber. Using prospect theory in optimization problems. Technical report, Department of Psychology, Columbia University, New York, 2005.Google Scholar
  22. 22.
    B. Leteinturier, J. L. Herman, F. D. Longueville, L. Quintin, and R. Oger. Adaptation of a crop sequence indicator based on a land parcel management system. Agriculture, Ecosystems & Environment, 112:324–334, 2006.CrossRefGoogle Scholar
  23. 23.
    S. J. Mason, L. Goddard, N. E. Graham, E. Yulaeva, L. Sun, and P. A. Arkin. The IRI seasonal climate prediction system and the 1997/98 El Niño event. Bulletin of the American Meteorological Society, 80:1853–1873, 1999.CrossRefGoogle Scholar
  24. 24.
    D. McFadden. Rationality for economists? Journal of Risk and Uncertainty, 19:73–105, 1999.MATHCrossRefGoogle Scholar
  25. 25.
    S. Meira, E. Baigorri, E. Guevara, and M. Maturano. Calibration of soybean cultivars for two environments in Argentina. In Global Soy Forum, Chicago, IL, August 1999.Google Scholar
  26. 26.
    J. L. Mercau, J. L. Dardanelli, D. J. Collino, J. M. Andriani, A. Irigoyen, and E. H. Satorre. Predicting on-farm soybean yields in the pampas using CROPGRO-Soybean. Field Crop Research, 100:200–209, 2007.CrossRefGoogle Scholar
  27. 27.
    J. Mjelde, H. Hill, and J. Griffiths. A review of current evidence on climate forecasts and their economic effects in agriculture. American Journal of Agricultural Economics, 80:1089–1095, 1998.CrossRefGoogle Scholar
  28. 28.
    J. Mjelde, T. Thompson, C. Nixon, and P. Lamb. Utilizing a farm-level decision model to help prioritize future climate prediction research needs. Meteorological Applications, 4:161–170, 1997.CrossRefGoogle Scholar
  29. 29.
    National Research Council. Our Common Journey: A Transition Towards Sustainability. National Academy Press, Washington, DC, 1999.Google Scholar
  30. 30.
    National Research Council. A Climate Services Vision: First Steps Toward the Future. National Academy Press, Washington, DC, 2001.Google Scholar
  31. 31.
    J. Paruelo and O. Sala. Effect of global change on Argentine maize. Climate Research, 3:161–167, 1993.CrossRefGoogle Scholar
  32. 32.
    J. W. Pratt. Risk aversion in the small and in the large. Econometrica, 32:122–136, 1964.MATHCrossRefGoogle Scholar
  33. 33.
    M. Rabin. Psychology and economics. Journal of Economic Literature, 36:11–46, 1998.Google Scholar
  34. 34.
    J. Ritchie, V. Singh, D. Godwin, and W. Bowen. Cereal growth, development and yield. In G. Tsuji, G. Hoogenboom, and P. Thornton, editors, Understanding Options for Agricultural Production, pages 79–98. Kluwer Academic, Dordrecht, The Netherlands, 1998.Google Scholar
  35. 35.
    E. H. Satorre. Cambios tecnológicos en la agricultura actual. Ciencia Hoy, 15:24–31, 2005.Google Scholar
  36. 36.
    U. Schmidt and H. Zank. What is loss aversion? Journal of Risk and Uncertainty, 30:157–167, 2005.MATHCrossRefGoogle Scholar
  37. 37.
    P. J. H. Schoemaker. The expected utility model: its variants, purposes, evidence and limitations. Journal of Economic Literature, 20:529–563, 1982.Google Scholar
  38. 38.
    K. E. Trenberth and D. P. Stepaniak. Indices of El Niño evolution. Journal of Climate, 14:1697–1701, 2001.CrossRefGoogle Scholar
  39. 39.
    A. Tversky and D. Kahneman. Advances in prospect theory, cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5:297–323, 1992.MATHCrossRefGoogle Scholar
  40. 40.
    J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ, 1944/1947.Google Scholar
  41. 41.
    R. T. Woodward. Should agricultural and resource economists care that the subjective expected utility hypothesis is false? In Meeting of the American Agricultural Economics Association, Salt Lake City, UT, August 1998. http://agecon2.tamu.edu/people/faculty/woodward-richard/paps/AAEA98-Uncertainty.pdf.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Guillermo Podestá
    • 1
  • Elke U. Weber
    • 2
  • Carlos Laciana
    • 3
  • Federico Bert
    • 4
  • David Letson
    • 1
  1. 1.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiUSA
  2. 2.Department of Psychology and Graduate School of BusinessColumbia UniversityUSA
  3. 3.Facultad de IngenieríiaUniversity of Buenos AiresArgentina
  4. 4.Facultad de AgronomíiaUniversity of Buenos AiresArgentina

Personalised recommendations