Advertisement

The Human Mirror Neuron System and Embodied Representations

  • Lisa Aziz-Zadeh
  • Richard B. Ivry
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 629)

Abstract

Mirror neurons are defined as neurons in the monkey cortex which respond to goal oriented actions, whether the behavior is self-generated or produced by another. Here we briefly review this literature and consider evidence from behavioral, neuropsychological, and brain imaging studies for a similar mirror neuron system in humans. Furthermore, we review functions of this system related to action comprehension and motor imagery, as well as evidence for speculations on the system’s ties with conceptual knowledge and language.

Keywords

Transcranial Magnetic Stimulation Motor Cortex Lexical Decision Speech Perception Motor Imagery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature

  1. Aziz-Zadeh, L., Cattaneo, L., Rochat, M. and Rizzolatti, G., 2005. Covert speech arrest induced by rTMS over both motor and nonmotor left hemisphere frontal sites. J Cogn Neurosci. 17, 928–938.PubMedCrossRefGoogle Scholar
  2. Aziz-Zadeh, L., Koski, L., Zaidel, E., Mazziotta, J. and Iacoboni, M., 2006a. Lateralization of the human mirror neuron system. J Neurosci. 26, 2964–2970.CrossRefGoogle Scholar
  3. Aziz-Zadeh, L., Maeda, F., Zaidel, E., Mazziotta, J. and Iacoboni, M., 2002. Lateralization in motor facilitation during action observation: a TMS study. Exp Brain Res. 144, 127–131.PubMedCrossRefGoogle Scholar
  4. Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G. and Iacoboni, M., 2006b. Congruent Embodied Representations for Visually Presented Actions and Linguistic Phrases Describing Actions. Curr Biol. 16, 1818–1823.CrossRefGoogle Scholar
  5. Aziz-Zadeh, L., Iacoboni, M., Zaidel, E., Wilson, S. and Mazziotta, J., 2004. Left hemisphere motor facilitation in response to manual action sounds. Eur J Neurosci. 19, 2609–2612.Google Scholar
  6. Binkofski, F., Buccino, G., Stephan, K. M., Rizzolatti, G., Seitz, R. J. and Freund, H. J., 1999. A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res. 128, 210–213.PubMedCrossRefGoogle Scholar
  7. Blakemore, S. J. and Frith, C., 2005. The role of motor contagion in the prediction of action. Neuropsychologia. 43, 260–267.PubMedCrossRefGoogle Scholar
  8. Boronat, C. B., Buxbaum, L. J., Coslett, H. B., Tang, K., Saffran, E. M., Kimberg, D. Y. and Detre, J. A., 2005. Distinctions between manipulation and function knowledge of objects: evidence from functional magnetic resonance imaging. Brain Res Cogn Brain Res. 23, 361–373.PubMedCrossRefGoogle Scholar
  9. Brass, M., Bekkering, H. and Prinz, W., 2001. Movement observation affects movement execution in a simple response task. Acta Psychol (Amst). 106, 3–22.CrossRefGoogle Scholar
  10. Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., Seitz, R. J., Zilles, K., Rizzolatti, G. and Freund, H. J., 2001. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci. 13, 400–404.PubMedGoogle Scholar
  11. Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V. and Rizzolatti, G., 2005. Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioral study. Brain Res Cogn Brain Res. 24, 355–363.PubMedCrossRefGoogle Scholar
  12. Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E. and Haggard, P., 2005. Action observation and acquired motor skills: an FMRI study with expert dancers. Cereb Cortex. 15, 1243–1249.PubMedCrossRefGoogle Scholar
  13. Corballis, M. C., 2002. From Hand to Mouth: The Origins of Language. Princeton University Press, New Jersey.Google Scholar
  14. De Renzi, E., Faglioni, P., Scarpa, M. and Crisi, G., 1986. Limb apraxia in patients with damage confined to the left basal ganglia and thalamus. J Neurol Neurosurg Psychiatry. 49, 1030–1038.PubMedCrossRefGoogle Scholar
  15. Decety, J., Jeannerod, M. and Prablanc, C., 1989. The timing of mentally represented actions. Behav Brain Res. 34, 35–42.PubMedCrossRefGoogle Scholar
  16. Dechent, P., Merboldt, K. D. and Frahm, J., 2004. Is the human primary motor cortex involved in motor imagery? Brain Res Cogn Brain Res. 19, 138–144.PubMedCrossRefGoogle Scholar
  17. Fadiga, L., Buccino, G., Craighero, L., Fogassi, L., Gallese, V. and Pavesi, G., 1999. Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study. Neuropsychologia. 37, 147–158.PubMedCrossRefGoogle Scholar
  18. Fadiga, L., Craighero, L., Buccino, G. and Rizzolatti, G., 2002. Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur J Neurosci. 15, 399–402.PubMedCrossRefGoogle Scholar
  19. Fadiga, L., Craighero, L. and Olivier, E., 2005. Human motor cortex excitability during the perception of others' action. Curr Opin Neurobiol. 15, 213–218.PubMedCrossRefGoogle Scholar
  20. Fadiga, L., Fogassi, L., Gallese, V. and Rizzolatti, G., 2000. Visuomotor neurons: Ambiguity of the discharge or 'motor' perception? International Journal of Psychophysiology. 35, 165–177.PubMedCrossRefGoogle Scholar
  21. Fadiga, L., Fogassi, L., Pavesi, G. and Rizzolatti, G., 1995. Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol. 73, 2608–2611.PubMedGoogle Scholar
  22. Feldman, J. and Narayanan, S., 2004. Embodied meaning in a neural theory of language. Brain Lang. 89, 385–392.PubMedCrossRefGoogle Scholar
  23. Feldman, J. A., 2006. From molecule to metaphor: A neural theory of language. MIT Press, Cambridge, MA.Google Scholar
  24. Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F. and Rizzolatti, G., 2005. Parietal lobe: from action organization to intention understanding. Science. 308, 662–667.PubMedCrossRefGoogle Scholar
  25. Fogassi, L. and Gallese, V., 2000. The neural correlates of action understanding in non-human primates. In: Stamenor, M. I. and Gallese, V. (Eds.), Mirror neurons and the evolution of brain and language. John Benjamins Publishing Company, Philadelphia.Google Scholar
  26. Fogassi, L., Gallese, V., Fadiga, L., Luppino, G., Matelli, M. and Rizzolatti, G., 1996. Coding of peripersonal space in inferior premotor cortex (area F4). J Neurophysiol. 76, 141–157.PubMedGoogle Scholar
  27. Gallese, V., 2003. The roots of empathy: the shared manifold hypothesis and the neural basis of intersubjectivity. Psychopathology. 36, 171–180.PubMedCrossRefGoogle Scholar
  28. Gallese, V. and Lakoff, G., 2005. The brains concepts: The role of the sensory-motor system in reason and language. Cognitive Neuropsychology. 22, 455–479.Google Scholar
  29. Gallese, V., Fadiga, L., Fogassi, L. and Rizzolatti, G., 1996. Action recognition in the premotor cortex. Brain. 119, 593–609.PubMedCrossRefGoogle Scholar
  30. Gallese, V., Fogassi, L., Fadiga, L. and Rizzolatti, G., 2001. Action representation and the inferior parietal lobule. In: Prinz, W. and Hommel, B. (Eds.), Attention & Performance XIX. Common mechanisms in perception and action. Oxford University Press, Oxford, pp. 334–355.Google Scholar
  31. Gallese, V., Keysers, C. and Rizzolatti, G., 2004. A unifying view of the basis of social cognition. Trends Cogn Sci. 8, 396–403.PubMedCrossRefGoogle Scholar
  32. Gazzola, V., Aziz-Zadeh, L. and Keysers, C., 2006. Empathy and the somatotopic auditory mirror system in humans. Curr Biol. 16, 1824–1829.PubMedCrossRefGoogle Scholar
  33. Gentilucci, M., Fogassi, L., Luppino, G., Matelli, M., Camarda, R. and Rizzolatti, G., 1988. Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Exp Brain Res. 71, 475–490.PubMedCrossRefGoogle Scholar
  34. Geyer, S., Matelli, M., Luppino, G. and Zilles, K., 2000. Functional neuroanatomy of the primate isocortical motor system. Anat Embryol (Berl). 202, 443–474.CrossRefGoogle Scholar
  35. Grafton, S. T., Arbib, M. A., Fadiga, L. and Rizzolatti, G., 1996. Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp Brain Res. 112, 103–111.PubMedCrossRefGoogle Scholar
  36. Grafton, S. T., Fadiga, L., Arbib, M. A. and Rizzolatti, G., 1997. Premotor cortex activation during observation and naming of familiar tools. Neuroimage. 6, 231–236.PubMedCrossRefGoogle Scholar
  37. Greenwald, A. G., 1970. Sensory feedback mechanism in performance control: With special reference to the ideomotor mechanism. Psychological Review. 77, 73–99.Google Scholar
  38. Grezes, J., Armony, J. L., Rowe, J. and Passingham, R. E., 2003. Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study. Neuroimage. 18, 928–937.PubMedCrossRefGoogle Scholar
  39. Grezes, J., Costes, N. and Decety, J., 1998. Top-down effect of strategy on the perception of human biological motion: A PET investigation. Cognitive Neuropsychology. 15, 553–582.CrossRefGoogle Scholar
  40. Hauk, O., Johnsrude, I., Pulvermuller, F., 2004. Somatotopic representation of action words in human motor and premotor cortex. Neuron. 41, 301–307.Google Scholar
  41. Hauser, M. D., Chomsky, N. and Fitch, W. T., 2002. The faculty of language: what is it, who has it, and how did it evolve? Science. 298, 1569–1579.PubMedCrossRefGoogle Scholar
  42. Heilman, K. M., Rothi, L. J. and Valenstein, E., 1982. Two forms of ideomotor apraxia. Neurology. 32, 342–346.PubMedGoogle Scholar
  43. Hommel, B., Musseler, J., Aschersleben, G. and Prinz, W., 2001. The Theory of Event Coding (TEC): a framework for perception and action planning. Behav Brain Sci. 24, 849–878; discussion 878–937.PubMedCrossRefGoogle Scholar
  44. Humphrey, D. R., 1986. Representation of movements and muscles within the primate precentral motor cortex: historical and current perspectives. Fed Proc. 45, 2687–2699.Google Scholar
  45. Iacoboni, M., 2005. Neural mechanisms of imitation. Curr Opin Neurobiol.Google Scholar
  46. Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C. and Rizzolatti, G., 2005. Grasping the Intentions of Others with One's Own Mirror Neuron System. PLoS Biol. 3, 1–7.CrossRefGoogle Scholar
  47. Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C. and Rizzolatti, G., 1999. Cortical mechanisms of human imitation. Science. 286, 2526–2528.PubMedCrossRefGoogle Scholar
  48. James, W., 1890. The principles of psychology. MacMillan, New York.CrossRefGoogle Scholar
  49. Jeannerod, M., 1999. The 25th Bartlett Lecture. To act or not to act: perspectives on the representation of actions. Q J Exp Psychol A. 52, 1–29.PubMedCrossRefGoogle Scholar
  50. Johnson-Frey, S. H., Maloof, F. R., Newman-Norlund, R., Farrer, C., Inati, S. and Grafton, S. T., 2003. Actions or hand-object interactions? Human inferior frontal cortex and action observation. Neuron. 39, 1053–1058.PubMedCrossRefGoogle Scholar
  51. Kellenbach, M. L., Brett, M. and Patterson, K., 2003. Actions speak louder than functions: the importance of manipulability and action in tool representation. J Cogn Neurosci. 15, 30–46.PubMedCrossRefGoogle Scholar
  52. Kertesz, A. and Ferro, J. M., 1984. Lesion size and location in ideomotor apraxia. Brain. 107, 921–933.PubMedCrossRefGoogle Scholar
  53. Kohler, E., Keysers, C., Umilta, M. A., Fogassi, L., Gallese, V. and Rizzolatti, G., 2002. Hearing sounds, understanding actions: action representation in mirror neurons. Science. 297, 846–848.PubMedCrossRefGoogle Scholar
  54. Kornblum, S. and Lee, J. W., 1995. Stimulus-response compatibility with relevant and irrelevant stimulus dimensions that do and do not overlap with the response. J Exp Psychol Hum Percept Perform. 21, 855–875.PubMedCrossRefGoogle Scholar
  55. Koski, L., Iacoboni, M., Dubeau, M. C., Woods, R. P. and Mazziotta, J. C., 2003. Modulation of cortical activity during different imitative behaviors. J Neurophysiol. 89, 460–471.PubMedCrossRefGoogle Scholar
  56. Lakoff, G. and Johnson, M., 1999. Philosophy in the flesh: The embodied mind and its challenge to western thought. Basic Books, New York.Google Scholar
  57. Leiguarda, R. C. and Marsden, C. D., 2000. Limb apraxias: higher-order disorders of sensorimotor integration. Brain. 123 ( Pt 5), 860–879.PubMedCrossRefGoogle Scholar
  58. Lieberman, A. M., Cooper, F. S., Shankweiler, D. P. and Studdert-Kennedy, M., 1967. Perception of the speech code. Psychol Rev. 74, 431–461.CrossRefGoogle Scholar
  59. Matelli, M., Luppino, G. and Rizzolatti, G., 1985. Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav Brain Res. 18, 125–136.PubMedCrossRefGoogle Scholar
  60. Molnar-Szakacs, I., Iacoboni, M., Koski, L. and Mazziotta, J. C., 2004. Functional Segregation within Pars Opercularis of the Inferior Frontal Gyrus: Evidence from fMRI Studies of Imitation and Action Observation. Cereb Cortex. pp. 986–994.Google Scholar
  61. Molnar-Szakacs, I., Iacoboni, M., Koski, L., Maeda, F., Dubeau, M. C., Aziz-Zadeh, L., Mazziotta, J. C., 2002. Action observation in the pars opercularis: Evidence from 58 subjects studied with fMRI. J Cognitive Neurosci. F118.Google Scholar
  62. Nelissen, K., Luppino, G., Vanduffel, W., Rizzolatti, G. and Orban, G. A., 2005. Observing others: multiple action representation in the frontal lobe. Science. 310, 332–336.PubMedCrossRefGoogle Scholar
  63. Nishitani, N. and Hari, R., 2000. Temporal dynamics of cortical representation for action. Proc Natl Acad Sci U S A. 97, 913–918.Google Scholar
  64. Ochipa, C., Rapcsak, S. Z., Maher, L. M., Rothi, L. J., Bowers, D. and Heilman, K. M., 1997. Selective deficit of praxis imagery in ideomotor apraxia. Neurology. 49, 474–480.PubMedGoogle Scholar
  65. Ojemann, G. A., 1981. Interrelationships in the localization of language, memory and motor mechanism in human cortex and thalamus. In: Thompson, B. (Ed.), New perspectives in cerebral localization. Raven Press, New York, pp. 157–175.Google Scholar
  66. Pandya, D. N. and Yeterian, E. H., 1984. Proposed neural circuitry for spatial memory in the primate brain. Neuropsychologia. 22, 109–122.PubMedCrossRefGoogle Scholar
  67. Parsons, L. M., 1994. Temporal and kinematic properties of motor behaviour reflected in mentally simulated action. Journal of Experimental Psychology. 20, 709–730.PubMedGoogle Scholar
  68. Penfield, W. and Rasmussen, T., 1950. A clinical study of localization of function. Cerebral cortex of man. Macmillan, New York.Google Scholar
  69. Perrett, D. I., Harries, M. H., Mistlin, A. J. and Hietanen, J. K., 1990. Social signals analyzed at the single cell level: Someone is looking at me, something touched me, something movedp. International Journal of Comparative Psychology. 4, 25–55.Google Scholar
  70. Porro, C. A., Francescato, M. P., Cettolo, V., Diamond, M. E., Baraldi, P., Zuiani, C., Bazzocchi, M. and di Prampero, P. E., 1996. Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci. 16, 7688–7698.PubMedGoogle Scholar
  71. Pulvermuller, F., Hauk, O., Nikulin, V. V. and Ilmoniemi, R. J., 2005. Functional links between motor and language systems. Eur J Neurosci. 21, 793–797.PubMedCrossRefGoogle Scholar
  72. Ramachandran, V. S., 2000. Mirror neurons and imitation learning as the driving force behind “the great leap forward”in human evolution. In: Edge: Reality Club Lecture). http://www.edge.org/3rd_culture/bios/ramachandran.html.
  73. Riehle, A. and Requin, J., 1989. Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. J Neurophysiol. 61, 534–549.PubMedGoogle Scholar
  74. Rizzolatti, G. and Craighero, L., 2004. The mirror-neuron system. Annu Rev Neurosci. 27, 169–192.PubMedCrossRefGoogle Scholar
  75. Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D. and Fazio, F., 1996. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res. 111, 246–252.PubMedCrossRefGoogle Scholar
  76. Rizzolatti, G., Fogassi, L. and Gallese, V., 2002. Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol. 12, 149–154.PubMedCrossRefGoogle Scholar
  77. Rizzolatti, G., Fogassi, L., Gallese, V., 2000. Cortical mechanisms subserving object grasping and action recognition: A new view on the cortical motor functions. In: Gazzaniga, M. S. (Ed.), The New Cognitive Neurosciences. MIT Press, Cambridge.Google Scholar
  78. Rizzolatti, G., Scandolara, C., Matelli, M. and Gentilucci, M., 1981. Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav Brain Res. 2, 147–163.PubMedCrossRefGoogle Scholar
  79. Rothi, L. J., Heilman, K. M. and Watson, R. T., 1985. Pantomime comprehension and ideomotor apraxia. J Neurol Neurosurg Psychiatry. 48, 207–210.PubMedCrossRefGoogle Scholar
  80. Rueckert, L., Appollonio, I., Grafman, J., Jezzard, P., Johnson, R., Jr., Le Bihan, D. and Turner, R., 1994. Magnetic resonance imaging functional activation of left frontal cortex during covert word production. J Neuroimaging. 4, 67–70.PubMedGoogle Scholar
  81. Sakata, H., Taira, M., Murata, A. and Mine, S., 1995. Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex. 5, 429–438.PubMedCrossRefGoogle Scholar
  82. Saygin, A. P., Wilson, S. M., Dronkers, N. F. and Bates, E., 2004. Action comprehension in aphasia: linguistic and non-linguistic deficits and their lesion correlates. Neuropsychologia. 42, 1788–1804.PubMedGoogle Scholar
  83. Schnider, A., Hanlon, R. E., Alexander, D. N. and Benson, D. F., 1997. Ideomotor apraxia: behavioral dimensions and neuroanatomical basis. Brain Lang. 58, 125–136.PubMedCrossRefGoogle Scholar
  84. Sirigu, A., Duhamel, J. R., Cohen, L., Pillon, B., Dubois, B. and Agid, Y., 1996. The mental representation of hand movements after parietal cortex damage. Science. 273, 1564–1568.PubMedCrossRefGoogle Scholar
  85. Stewart, L., Walsh, V., Frith, U. and Rothwell, J. C., 2001. TMS produces two dissociable types of speech disruption. Neuroimage. 13, 472–478.PubMedCrossRefGoogle Scholar
  86. Tettamanti, M., Buccino, G., Saccuman, M. C., Gallese, V., Danna, M., Scifo, P., Fazio, F., Rizzolatti, G., Cappa, S. F. and Perani, D., 2005. Listening to action-related sentences activates fronto-parietal motor circuits. J Cogn Neurosci. 17, 273–281.PubMedCrossRefGoogle Scholar
  87. Tranel, D., Kemmerer, D., Damasio, H., Adolphs, R. and Damasio, A. R., 2003. Neural correlates of conceptual knowledge for actions. Cognitive Neuropsychology. 20, 409–432.PubMedCrossRefGoogle Scholar
  88. Umilta, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C. and Rizzolatti, G., 2001. I know what you are doing. a neurophysiological study. Neuron. 31, 155–165.PubMedCrossRefGoogle Scholar
  89. Wang, L. and Goodglass, H., 1992. Pantomime, praxis, and aphasia. Brain Lang. 42, 402–418.PubMedCrossRefGoogle Scholar
  90. Wilson, S. M., Saygin, A. P., Sereno, M. I. and Iacoboni, M., 2004. Listening to speech activates motor areas involved in speech production. Nat Neurosci. 7, 701–702.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Psychology, 3210 Tolman HallUniversity of CaliforniaBerkeleyUSA

Personalised recommendations