Advertisement

Transport, Deposition and Removal of Fine Particles - Biomedical Applications

  • Goodarz Ahmadi
  • John B. McLaughlin
Chapter

Introduction

In many biomedical, environmental, and industrial applications, small particle transport, deposition, and resuspension play a critical role. Pollutant transport and deposition in the respiratory passages, cardiovascular flows, pollutant transport in buildings and in cities, fluidized bed combustor, and fuel spray in internal combustion engine are but a few examples. Understanding motions of small particles suspended in a gas or liquid has received considerable attention in the past few decades due to its significance in numerous scientific and industrial applications.

Natural and man-made aerosols and colloids consist of a variety of solid and liquid particles suspended in a gas or liquid. Understanding the kinetics of particle dispersion and deposition in different passages has attracted considerable attention due to its importance in numerous industrial processes. 62Reviews of the earlier experimental and modeling works on aerosols and particle transport and deposition...

Keywords

Shear Rate Lift Force Particle Deposition Lattice Boltzmann Method Capture Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The financial support of National Science Foundation as part of the Combined Research and Curriculum Development Project is gratefully acknowledged.

References

  1. 1.
    Ahmadi, G. (1970). Analytical Prediction of Turbulent Dispersion of Finite Size Particle. Ph.D. Thesis, Purdue University.Google Scholar
  2. 2.
    2. Ahmadi, G. and Goldschmidt, V.W. (1971). Motion of Particle in a Turbulent Fluid – The Basset History Term. J. Appl. Mec. Trans. ASME, Vol. 38, pp. 561–563.CrossRefGoogle Scholar
  3. 3.
    Ahmadi, G. and Joseph, R. (2007). Simulations of Pulsatile Blood Flow in the Abdominal Aorta with Newtonian and Non-Newtonian Models. Comput. Biol. Med. (submitted for publication).Google Scholar
  4. 4.
    4. Ahmadi, G. and Smith, D.H. (1998). Particle Transport and Deposition in a Hot-Gas Cleanup Pilot Plant. Aerosol Sci. Technol., Vol. 29, pp. 183–205.CrossRefGoogle Scholar
  5. 5.
    5. Ahmadi, G. and Chen, Q. (1998). Dispersion and Deposition of Particles in a Turbulent Pipe Flow with Sudden Expansion. J. Aerosol Sci., Vol. 29, pp. 1097–1116.CrossRefGoogle Scholar
  6. 6.
    6. Ahmed, A.M. and Elghobashi, S.E. (2000). On the mechanisms of modifying the structure of turbulent homogeneous shear flows by dispersed particles. Phys. Fluids, Vol. 12, pp. 2906–2930.CrossRefGoogle Scholar
  7. 7.
    7. Aidun, C.K. and Qi, D. (1998). A New Method for Analysis of the Fluid Interaction with a Deformable Membrane. J. Stat. Phys., Vol. 90, pp. 145–158.CrossRefGoogle Scholar
  8. 8.
    8. Aidun, C.K. and Ding, E.-J. (2003). Dynamics of Particle Sedimentation in a Vertical Channel: Period-Doubling Bifurcation and Chaotic State. Phys. Fluids, Vol. 15, pp. 1612–1621.CrossRefGoogle Scholar
  9. 9.
    9. Akool, E-S., Kleinert, H., Hamada, F.M.A., Abdelwahab, M.H., Förstermann, U., Pfeilschifter, J., and Eberhardt, W. (2003). Nitric Oxide Increases the Decay of Matrix Metalloproteinase 9 mRNA by Inhibiting the Expression of mRNA-Stabilizing Factor HuR. Mol. Cell Biol., Vol. 23, pp. 4901–4916.CrossRefGoogle Scholar
  10. 10.
    10. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D. (1989). Molecular Biology of the Cell, Garland Publishing, New York/London.Google Scholar
  11. 11.
    11. Artoli, A.M., Hoekstra, A.G., and Sloot, P.M.A. (2006). Mesoscopic Simulations of Systolic Flow in the Human Abdominal Aorta. J. Biomech., Vol. 39, pp. 873–884.CrossRefGoogle Scholar
  12. 12.
    12. Arnason, G. (1982). Measurements of Particle Dispersion in Turbulent Pipe Flow. Ph.D. Thesis, Washington State University, Pullman, WA.Google Scholar
  13. 13.
    13. Asgharian, B. and Ahmadi, G. (1998) Effect of Fiber Geometry on Deposition in Small Airways of the Lung. Aerosol Sci. Technol., Vol. 29, pp. 459–474.CrossRefGoogle Scholar
  14. 14.
    14. Asgharian, B. and Yu, C.P. (1988). Deposition of Inhaled Fibrous Particles in the Human Lung. J. Aerosol Med., Vol. 1, pp. 37–50.CrossRefGoogle Scholar
  15. 15.
    15. Asgharian, B. and Yu, C. P. (1989). Deposition of Fibers in the Rat Lung. J. Aerosol Sci., Vol. 20, pp. 355–366.CrossRefGoogle Scholar
  16. 16.
    16. Asgharian, B. and Anjilvel, S. (1994). Inertial and Gravitational Deposition of Particles in a Square Cross Section Bifurcating Airway. Aerosol Sci. Technol., Vol. 20, pp. 177–193.CrossRefGoogle Scholar
  17. 17.
    17. Asgharian, B., Price, O.T., and Hofmann, W. (2006). Prediction of Particle Deposition in the Human Lung Using Realistic Models of Lung Ventilation. J. Aerosol Sci., Vol. 37, pp. 1209–1221.CrossRefGoogle Scholar
  18. 18.
    18. Balashazy, I. (1994). Simulation of Particle Trajectories in Bifurcating Tubes. J. Comput. Phys., Vol. 110, pp. 80–88.CrossRefGoogle Scholar
  19. 19.
    19. Balashazy, I. and Hofmann, W. (1993). Particle Deposition in Airway Bifurcations: I. Inspiratory Flow. J. Aerosol Sci., Vol. 24, pp. 745–772.CrossRefGoogle Scholar
  20. 20.
    20. Balashazy, I. and Hofmann, W. (1993). Particle Deposition in Airway Bifurcations: II. Expiratory Flow. J. Aerosol Sci., Vol. 24, pp. 773–786.CrossRefGoogle Scholar
  21. 21.
    21. Balashazy, I., Hofmann, W., and Heistracher, T. (1999). Computation of Local Enhancement Factors for the Quantification of Particle Deposition Patterns in Airway Bifurcations. J. Aerosol Sci., Vol. 30, pp. 185–203.CrossRefGoogle Scholar
  22. 22.
    22. Baron, P.A., Deye, G.J., and Fernback, J. (1994). Length Separation of Fibers. Aerosol Sci. Technol., Vol. 21, pp. 79–192.CrossRefGoogle Scholar
  23. 23.
    23. Baron, P.A. (2001). Measurement of Airborne Fibers: A Review. Ind. Health, Vol. 39, pp. 39–50.CrossRefGoogle Scholar
  24. 24.
    24. Baron, P.A., Sorensen, C.M., and Brockmann, J.B. (2001). Nonspherical Particle Measurements: Shape Factors, Fractals, and Fibers. In Aerosol Measurement, 2nd Ed, Edited by Baron, P.A. and Willeke, K., Wiley-Interscience, New York.Google Scholar
  25. 25.
    25. Baron, P.A., Deye, G., Aizenberg, V., and Castranova, V. (2002). Generation of Size-Selected Fibers for a Nose-Only Inhalation Toxicity Study. Ann. Occup. Hyg, Vol. 46, Suppl. 1, pp. 186–190.Google Scholar
  26. 26.
    26. Berger, S.A. and Jou, L.-D. (2000). Flows in Stenotic Vessels. Ann. Rev. Fluid Mech., Vol. 32, pp. 347–382.CrossRefGoogle Scholar
  27. 27.
    27. Brenner, H. (1961). The Slow Motion of a Sphere through a Viscous Fluid Towards a Plane Surface. Chem. Eng. Sci., Vol. 16, pp. 242–251.CrossRefGoogle Scholar
  28. 28.
    28. Brooke, J.W., Kontomaris, K., Hanratty, T.J., and McLaughlin, J.B. (1992). Turbulent deposition and trapping of aerosols at a wall. Phys. Fluids A, Vol. 4, pp. 825–834.CrossRefGoogle Scholar
  29. 29.
    29. Brooks, D.E. and Seaman, G.V.F. (1973). Effect of Neutral Polymers on Electrokinetic Potential of Cells and Other Charged Particles. I. Models for the Zeta Potential Increase. J. Colloid Interface Sci., Vol. 43, pp. 670–686.CrossRefGoogle Scholar
  30. 30.
    30. Brooks, D.E. (1973). Effect of Neutral Polymers on Electrokinetic Potential of Cells and Other Charged Particles. II. Model for Effect of Adsorbed Polymer on Diffuse Double Layer. J. Colloid Interface Sci., Vol. 43, pp. 687–699.CrossRefGoogle Scholar
  31. 31.
    31. Buerk, D.E. (2001). Can We Model Nitric Oxide Biotransport? A Survey of Mathematical Models for a Simple Diatomic Molecule with Surprisingly Complex Biological Activities. Ann. Rev. Biomed. Eng., Vol. 3, pp. 109–143.CrossRefGoogle Scholar
  32. 32.
    32. Calabrese, R.V. and Middleman, S. (1979). The Dispersion of Discrete Particles in a Turbulent Fluid Field. AIChE J., Vol. 25, pp. 1025–1035.CrossRefGoogle Scholar
  33. 33.
    33. Cai, H. and Harrison, D.G. (2000). Endothelial Dysfunction in Cardiovascular Diseases: The Role of Oxidant Stress. Circ. Res., Vol. 87, pp. 840–844.CrossRefGoogle Scholar
  34. 34.
    34. Cao, J. and Ahmadi, G. (1995). Gas-Particle Two-Phase Turbulent Flow in a Vertical Duct. Int. J. Multiphase Flow, Vol. 21, pp. 1203–1228.CrossRefGoogle Scholar
  35. 35.
    35. Cao, J. and Ahmadi, G. (1996). Gravity Granular Flows Down an Inclined Bumpy Chute. J. Fluid Mech., Vol. 316, pp. 197–221.CrossRefGoogle Scholar
  36. 36.
    36. Cao, J. and Ahmadi, G. (2000). Gas-Particle Two-Phase Turbulent Flows in Horizontal and Vertical Ducts. Int. J. Eng. Sci., Vol. 38, pp. 1961–1981.CrossRefGoogle Scholar
  37. 37.
    37. Caro, C.G. and Nerem, R.M. (1973). Common Carotid Artery Transport of 14C-4-Cholesterol Between Serum and Wall in the Perfused Dog. Circ. Res., Vol. 32, pp. 187–205.CrossRefGoogle Scholar
  38. 38.
    38. Chaffey, C., Brenner, H., and Mason, S.G. (1965). Particle Motions in Sheared Suspensions, Part 18: Wall Migration (Theoretical). Rheol. Acta, Vol. 4, pp. 64–72.CrossRefGoogle Scholar
  39. 39.
    39. Chaffey, C.E. and Brenner, H. (1967). A Second-Order Theory for Shear Deformation of Drops. J. Colloid Interface Sci., Vol. 24, pp. 258–269.CrossRefGoogle Scholar
  40. 40.
    40. Chan, T.L. and Schreck, R.M. (1980). Effect of the Laryngeal Jet in the Human Trachea and Upper Bronchial Airways. J. Aerosol Sci., Vol. 11, pp. 447–459.CrossRefGoogle Scholar
  41. 41.
    Chang, I-S. and Ahmadi, G. (2007). Pneumonic Alveolar Cavity Transport and Deposition during Inhalation. Comput. Biol. Med. (Submitted for publication).Google Scholar
  42. 42.
    42. Chen, C.P. and Wood, P.E. (1985). A turbulence Closure Model for Dilute Gas-Particle Flows. Can. J. Chem. Eng., Vol. 63, pp. 349–360.CrossRefGoogle Scholar
  43. 43.
    43. Chen, B.T., Yeh, H.C., and Johnson, N.F. (1996). Design and use of a virtual impactor and an electrical classifier for generation of test fiber aerosols with narrow size distributions. J. Aerosol Sci., Vol. 27, pp. 83–94.CrossRefGoogle Scholar
  44. 44.
    44. Chen, S. and Doolen, G.D. (1998). Lattice Boltzmann Method for Fluid Flows. Ann. Rev. Fluid Mech., Vol. 30, pp. 329–364.CrossRefGoogle Scholar
  45. 45.
    45. Chen, H.H. and Wang, D.L. (2004). Nitric Oxide Inhibits Matrix Metalloproteinase-2 Expression via the Induction of Activating Transcription Factor 3 in Endothelial Cells. Mol. Pharmacol., Vol. 65, pp. 1130–1140.CrossRefGoogle Scholar
  46. 46.
    46. Cheng, Y.S. (2003). Aerosol Deposition in the Extrathoracic Region. Aerosol Sci. Technol., Vol. 37, pp. 659–671.CrossRefGoogle Scholar
  47. 47.
    47. Cheng, Y.S., Su, Y.F., Yeh, H.C., and Swift, D.L. (1993). Deposition of Thoron Progeny in Human Head Airways. Aerosol Sci. Technol., Vol. 18, pp. 359–375.CrossRefGoogle Scholar
  48. 48.
    48. Cheng, Y.S., Yamada, Y., Yeh, H.C., and Swift, D.L. (1988) Diffusional Deposition of Ultrafine Aerosols in a Human Nasal Cast. J. Aerosol Sci., Vol. 19, pp. 741–751.CrossRefGoogle Scholar
  49. 49.
    49. Cheng, Y.S., Yeh, H.C., Guilmette, R.A., Simpson, S.Q., Cheng, K.H., and Swift, D.L. (1996). Nasal Deposition of Ultrafine Particles in Human Volunteers and Its Relationship to Airway Geometry. Aerosol Sci. Technol., Vol. 25, pp. 274–291.CrossRefGoogle Scholar
  50. 50.
    50. Cheng, Y.S., Zhou, Y., and Chen, B.T. (1999). Particle Deposition in a Cast of Human Oral Airways. Aerosol Sci. Technol., Vol. 31, pp. 286–300.CrossRefGoogle Scholar
  51. 51.
    51. Cherukat, P. and McLaughlin, J.B. (1990). Wall-Induced Lift on a Sphere. Int. J. Multiphase Flow, Vol. 16, pp. 899–907.CrossRefGoogle Scholar
  52. 52.
    52. Cherukat, P. and McLaughlin, J.B., and Graham, A.L. (1994). The inertial Lift on a Rigid Sphere Translating in a Linear Shear Flow Field. Int. J. Multiphase Flow, Vol. 20, pp. 339–353.CrossRefGoogle Scholar
  53. 53.
    53. Chowdhury, S.J. and Ahmadi, G. (1992). Int. J. Nonlinear Mech., Vol. 27, pp. 705–718.CrossRefGoogle Scholar
  54. 54.
    54. Cleaver, J.W. and Yates, B. (1975). A Sublayer Model for Deposition of Particles from Turbulent Flows. Chem. Eng. Sci., Vol. 30, pp. 983–992.CrossRefGoogle Scholar
  55. 55.
    55. Clift, R., Grace, J.R., and Weber, M.E. (1978). Drops and Particles, Academic Press, New York.Google Scholar
  56. 56.
    56. Cohen, B.S., Sussman, R.G., and Lippmann, M. (1990). Ultrafine Particle Deposition in a Human Tracheobronchial Cast. Aerosol Sci. Technol., Vol. 12, pp. 1082–1091.CrossRefGoogle Scholar
  57. 57.
    57. Cohen, B.S. and Asgharian, B. (1990). Deposition of Ultrafine Particles in the Upper Airways: An Empirical Analysis. J. Aerosol Sci., Vol. 21, pp. 789–797.CrossRefGoogle Scholar
  58. 58.
    58. Cokelet, G.R. and Goldsmith, H.L. (1991). Decreased Hydrodynamic Resistance in the Two-Phase Flow of Blood through Small Vertical Tubes at Low Flow Rates. Circ. Res., Vol. 68, pp. 1–17.CrossRefGoogle Scholar
  59. 59.
    59. Cokelet, G.R., Brown, J.R., Codd, S.L., and Seymour, J.D. (2005). Magnetic Resonance Microscopy Determined Velocity and Hematocrit Distributions in a Couette Viscometer. Biorheology, Vol. 42, pp. 385–399.Google Scholar
  60. 60.
    Collins, L.R. (2000). Reynolds Number Scaling of Preferential Concentration of Particles in Isotropic Turbulence. AIChE Annual Meeting, Los Angeles, CA.Google Scholar
  61. 61.
    61. Comer, J.K., Kleinstreuer, C., Hyun, S., and Kim, C.S. (2000). Aerosol Transport and Deposition in Sequentially Bifurcation Airways. ASME J. Biomech. Eng., Vol. 122, pp. 152–158.CrossRefGoogle Scholar
  62. 62.
    62. Cooper, D.W. (1986). Particle Contamination and Microelectronics Manufacturing: An Introduction. Aerosol Sci. Technol., Vol. 5, pp. 287–299.CrossRefGoogle Scholar
  63. 63.
    Corn, M. (1976). In Air Pollution, Edited by Stren, A.C., Academic Press, New York.Google Scholar
  64. 64.
    64. Corrsin, S. and Lumley, J.L. (1956). On the Equation of Motion for a Particle in Turbulent Fluid. Appl. Sci. Res., Vol. 6, pp. 114–116.CrossRefGoogle Scholar
  65. 65.
    65. Cox, R. G. and Brenner, H. (1967). The Slow Motion of a Sphere through a Viscous Fluid Towards a Plane Surface. II. Small Gap Widths, Including Inertial Effects. Chem. Eng. Sci., Vol. 22, pp. 1753–1777.CrossRefGoogle Scholar
  66. 66.
    66. Crowe, C.T. (1982). REVIEW – Numerical Models for Dilute Gas-Particle Flows. J. Fluid Eng. Trans. ASME, Vol. 104, pp. 297–303.CrossRefGoogle Scholar
  67. 67.
    67. Crowe, C.T. (1986). Two-Fluid vs. Trajectory Model: Range of Applicability. Gas-Solid Flows, ASME FED, Vol. 35, pp. 91–96.Google Scholar
  68. 68.
    68. Csanady, G.T. (1963). Turbulent Diffusion of Heavy Particles in the Atmosphere. J. Atmos. Sci., Vol. 20, pp. 201–208.CrossRefGoogle Scholar
  69. 69.
    69. Dandy, D.S. and Dwyer, H.A. (1990). A Sphere in Shear Flow at Finite Reynolds Number: Effect of Shear on Particle Lift, Drag and Heat Transfer. J. Fluid Mech., Vol. 216, pp. 381–410.CrossRefGoogle Scholar
  70. 70.
    70. Davies, C.N. (1966). Aerosol Science, Academic Press, London.Google Scholar
  71. 71.
    71. Davies, P.F. (1988). Endothelial Cells, Hemodynamic Stress, and the Localization of Atherosclerosis. CRC Press, Boca Raton.Google Scholar
  72. 72.
    72. Davies, P.F. (1995). Flow-Mediated Endothelial Mechanotransduction. Physiol. Rev., Vol. 75, pp. 519–560.CrossRefGoogle Scholar
  73. 73.
    73. Derjaguin, B.V., Muller, V.M., and Toporov, Y.P.T. (1975). Effect of Contact Deformation on the Adhesion of Particles. J. Colloid Interface Sci., Vol. 53, pp. 314–326.CrossRefGoogle Scholar
  74. 74.
    74. Dewey, C.F., Jr., Bussolari, S.R., Gimbrone, M.A., Jr., and Davies, P.F. (1981). The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress. J. Biomech. Eng., Vol. 103, pp. 177–185.CrossRefGoogle Scholar
  75. 75.
    75. Ding, E.-J. and Aidun, C.K. (2003). Extension of the Lattice-Boltzmann Method for Direct Simulation of Suspended Particles Near Contact. J. Stat. Phys., Vol. 112, pp. 685–708.CrossRefGoogle Scholar
  76. 76.
    76. Ding, E.-J. and Aidun, C.K. (2006). Cluster Size Distribution and Scaling for Spherical Particles and Red Blood Cells in Pressure-Driven Flows at Small Reynolds Number. Phys. Rev. Lett., Vol. 96, pp. 204502-1-4.CrossRefGoogle Scholar
  77. 77.
    77. De Keulenaer, G.W. (1998). Oscillatory and Steady Laminar Shear Stress Differentially Affect Human Endothelial Redox State: Role of a Superoxide-Producing NADH Oxidase. Circ. Res., Vol. 82, 1094–1101.CrossRefGoogle Scholar
  78. 78.
    78. DuPin, M.M., Halliday, I., and Care, C.M. (2006). A Multi-Component Lattice Boltzmann Scheme: Towards the Mesoscale Simulation of Blood Flow. Med. Eng. Phys., Vol. 28, pp. 13–18.CrossRefGoogle Scholar
  79. 79.
    79. Drolet, F. and Vinals, J. (1998). Fluid Flow Induced by a Random Acceleration Field. Microgr. Sci. Technol., Vol. 11, pp. 64–68.Google Scholar
  80. 80.
    80. Druzhinin, O.A. and Elghobashi, S.E. (1999). A Lagrangian-Eulerian mapping solver for direct numerical simulation of a bubble-laden homogeneous turbulent shear flow using the two-fluid formulation. J. Comput. Phys., Vol. 154, pp. 174–196.CrossRefGoogle Scholar
  81. 81.
    81. Druzhinin, O.A. and Elghobashi, S.E. (1999). On the decay rate of isotropic turbulence laden with microparticles. Phys. Fluids, Vol. 11, pp. 602–610.CrossRefGoogle Scholar
  82. 82.
    Druzhinin, O.A. and Elghobashi, S.E. (2000). Direct numerical simulation of a three-dimensional spatially-developing bubble-laden mixing layer with two-way coupling. J. Fluid Mech.Google Scholar
  83. 83.
    83. Drust, F., Milojevic, D., and Schonung, B. (1984). Appl. Math. Model., Vol. 8, pp. 101– 115.CrossRefGoogle Scholar
  84. 84.
    Eaton, J.K. (2000). Attenuation of Gas Turbulence by a Nearly Stationary Dispersion of Solid Particles. Fifth Microgravity Fluid Physics and Transport Phenomena Conference, Cleveland.Google Scholar
  85. 85.
    85. Elghobashi, S. and Abou-Arab, T.W. (1983). A Two-Equation Turbulence Model for Two-Phase Flows. Phys. Fluids, Vol. 26, pp. 931–938.CrossRefGoogle Scholar
  86. 86.
    86. Elghobashi, S. and Trusdell, G.C. (1992). Direct Simulation of Particle Dispersion in a Decaying Isotropic Turbulence. J. Fluid Mech., Vol. 242, pp. 655–700.CrossRefGoogle Scholar
  87. 87.
    87. Ellison, J., Ahmadi, G., and Grodsinsky, C. (1995). Stochastic Model for Microgravity Excitation. ASCE J. Aerospace Eng., Vol. 8, pp. 100–106.CrossRefGoogle Scholar
  88. 88.
    88. Ellison, J., Ahmadi, G., Regel, L., and Wilcox, W. (1995). Particle Motion in a Liquid Under g-Jitter Excitation. Microgr. Sci. Technol., Vol. 8, pp. 140–147.Google Scholar
  89. 89.
    89. Ellison, J., Ahmadi, G., and Grodsinsky, C. (1997). Stochastic Response of Passive Vibration Control Systems to g-jitter Excitation. Microgr. Sci. Technol., Vol. 10, pp. 2–12.Google Scholar
  90. 90.
    90. Evans, E.A. and Skalak, R. (1980). Mechanics and Thermodynamics of Biomembranes, CRC Press, Boca Raton.Google Scholar
  91. 91.
    91. Fåhraeus, R. (1929). The Suspension Stability of the Blood. Physiol. Rev., Vol. 9, pp. 241– 274.CrossRefGoogle Scholar
  92. 92.
    92. Fåhraeus, R. and Lindqvist, T. (1931). The Viscosity of Blood in Narrow Capillary Tubes. Am. J. Physiol., Vol. 96, pp. 562–568.Google Scholar
  93. 93.
    93. Fan, F.G. and Ahmadi, G. (1993). A Sublayer Model for Turbulent Deposition of Particles in Vertical Ducts with Smooth and Rough Surfaces. J. Aerosol Sci., Vol. 24, pp. 45–64.CrossRefGoogle Scholar
  94. 94.
    94. Fan, F.G. and Ahmadi, G. (1994). On the Sublayer Model for Turbulent Deposition of Particles in Presence of Gravity and Electric Fields. Aerosol Sci. Technol., Vol. 21, pp. 49–71.CrossRefGoogle Scholar
  95. 95.
    95. Fan, F.G. and Ahmadi, G. (1995a). Dispersion of Ellipsoidal Particles in an Isotropic Pseudo-Turbulent Flow Field. ASME J. Fluid Eng., Vol. 117, pp. 154–161.CrossRefGoogle Scholar
  96. 96.
    96. Fan, F. and Ahmadi, G. (1995b). A Sublayer Model for Wall Deposition of Ellipsoidal Particles in Turbulent Stream. J. Aerosol Sci., Vol. 25, pp. 813–840.CrossRefGoogle Scholar
  97. 97.
    97. Fan, F. and Ahmadi, G. (2000). Wall Deposition of Small Ellipsoids from Turbulent Air Flow – A Brownian Dynamics Simulation. J. Aerosol Sci., Vol. 31, pp. 1205–1229.CrossRefGoogle Scholar
  98. 98.
    Faxen, H. (1923). Die Bewegung einer starren Kugel längs der Achse eines mit zäher Flüssigkeit gefüllten Rohres. Arkiv. Mat. Astron. Fys., Vol. 17, No. 27.Google Scholar
  99. 99.
    99. Fernandez de la Mora, J. and Friedlander, S.K. (1982). Aerosol and Gas Deposition to Fully Rough Surfaces: Filtration Model for Blade-Shaped Elements. Int. J. Heat Mass Transfer, Vol. 25, pp. 1725–1735.CrossRefGoogle Scholar
  100. 100.
    100. Fichman, M., Gutfinger, C., and Pnueli, D. (1988). A Model for Turbulent Deposition of Aerosols. J. Aerosol Sci., Vol. 19, pp. 123–136.CrossRefGoogle Scholar
  101. 101.
    FLUENT™ User's Guide. (2001). Computational Fluid Dynamic Software, Version 6.0.12, Fluent, New Hampshire.Google Scholar
  102. 102.
    102. Friedlander, S.K. (1977). Smoke, Dust and Haze – Fundamentals of Aerosol Behaviour, Wiley, New York.Google Scholar
  103. 103.
    103. Friedlander, S.K. and Johnstone, H.F. (1957). Deposition of Suspended Particles from Turbulent Gas Streams. Ind. Eng. Chem., Vol. 49, pp. 1151–1156.CrossRefGoogle Scholar
  104. 104.
    104. Frisch, U., Hasslacher, B., Pomeau, Y. (1986). Lattice-Gas Automata for the Navier-Stokes Equation. Phys. Rev. Lett., Vol. 56, 1505–1508.CrossRefGoogle Scholar
  105. 105.
    105. Fuchs, N.A. (1964). The Mechanics of Aerosols, Pergamon Press, Oxford.Google Scholar
  106. 106.
    106. Fung, Y.C. (1993). Biomechanics, Mechanical Properties of Living Tissues, 2nd Ed, Springer-Verlag, Berlin.Google Scholar
  107. 107.
    107. Gallily, I. and Eisner, A.D. (1979). On the Orderly Nature of the Motion of Non-Spherical Aerosol Particles. I. Deposition from a Laminar Flow. J. Colloid Interface Sci., Vol. 68, pp. 320–337.CrossRefGoogle Scholar
  108. 108.
    108. Giddens, D.P., Zarins, C.K., and Glagov, S. (1993). The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis. J. Biomech. Eng., Vol. 115, pp. 588–594.CrossRefGoogle Scholar
  109. 109.
    109. Goldman, A.J., Cox, R.G., and Brenner, H. (1967a). Slow Viscous Motion of a Sphere Parallel to a Plane Wall. I. Motion Through a Quiescent Fluid. Chem. Eng. Sci., Vol. 22, pp. 637–651.CrossRefGoogle Scholar
  110. 110.
    110. Goldman A.J., Cox, R.G., and Brenner, H. (1967b). Slow Viscous Motion of a Sphere Parallel to a Plane Wall. II. Couette Flow. Chem. Eng. Sci., Vol. 22, pp. 653–660.CrossRefGoogle Scholar
  111. 111.
    111. Goldschmidt, V., Householder, M.K., Ahmadi, G., and Chuang, S.C. (1972). Turbulent Diffusion of Small Particles Suspended in Turbulent Jets. Prog. Heat Mass Transfer, Vol. 6, pp. 487–508.Google Scholar
  112. 112.
    112. Goldsmith, H.L. and Mason, S.G. (1962). The Flow of Suspensions through Tubes. I. Single Spheres, Rods, and Discs. J. Colloid Sci., Vol. 17, pp. 448–476.CrossRefGoogle Scholar
  113. 113.
    113. Goldsmith, H.L. (1971). Deformation of Human Red Cells in Tube Flow. Biorheology, Vol. 7, pp. 235–242.CrossRefGoogle Scholar
  114. 114.
    114. Goldsmith, H.L. and Marlow, J. (1972). Flow Behavior of Erythrocytes I. Rotation and Deformation in Dilute Suspensions. Proc. R. Soc. Lond. B, Vol. 182, pp. 351–384.CrossRefGoogle Scholar
  115. 115.
    115. Goldsmith, H.L. and Skalak, R. (1975). Hemodynamics. Ann. Rev. Fluid Mech., Vol. 7, pp. 213–247.CrossRefGoogle Scholar
  116. 116.
    116. Gosman, A.D. and Ioannides, E. (1983). Aspects of Computer Simulation of Liquid-Fueled Combustors. J. Energy, Vol. 7, pp. 482–490.CrossRefGoogle Scholar
  117. 117.
    117. Gradon, L., Grzybowski, P., and Pilacinski, W. (1988). Analysis of Motion and Deposition of Fibrous Particles on a Single Filter Element. Chem. Eng. Sci., Vol. 43, pp. 1253– 1259.CrossRefGoogle Scholar
  118. 118.
    118. Griendling, K.K. and Harrison, D.G. (2001). Out, Damned Dot: Studies of the NADPH Oxidase in Atherosclerosis. J. Clin. Invest., Vol. 108, pp. 1423–1424.CrossRefGoogle Scholar
  119. 119.
    Groszmann, D. E., et al. (1998). Decoupling the Roles of Inertia and Gravity on Particle Dispersion. Proceeding of the Fourth Microgravity Fluid Physics & Transport Phenomena Conference, NASA Lewis Research Center, Cleveland, OH, pp. 117–118.Google Scholar
  120. 120.
    120. Hahn, I., Scherer P.W., and Mozell M.M. (1993). Velocity Profiles Measured for Airflow through A Large-Scale Model of the Human Nasal Cavity. J. Appl. Physiol., Vol. 75, pp. 2273–2287.CrossRefGoogle Scholar
  121. 121.
    121. Hall, D. (1988). Measurements of the Mean Force on a Particle Near a Boundary in Turbulent Flow. J. Fluid Mech., Vol. 187, pp. 451–466.CrossRefGoogle Scholar
  122. 122.
    122. Hamaker, H.C. (1937). The London–van der Waals Attraction Between Spherical Particles. Physica, Vol. 4, pp. 1058–1072.CrossRefGoogle Scholar
  123. 123.
    123. Harrison, D., Griendling, K.K., Landmesser, U., Hornig, B., and Dexler, H. (2003). Role of Oxidative Stress in Atherosclerosis. Am. J. Cardiol., Vol. 91, pp. 7A–11A.CrossRefGoogle Scholar
  124. 124.
    124. He, C. and Ahmadi, G. (1998). Particle Deposition with Themophoresis in Laminar and Turbulent Duct Flows. Aerosol Sci. Technol., Vol. 29, pp. 525–546.CrossRefGoogle Scholar
  125. 125.
    125. He, C. and Ahmadi, G. (1999). Particle Deposition in a Nearly Developed Turbulent Duct Flow with Electrophoresis. J. Aerosol Sci., Vol. 30, pp. 739–758.CrossRefGoogle Scholar
  126. 126.
    Hetsroni, Haber, G.S., Brenner, H., and Greenstein, T. (1971). A Second-Order Theory for a Deformable Drop Suspended in a Long Conduit. In Progress in Heat and Mass Transfer, Vol. 6, Edited by Hetsroni, G., Pergamon, Oxford/New York, pp. 591–612.Google Scholar
  127. 127.
    127. Heyder, J., Gabhart, J., Rudolf, G., Schiller, C.F., and Stahlhofen, W. (1986). Deposition of Particles in the Human Respiratory Tract in the Size Range 0.005μm. J. Aerosol Sci., Vol. 17, pp. 811–825.CrossRefGoogle Scholar
  128. 128.
    128. Hidy, G. M. (1984). Aerosols, an Industrial and Environmental Science, Academic Press, New York.Google Scholar
  129. 129.
    129. Hinds, W.C. (1982). Aerosol Technology, Properties, Behavior, and Measurement of Airborne Particles, Wiley, New York.Google Scholar
  130. 130.
    130. Hinze, J. O. (1975). Turbulence, McGraw Hill, New York.Google Scholar
  131. 131.
    131. Hoppel, W.A. and Frick, G.M. (1986). Ion-aerosol attachment coefficients and the steady-state charge distribution on aerosol in a bipolar environment. Aerosol Sci. Technol., Vol. 5, pp. 1–21.CrossRefGoogle Scholar
  132. 132.
    Hwang, N.H.C., Gross, D.R., and Patel, D.J. (Eds.) (1978). Quantitative Cardiovascular Studies: Clinical and Research Applications of Engineering Principles, University Park Press, Baltimore, pp. 289–351.Google Scholar
  133. 133.
    133. Ibrahim, A.H., Dunn, P.F., and Brach, R.M. (2003). Microparticle Detachment from Surfaces Exposed to Turbulent Air Flow: Controlled Experiments and Modeling. J. Aerosol Sci., Vol. 34, pp. 765–782.CrossRefGoogle Scholar
  134. 134.
    134. Jan, K.-M. and Chien, S. (1973a). Role of Surface Electric Charge on Red Blood-Cell Interactions. J. Gen. Physiol., Vol. 61, pp. 638–654.CrossRefGoogle Scholar
  135. 135.
    135. Jan, K.-M. and Chien, S. (1973b). Influence of Ionic Composition of Fluid Medium on Red-Cell Aggregration. J. Gen. Physiol., Vol. 61, pp. 655–668.CrossRefGoogle Scholar
  136. 136.
    136. Johnson, K.L., Kendall, K., and Roberts, A.D. (1971). Surface Energy and the Contact of Elastic Solids. Proc. R. Soc. Lond. A, Vol. 324, pp. 301–313.CrossRefGoogle Scholar
  137. 137.
    137. Johnson, J.R. and Schroter, R.C. (1979). Deposition of Particles in Model Airways. J. Appl. Physiol., Vol. 47, pp. 947–953.CrossRefGoogle Scholar
  138. 138.
    Jurewicz, J.T. and Stock, D.E. (1976). ASME WAM, Paper No. 76-WA/PE-33.Google Scholar
  139. 139.
    139. Kaazempur-Mofrad, M.R., Isasi, A.G., Younis, H.F., Chan, R.C., Hinton, D.P., Sukhova, G., Lamuraglia, G.M., Lee, R.T., and Kamm, R.D. (2004). Characterization of the Atherosclerotic Carotid Bifurcation using MRI, Finite Element Modeling, and Histology. Ann. Biomed. Eng., Vol. 32, pp. 932– 946.CrossRefGoogle Scholar
  140. 140.
    140. Kamm, R.D. (2002). Cellular Fluid Mechanics. Ann. Rev. Fluid Mech., Vol. 34, pp. 211–232.CrossRefGoogle Scholar
  141. 141.
    141. Karnis, A. and Mason, S.G. (1967). Particle Motions in Sheared Suspensions. J. Colloid Interface Sci., Vol. 24, pp. 161–169.CrossRefGoogle Scholar
  142. 142.
    142. Karino, T. and Goldsmith, H.L. (1980). Disturbed Flow in Models of Branching Vessels. Trans. Am. Soc. Artif. Internal Organs, Vol. 26, pp. 500–506.Google Scholar
  143. 143.
    143. Karino, T. and Goldsmith, H.L. (1984). Role of Blood Cell-Wall Interactions in Thrombogenesis and Atherosclerosis: A Microrheological Study. Biorheology, Vol. 21, pp. 587–601.CrossRefGoogle Scholar
  144. 144.
    144. Karino, T., Asakura, T., and Mabuchi, S. (1988). Role of Hemodynamic Factors in Atherogenesis. Adv. Exp. Med. Biol., Vol. 242, pp. 51–57.CrossRefGoogle Scholar
  145. 145.
    145. Kelly, J.T., Prasad, A.K., and Wexler, A.S. (2000). Detailed Flow Patterns in The Nasal Cavity. J. Appl. Physiol., Vol. 89, pp. 323–337.CrossRefGoogle Scholar
  146. 146.
    146. Kelly, J.T., Asgharian, B., Kimbell, J.S., Wong, B.A. (2004). Particle Deposition in Human Nasal Airway Replicas Manufactured by Different Methods. II. Ultrafine Particles. Aerosol Sci. Technol., Vol. 38, pp. 1072–1079.CrossRefGoogle Scholar
  147. 147.
    147. Keyhani, K., Scherer, P.W., and Mozell, M.M. (1995) Numerical Simulation of Airflow in the Human Nasal Cavity. J. Biomech. Eng., Vol. 117, pp. 429–441.CrossRefGoogle Scholar
  148. 148.
    148. Kim, C.S. and Fisher, D.M. (1999). Deposition of Aerosol Particles in Successively Bifurcating Airways Models. Aerosol Sci. Technol., Vol. 31, pp. 198–220.CrossRefGoogle Scholar
  149. 149.
    149. Kim, C.S., Fisher, D.M., Lutz, D.J., and Gerrity, T.R. (1994). Particle Deposition in Bifurcating Airway Models with Varying Airway Geometry. J. Aerosol Sci., Vol. 25, pp. 567–581.CrossRefGoogle Scholar
  150. 150.
    150. Kim, C.S. and Iglesias, A.J. (1989). Deposition of Inhaled Particles in Bifurcating Airways Models. I. Inspiratory Deposition. J. Aerosol Med., Vol. 2, pp. 1–14.CrossRefGoogle Scholar
  151. 151.
    151. Kimbell, J.S. (2001). Computational Fluid Dynamics of the Extrathoracic Airways, Medical Applications of Computer Modelling: The Respiratory System, WIT Press, United Kingdom.Google Scholar
  152. 152.
    152. Krushkal, E.M. and Gallily, I. (1984). On the Orientation Distribution Function of Non-Spherical Aerosol Particles in a General Shear Flow. I. The Laminar Case. J. Colloid Interface Sci., Vol. 99, pp. 141–152.CrossRefGoogle Scholar
  153. 153.
    153. Ku, D.N. (1997). Blood Flow in Arteries. Annu. Rev. Fluid Mech., Vol. 29, 399–434.CrossRefGoogle Scholar
  154. 154.
    154. Ku, D.N., Giddens, D.P., Phillips, D.J., and Strandress, D.E., Jr. (1985a). Hemodynamics of the Normal Human Carotid Bifurcation: In Vitro and In Vivo Studies. Ultrasound Med. Biol., Vol. 11, pp. 13–26.CrossRefGoogle Scholar
  155. 155.
    155. Ku, D.N., Giddens, D.P., Zarins, C.K., and Glagov, S. (1985b). Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation between Plaque Location and Low Oscillating Shear Stress. Arterioscler. Thromb. Vasc. Biol., Vol. 5, pp. 293–302.Google Scholar
  156. 156.
    156. Kvasnak, W. and Ahmadi, G. (1995). Fibrous Particle Deposition in a Turbulent Channel Flow – An Experimental Study. Aerosol Sci. Technol., Vol. 23, pp. 641–652.CrossRefGoogle Scholar
  157. 157.
    157. Kvasnak, W. and Ahmadi, G. (1996). Deposition of Ellipsoidal Particles in Turbulent Duct Flows. Chem. Eng. Sci., Vol. 51, pp. 5137–5148.CrossRefGoogle Scholar
  158. 158.
    158. Kvasnak, W., Ahmadi, G., Bayer, R., and Gaynes, M.A. (1993). Experimental Investigation of Dust Particle Deposition in a Turbulent Channel Flow. J. Aerosol Sci., Vol. 24, pp. 795–815.CrossRefGoogle Scholar
  159. 159.
    159. Lane, D.D. and Stukel, J.J. (1978). Aerosol Deposition on a Flat Plate. Aerosol Sci., Vol. 9, pp. 191–197.CrossRefGoogle Scholar
  160. 160.
    160. Launder, B.E., Reece, G.J., Rodi, W. (1975). Progress in Development of a Reynolds-Stress Turbulence Closure, J. Fluid Mech., Vol. 68, pp. 537–566.CrossRefGoogle Scholar
  161. 161.
    161. Lawless, P.A. (1996). Particle Charging Bounds, Symmetry Relations, and an Analytic Charging Rate Model for the Continuum Regime. J. Aerosol Sci., Vol. 27, pp. 191–215.CrossRefGoogle Scholar
  162. 162.
    162. Leal, L.G. (1980). Particle Motions in a Viscous Fluid. Annu. Rev. Fluid Mech., Vol. 12, pp. 435–476.CrossRefGoogle Scholar
  163. 163.
    163. Lee, S.L. and Durst, F. (1982). On the Motion of Particles in Turbulent Duct Flows. Int. J. Multiphase Flow, Vol. 8, pp. 125–146.CrossRefGoogle Scholar
  164. 164.
    164. Leighton, D.T. and Acrivos, A. (1985). The Lift on a Small Sphere Touching a Plane in the Presence of a Simple Shear Flow. Z. Angew. Math. Phys., Vol. 36, pp. 174–178.CrossRefGoogle Scholar
  165. 165.
    165. Lerman, A. (1979). Geochemical Processes, Wiley, New York.Google Scholar
  166. 166.
    166. Levich, V. (1962). Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  167. 167.
    167. Li, A. and Ahmadi, G. (1992). Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow, Aerosol Sci. Technol., Vol. 16, pp. 209–226.Google Scholar
  168. 168.
    168. Li, A. and Ahmadi, G. (1993). Deposition of Aerosol on Surfaces in a Turbulent Channel Flow. Int. J. Eng. Sci., Vol. 31, pp. 435–451.CrossRefGoogle Scholar
  169. 169.
    169. Li, A. and Ahmadi, G. (1993). Computer Simulation of Deposition of Aerosols in a Turbulent Channel Flow With Rough Walls. Aerosol Sci. Technol., Vol. 18, pp. 11–24.CrossRefGoogle Scholar
  170. 170.
    170. Li, A. and Ahmadi, G. (1993). Aerosol Particle Deposition with Electrostatic Attraction in a Turbulent Channel Flow. J. Colloid Inteface Sci., Vol. 158, pp. 476–482.CrossRefGoogle Scholar
  171. 171.
    171. Li, A., Ahmadi, G., Bayer, R., and Gaynes, M.A. (1994). Aerosol Particle Deposition in an Obstructed Turbulent Duct Flow. J. Aerosol Sci., Vol. 25, pp. 91–112.CrossRefGoogle Scholar
  172. 172.
    172. Li, A. and Ahmadi, G. (1995). Computer Simulation of Particle Deposition in the Upper Tracheobronchial Tree. Aerosol Sci. Technol., Vol. 23, pp. 201–223.CrossRefGoogle Scholar
  173. 173.
    173. Liu, B.Y.H. and Agarwal, J.K. (1974). J. Aerosol Sci., Vol. 5, pp. 145–155.CrossRefGoogle Scholar
  174. 174.
    174. Liu, B.Y.H. and Kapadia, H. (1978). Combined Field and Diffusion Charging of Aerosol Particles in the Continuum Regime. J. Aerosol Sci., Vol. 9, pp. 227–242.CrossRefGoogle Scholar
  175. 175.
    175. Luft, J.H. (1966). Fine Structures of Capillary and Endocapillary Layer as Revealed by Ruthenium Red. Fed. Proc., Vol. 25, pp. 1773–1783.Google Scholar
  176. 176.
    176. Maugis, D. and Pollock, H.M. (1984). Surface Forces, Deformation and Adherence at Metal Microcontact. Acta Met., Vol. 32, pp. 1323–1334.CrossRefGoogle Scholar
  177. 177.
    177. Martonen, T.B., Yang, Y., and Xue, Z.Q. (1994). Effects of Carinal Ridge Shapes on Lung Airstreams. Aerosol Sci. Technol., Vol. 21, pp. 119–136.CrossRefGoogle Scholar
  178. 178.
    178. Martonen, T.B., Zhang, Z., and Lessmann, R.C. (1993). Fluid Dynamics of the Human Larynx and Upper Tracheobronchial Airways. Aerosol Sci. Technol., Vol. 19, pp. 133–156.CrossRefGoogle Scholar
  179. 179.
    179. Martonen, T.B., Zhang, Z., Yue, G., and Musante, C.J. (2003). Fine Particle Deposition within Human Nasal Airways. Inhal. Toxicol., Vol. 15, pp. 283–303.CrossRefGoogle Scholar
  180. 180.
    180. Marshall, J.R. (1998). Electrostructural Phase Changes in Charged Particulate Clouds: Planetary and Astrophysical Implications. LPSC, Vol. 29, pp. 1132.Google Scholar
  181. 181.
    181. Maxey, M.R. (1987). The Gravitational Settling of Aerosol Particle in Homogeneous Turbulence and Random Flow Fields. J. Fluid Mech., Vol. 174, pp. 441–445.CrossRefGoogle Scholar
  182. 182.
    182. Maxey, M.R. and Riley, J.J. (1983). Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow. Phys. Fluid., Vol. 26, pp. 883–889.CrossRefGoogle Scholar
  183. 183.
    183. Mazaheri, A.R. and Ahmadi, G. (2002). Inspiratory Particle Deposition in the Upper Three Airway bifurcation. 21st Annual Conference of the American Association for Aerosol Research, AAAR 2002, Charlotte, NC.Google Scholar
  184. 184.
    184. Mazaheri, A.R. and Ahmadi, G. (2003). Inspiratory Particle Deposition in the Upper Three Airway bifurcation. 21st Annual Conference of the American Association for Aerosol Research, AAAR 2002, Charlotte, NC.Google Scholar
  185. 185.
    185. Mazaheri, A.R. and Ahmadi, G. (2004). Modeling Inspiratory Particle Deposition. ASME Heat Transfer/Fluid Engineering Summer Conference, Charlotte, NC.Google Scholar
  186. 186.
    186. McCoy, D. D. and Hanratty, T.J. (1977). Rate of Deposition of Droplets in Annular Two-Phase Flow. Int. J. Multiphase Flow, Vol. 3, pp. 319–331.CrossRefGoogle Scholar
  187. 187.
    187. McLaughlin, J.B. (1989). Aerosol Particle Deposition in Numerically Simulated Channel Flow. Phys. Fluids A, Vol. 7, pp. 1211–1224.CrossRefGoogle Scholar
  188. 188.
    188. McLaughlin, J.B. (1991). Inertial Migration of a Small Sphere in Linear Shear Flows. J. Fluid Mech., Vol. 224, pp. 261–274.CrossRefGoogle Scholar
  189. 189.
    189. McLaughlin, J.B. (1993). The Lift on a Small Sphere in Wall-Bounded Linear Shear Flows. J. Fluid. Mech., Vol. 246, pp. 249–265.CrossRefGoogle Scholar
  190. 190.
    190. Mei, R. (1992). An Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number. Int. J. Multiphase Flow, Vol. 18, pp. 145–147.CrossRefGoogle Scholar
  191. 191.
    191. McLaughlin, J.B. (1994). Numerical Computation of Particles-Turbulence Interaction. Int. J. Multiphase Flow, Vol. 20, pp. 211–232.CrossRefGoogle Scholar
  192. 192.
    192. Meiselman, H.J., Merrill, E.W., Salzman, E., Gilliland, E.R., Pelletier, G.A. (1967). Effect of Dextran on Rheology of Human Blood – Low Shear Viscometry. J. Appl. Physiol., Vol. 22, pp. 480–486.CrossRefGoogle Scholar
  193. 193.
    193. Mercer, T.T. (1973). Aerosol Technology in Hazard Evaluation of Airborne Particles, Academic Press, New York.Google Scholar
  194. 194.
    194. Modarress, D., Wuerer, J., and Elghobashi, S. (1984). Chem. Eng. Commun., Vol. 28, pp. 341–354.CrossRefGoogle Scholar
  195. 195.
    195. Mollinger, A.M. and Nieuwstadt, F.T.M. (1996). Measurement of the Lift Force on a Particle Fixed to the Wall in the Viscous Sublayer of a Fully Developed Turbulent Boundary Layer. J. Fluid Mech., Vol. 216, pp. 285–306.CrossRefGoogle Scholar
  196. 196.
    196. Mulivor, A.W. and Lipowsky, H.H. (2004). Inflammation- and Ischemia-Induced Shedding of Venular Glycocalyx. Am. J. Physiology Heart Circ. Physiol., Vol. 286, pp. H1672–H1680.CrossRefGoogle Scholar
  197. 197.
    197. Nerem, R.M. (1985). Atherosclerosis: Hemodynamics, Vascular Geometry, and the Endothelium. Biorheology, Vol. 21, pp. 565–569.CrossRefGoogle Scholar
  198. 198.
    198. Nerem, R.M. and Girard, P.R. (1990). Hemodynamic Influences on Vascular Endothelial Biology. Toxicol. Pathol., Vol. 18, pp. 572–582.Google Scholar
  199. 199.
    199. Nerem, R.M. (1993). Hemodynamics and Vascular Endothelial Biology. J. Cardiovasc. Pharmacol., Vol. 21, pp. S6–S10.CrossRefGoogle Scholar
  200. 200.
    200. Norris, R. (1869). On the Laws and Principles Concerned in the Aggregation of Blood-Corpuscles Both Within and Without the Vessels. Proc. R. Soc. Lond., Vol. 17, pp. 429–436.CrossRefGoogle Scholar
  201. 201.
    201. Ounis, H. and Ahmadi, G. (1989). Motions of Small Rigid Spheres in a Simulated Random Velocity Field. ASCE J. Eng. Mech., Vol. 115, pp. 2107–2121.CrossRefGoogle Scholar
  202. 202.
    202. Ounis, H. and Ahmadi, G. (1990). Analysis of Dispersion of Small Spherical Particles in a Random Velocity Field. ASME J. Fluid Eng., Vol. 112, pp. 114–120.CrossRefGoogle Scholar
  203. 203.
    203. Ounis, H. and Ahmadi, G. (1990). A Comparison of Brownian and Turbulent Diffusions. Aerosol Sci. Technol., Vol. 13, pp. 47–53.CrossRefGoogle Scholar
  204. 204.
    204. Ounis, H. and Ahmadi, G. (1991). Motions of Small Particles in Simple Shear Flow Field under Microgravity Condition. Phys. Fluids A, Vol. 3, pp. 2559–2570.CrossRefGoogle Scholar
  205. 205.
    205. Ounis, H., Ahmadi, G., and McLaughlin, J.B. (1991a). Brownian Diffusion of Submicron Particles in the Viscous Sublayer. J. Colloid Interface Sci., Vol. 143, pp. 266–277.CrossRefGoogle Scholar
  206. 206.
    206. Ounis, H., Ahmadi, G., and McLaughlin, J.B. (1991b). Dispersion and Deposition of Brownian Pericles from Point Sources a Simulated Turbulent Channel flow. J. Colloid interface Sci., Vol. 147, pp. 233–250.CrossRefGoogle Scholar
  207. 207.
    207. Ounis, H., Ahmadi, G., and McLaughlin, J.B. (1993). Brownian Particle Deposition in a Directly Simulated Turbulent Channel Flow. Phys. Fluids A, Vol. 5, pp. 1427–1432.CrossRefGoogle Scholar
  208. 208.
    208. Owen, P.R. (1960). Aerodynamic Capture of Particles. Pergamon, Oxford, p. 8.Google Scholar
  209. 209.
    209. Papavergos, P.G. and Hedley, A.B. (1984). Particle Deposition Behavior from Turbulent Flow. Chem. Eng. Res. Des., Vol. 62, pp. 275–295.Google Scholar
  210. 210.
    210. Peters, M.H., Cooper, D.W, and Miller, R.J. (1989). J. Aerosol Sci., Vol. 20, pp. 123–136.CrossRefGoogle Scholar
  211. 211.
    211. Pope, S.B. and Chen, Y.L. (1990). Phys. Fluids, Vol. 2, pp. 1437–1449.CrossRefGoogle Scholar
  212. 212.
    212. Pope, S.B. (1991). Ann. Rev. Fluid Mech., Vol. 26, pp. 23–63.CrossRefGoogle Scholar
  213. 213.
    213. Pozrikidis, C. (1990). The Axisymmetric Deformation of a Red Blood Cell in Uniaxial Straining Flow. J. Fluid Mech., Vol. 216, pp. 231–254.CrossRefGoogle Scholar
  214. 214.
    214. Pozrikidis, C. (1992). The Axisymmetric Deformation of a Red Blood Cell in Uniaxial Straining Flow. J. Fluid Mech., Vol. 216, pp. 231–254.CrossRefGoogle Scholar
  215. 215.
    Pozrikidis, C. (Ed.) (2003). Modeling and Simulation of Capsules and Biological Cells, Chapman and Hall/CRC Mathematical Biology and Medicine Series, Boca Raton.Google Scholar
  216. 216.
    216. Pozrikidis, C. (2002). A Practical Guide to Boundary Element Methods with the Software Library BEMLIB, Chapman and Hall/CRC Mathematical Biology and Medicine Series, Boca Raton.CrossRefGoogle Scholar
  217. 217.
    217. Reeks, M.W. (1977). On the Dispersion of Small Particles Suspended in an Isotropic Turbulent Flow. J. Fluid Mech., Vol. 83, pp. 529–546.CrossRefGoogle Scholar
  218. 218.
    218. Reeks, M.W. and Mckee, S. (1984). The Dispersive Effect of Basset History Forces on Particle Motion in a Turbulent Flow. Phys. Fluid, Vol. 27, pp. 1573–1582.CrossRefGoogle Scholar
  219. 219.
    219. Riley, J.J. and Corrsin, S. (1974). The Relation of Turbulent Diffusivities to Lagrangian Velocity Statistics for the Simplest Shear Flow. J. Geophys. Res., Vol. 79, pp. 1768–1771.CrossRefGoogle Scholar
  220. 220.
    220. Riley, J.J. and Patterson, G.S., Jr. (1974). Diffusion Experiments with Numerically Integrated Isotropic Turbulence. Phys. Fluid, Vol. 17, pp. 292–297.CrossRefGoogle Scholar
  221. 221.
    221. Rizk, M.A. and Elghobashi, S.E. (1985). The Motion of a Spherical Particle Suspended in a Turbulent Flow near a Plane Wall. Phys. Fluids, Vol. 20, pp. 806–817.CrossRefGoogle Scholar
  222. 222.
    222. Rouhiainen, P.O. and Stachiewiz, J.W. (1970). On the Deposition of Small Particles from Turbulent Streams. J. Heat Transfer, Vol. 92, pp. 169–177.CrossRefGoogle Scholar
  223. 223.
    223. Raabe, O.G., Yeh, H.C., Schum G.M., and Phalen, R.F. (1976). Tracheobronchial Geometry: Human, Dog, Rat and Hamster, LF53, Lovelace Foundation Report, New Mexico.Google Scholar
  224. 224.
    224. Skalak, R., Tozeren, A., Zarda, P.R., and Chien, S. (1973). Strain Energy Function of Red Blood Membranes. Biophys. J., Vol. 13, pp. 245–264.CrossRefGoogle Scholar
  225. 225.
    225. Skalak, R., Ozkaya, N., and Skalak, T.C. (1989). Biofluid Mechanics. Ann. Rev. Fluid Mech., Vol. 21, pp. 167–204.CrossRefGoogle Scholar
  226. 226.
    226. Squire, J.M., Chew, M., Nneji, G., Neal, C., Barry, J., and Michel, C. (2001). Quasi-Periodic Substructure in the Microvessel Endothelial Glycocalyx: A Possible Explanation for Molecular Filtering? J. Struct. Biol., Vol. 136, pp. 239–255.CrossRefGoogle Scholar
  227. 227.
    227. Takeshita, S., Inoue, N., Ueyama, T., Kawashima, S., and Yokoyama, M. (2000). Shear Stress Enhances Glutathione Peroxidase Expression in Endothelial Cells. Biochem. Biophys. Res. Commun., Vol. 273, pp. 66–71.CrossRefGoogle Scholar
  228. 228.
    228. Tanganelli, P., et al. (1993). Distributions of Lipid and Raised Lesions in Aortas of Young People of Different Geographic Origins (WHO-ISFC PBDAY Study). World Health Organization-International Society and Federation of Cardiology. Pathobiological Determinants of Atherosclerosis in Youth. Arterioscler. Thromb., Vol. 13, pp. 1700–1710.CrossRefGoogle Scholar
  229. 229.
    229. Tarbell, J.M. (2003). Mass Transport in Arteries and the Localization of Atherosclerosis. Ann. Rev. Biomed. Eng., Vol. 5, pp. 79–118.CrossRefGoogle Scholar
  230. 230.
    230. Saffman, P.G. (1965). The Lift on a Small Sphere in a Slow Shear Flow. J. Fluid Mech., Vol. 22, pp. 385–400.CrossRefGoogle Scholar
  231. 231.
    231. Saffman, P.G. (1968). Corrigendum to the Lift on a Small Sphere in a Slow Shear Flow. J. Fluid Mech., Vol. 31, p. 264.Google Scholar
  232. 232.
    232. Schamberger, M. R., Peters, J. E., and Leong, K. H. (1990). Collection of Prolate Spheroidal Aerosol Particles by Charged Spherical Collectors. J. Aerosol Sci., Vol. 21, pp. 539–554.CrossRefGoogle Scholar
  233. 233.
    233. Schreck, S., Sullivan, K.J., Ho, C.M., and Chang, H.K. (1993). Correlations Between Flow Resistance and Geometry in a Model Of The Human Nose. J. Appl. Physiol., Vol. 75, pp. 1767–1775.CrossRefGoogle Scholar
  234. 234.
    234. Sehmel, G.A. (1973). Particle Eddy Diffusities and Deposition Velocities for Isothermal Flow and Smooth Surfaces. J. Aerosol Sci., Vol. 4, pp. 125–138.CrossRefGoogle Scholar
  235. 235.
    235. Seinfeld, J.H. (1986). Atmospheric Chemistry and Physics of Air Pollution, Wiley, New York.Google Scholar
  236. 236.
    236. Shapiro, M. and Goldenberg, M. (1993). Deposition of Glass Fiber Particles from Turbulent Air Flow in a Pipe. J. Aerosol Sci., Vol. 24, pp. 65–87.CrossRefGoogle Scholar
  237. 237.
    237. Shams, M., Ahmadi, G., and Rahimzadeh, H. (2000). A Sublayer Model for Deposition of Nano- and Micro-Particles in Turbulent Flows. Chem. Eng. Sci., Vol. 55, pp. 6097–6107.CrossRefGoogle Scholar
  238. 238.
    238. Scherer, P.W., Keyhani, K., Mozell, M.M. (1994). Nasal Dosimetry Modeling for Humans. Inhal. Toxicol., Vol. 6, pp. 85–97.Google Scholar
  239. 239.
    239. Snyder, W.H. and Britter, R.E. (1987). Atmos. Environ., Vol. 21, pp. 735–751.Google Scholar
  240. 240.
    240. Snyder, W.H. and Lumley, J.L. (1971). Some Measurements of Particle Velocity Autocorrelation Functions in a Turbulent Flow. J. Fluid Mech., Vol. 48, pp. 41–71.CrossRefGoogle Scholar
  241. 241.
    241. Soltani, M. and Ahmadi, G. (1995). Direct Numerical Simulation of Particle Entrainment in Turbulent Channel Flow. Phys. Fluid A, Vol. 7, pp. 647–657.CrossRefGoogle Scholar
  242. 242.
    242. Soltani, M., Ahmadi, G., Ounis, H., and McLaughlin, J.B. (1998). Direct Numerical Simulation of Charged Particle Deposition in a Turbulent Channel Flow. Int. J. Multiphase Flow, Vol. 24, pp. 77–92.CrossRefGoogle Scholar
  243. 243.
    243. Soltani, M. and Ahmadi, G. (2000). Direct Numerical Simulation of Curly Fibers in Turbulent Channel Flow. Aerosol Sci. Technol., Vol. 33, pp. 392–418.CrossRefGoogle Scholar
  244. 244.
    244. Spurny, K.R. (1986). Physical and Chemical Characterization of Individual Airborne Particles, Wiley, New York.Google Scholar
  245. 245.
    245. Squires, K.D. and Eaton, J.K. (1991). On the preferential concentration of solid particles in turbulent. Phys. Fluid A, Vol. 3, pp. 1169–1178.CrossRefGoogle Scholar
  246. 246.
    246. Stapleton, K.W., Guentsch, E., Hoskinson, M.K., and Finlay, W.H. (2000). On the Suitability of \({\rm k}\hbox{--}\overline{\omega}\) Turbulence Modeling for Aerosol Deposition in the Mouth and Throat: A Comparison with Experiment. J. Aerosol Sci., Vol. 31, pp. 739–749.CrossRefGoogle Scholar
  247. 247.
    Strong J. C. and Swift D.L. (1987). Deposition of Ultrafine Particles in a Human Nasal Cast. Proceedings of the First Conference of Aerosol Society, Loughborogh University of Technology, Loughborogh, pp. 109–112.Google Scholar
  248. 248.
    248. Subramaniam, R.P., Richardson, R.B., Morgan, K.T., Kimbell, J.S., and Guilmette, R.A. (1998). Computational Fluid Dynamics Simulations of Inspiratory Airflow in the Human Nose and Nasopharynx. Inhal. Toxicol., Vol. 10, pp. 91–120.CrossRefGoogle Scholar
  249. 249.
    249. Swift, D.L. and Proctor, D.F. (1977). Access of Air to the Respiratory Tract. In Respiratory Defense Mechanisms, Part 1, Edited by Brian, J.D., Proctor, D.F., and Reid, L.M., Dekker, New York, pp. 63–93.Google Scholar
  250. 250.
    250. Swift, D.L., Montassier, N., Hopke, P.K., Karpen-Hayes, K., Cheng, Y.S., Su, Y.F., Yeh, H.C., and Strong, J.C. (1992a). Inspiratory Deposition of Ultrafine Particles in Human Nasal Replicate Casts. J. Aerosol Sci., Vol. 23, pp. 65–72.CrossRefGoogle Scholar
  251. 251.
    251. Swift, D.L., Montassier, N., Hopke, P.H., Karpen-Hayes K., Cheng, Y.S., Su, Y.F., Yeh, H.C., and Strong, J.C. (1992b). Inspiratory Deposition of Ultrafine Particles in Human Nasal Replicate Cast. J. Aerosol Sci., Vol. 23, pp. 65–72.CrossRefGoogle Scholar
  252. 252.
    252. Swift, D.L. and Strong, J.C. (1996). Nasal Deposition of Ultrafine 218Po Aerosols in Human Subjects. J. Aerosol Sci., Vol. 27, pp. 1125–1132.CrossRefGoogle Scholar
  253. 253.
    253. Tavoularis, S. and Corrsin, S. (1985). Effects of Shear on the Turbulent Diffusivity Tensor. Int. J. Heat Transfer, Vol. 28, pp. 265–274.CrossRefGoogle Scholar
  254. 254.
    254. Tchen, C.M. (1947). Mean Value and Correlation Problems Connected with the Motion of Small Particles Suspended in a Turbulent Field. Ph.D. Thesis, University of Delft, Martinus Nijhoff, Hague.Google Scholar
  255. 255.
    255. Thomson, D.J. (1987). Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows. J. Fluid Mech., Vol. 180, pp. 529–556.CrossRefGoogle Scholar
  256. 256.
    256. Tian, L., Ahmadi, G., Mazaheri, A., Hopke, P.K., and Cheng, S.-Y. (2005). Particle Deposition in 3-D Asymmetric Human Lung Bifurcations. 79th ACS Colloid and Surface Science Symposium, Clarkson University, Potsdam, NY.Google Scholar
  257. 257.
    Trinh, E.H. (1998). Acoustic Streaming in Microgravity: Flow Stability and Mass and Heat Transfer Enhancement. Proceeding of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference, NASA Lewis, Cleveland, OH, pp. 117–118.Google Scholar
  258. 258.
    258. Twomey, S. (1976). Atmospheric Aerosols, Elsevier, Amsterdam.Google Scholar
  259. 259.
    259. Upchurch, G.J., Ford, J.W., Weiss, S.J., Knipp, B.S., Peterson, D.A., Thompson, R.W., Eagleton, M.J., Broady, A.J., Proctor, M.C., and Stanley, J.C. (2001). Nitric Oxide Inhibition Increases Metalloproteinase-9 Expression by Rat Aortic Smooth Muscle Cells in Vitro. J. Vasc. Surg., Vol. 34, pp. 76–83.CrossRefGoogle Scholar
  260. 260.
    260. Vincent, J.H. (1995). Aerosol Science for Industrial Hygienists, Pergamon, Oxford, UK.Google Scholar
  261. 261.
    261. Vink, H. and Dulling, B.R. (1996). Identification of Distinct Luminal Domains for Macromolecules, Erythrocytes, and Leukocytes within Mammalian Capillaries. Circ. Res., Vol. 79, pp. 581–589.CrossRefGoogle Scholar
  262. 262.
    262. Vink, H. and Duling, B.R. (2000). Capillary Endothelial Surface Layer Selectively Reduces Plasma Solute Distribution Volume. Am. J. Physiol. Heart Circ. Physiol., Vol. 278, pp. H285–H289.CrossRefGoogle Scholar
  263. 263.
    263. Wang, L.-P. and Stock, D.E. (1992). Stochastic Trajectory Models for Turbulent Diffusion: Monte-Carlo Process versus Markov Chains. Atmos. Environ., Vol. 26, pp. 1599–1607.CrossRefGoogle Scholar
  264. 264.
    264. Wang, L.-P. and Stock, D.E. (1993). Dispersion of Heavy Particles by Turbulent Motion. J. Atmos. Sci., Vol. 50, pp. 1897–1913.CrossRefGoogle Scholar
  265. 265.
    265. Wang, Q., Squires, K.D., Chen, M., and McLaughlin, J.B. (1994). On the Role of the Lift Force in Turbulence Simulations of Particle Deposition. Int. J. Multiphase Flow, Vol. 23, pp. 749–763.CrossRefGoogle Scholar
  266. 266.
    266. Wang, Z., Hopke, P., Baron, P., Ahmadi, G., Cheng, Y., Deye, G., and Su, W.-C. (2005). Fiber Classification and the Influence of Average Air Humidity. Aerosol Sci. Technol., Vol. 39, pp. 1056–1063.CrossRefGoogle Scholar
  267. 267.
    267. Weibel, E.R. (1963). Morphometry of the Human Lung, Academic Press, New York.CrossRefGoogle Scholar
  268. 268.
    268. Womersley, J.R. (1975). An Elastic Tube Theory of Pulse Transmission and Oscillatory Flow in Mammalian Arteries, Wright Air Development Center, Wright-Patterson Air Force Base, OH.Google Scholar
  269. 269.
    269. Wood, N.B. (1981). A Simple Method for Calculation of Turbulent Deposition to Smooth and Rough Surfaces. J. Aerosol Sci., Vol. 12, pp. 275–290.CrossRefGoogle Scholar
  270. 270.
    270. Wood, N.B. (1981). The Mass Transfer of Particles and Acid Vapour to Cooled Surfaces. J. Inst. Energy, Vol. 76, pp. 76–93.Google Scholar
  271. 271.
    271. Yaglom, A.M. and Kader, B.A. (1974). Heat and Mass Transfer Between a Rough Wall and Turbulent Fluid Flow at High Reynolds and Peclet Numbers. J. Fluid Mech., Vol. 62, pp. 601–623.CrossRefGoogle Scholar
  272. 272.
    272. Yu, G., Zhang, Z., and Lessmann, R. (1998). Fluid Flow and Particle Diffusion in the Human Upper Respiratory System. Aerosol Sci. Technol., Vol. 2, pp. 146–158.CrossRefGoogle Scholar
  273. 273.
    273. Zahmatkesh, I., Abouali, O., and Ahmadi, G. (2006). Numerical Simulation of Turbulent Airflow and Particle Deposition in Human Upper Oral Airway. FEDSM2006-98309, ASME Second Joint U.S.–European Fluids Engineering Summer Meeting, Miami, FL.Google Scholar
  274. 274.
    274. Zamankhan, P., Ahmadi, G., Wang, Z., Hopke, P.K., Su, W.-C., Cheng, Y.-S., and Leonard, D., (2006). Airflow and Deposition of Nano-Particles in Human Nasal Cavity. Aerosol Sci. Technol., Vol. 40, pp. 463–476.CrossRefGoogle Scholar
  275. 275.
    275. Zhang, H. and Ahmadi, G. (2000). Aerosol Particle Transport and Deposition in Vertical and Horizontal Turbulent Duct Flows. J. Fluid Mech., Vol. 406, pp. 55–80.CrossRefGoogle Scholar
  276. 276.
    276. Zhang, H., Ahmadi, G., Fan, F.-G., and McLaughlin, J.B. (2001a). Ellipsoidal Particles Transport and Deposition in Turbulent Channel Flows. Int. J. Multiphase Flows, Vol. 27, pp. 971–1009.CrossRefGoogle Scholar
  277. 277.
    277. Zhang, Z. and Kleinstreuer, C. (2002). Modeling of Low Reynolds Number Turbulent Flows in Locally Constricted Conduits: A Comparison Study. AIAA J., Vol. 41, pp. 831–840.CrossRefGoogle Scholar
  278. 278.
    278. Zhang, Z. and Kleinstreuer, C. (2004). Airflow Structures and Nano-Particle Deposition in a Human Upper Airway Model. J. Comput. Phys., Vol. 198, pp. 178–210.CrossRefGoogle Scholar
  279. 279.
    279. Zhang, Z., Kleinstreuer, C., and Kim, C.S. (2001b). Flow Structure and Particle Transport in a Triple Bifurcation Airway Model. J. Fluid Eng. Trans. ASME, Vol. 123, pp. 320–330.CrossRefGoogle Scholar
  280. 280.
    280. Zhang, Z., Kleinstreuer, C., and Kim, C.S. (2002). Micro-Particle Transport and Deposition in a Human Oral Airway Model. J. Aerosol Sci., Vol. 33, pp. 1635–1652.CrossRefGoogle Scholar
  281. 281.
    281. Zhang, Z., Kleinstreuer, C., Donohue, J.F., and Kim, C.S. (2005). Comparison of Micro- and Nano-Size Particle Depositions in a Human Upper Airway Model. J Aerosol Sci., Vol. 36, pp. 211–233.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical and Aeronautical EngineeringClarkson UniversityPotsdamUSA
  2. 2.Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations