Advertisement

Colloids as Light Scattering and Emission Markers for Analysis of Blood

  • Olavi Siiman
Chapter

Introduction

Topics in this review are focused on the author’s specific interests in particle probes for flow cytometry/cell sorting. Five different classes of bead probes for flow cytometric analyses are surveyed. Two of the five classes—light scatter and fluorescence emission/light scatter bead probes— have the longest history of use, and one, the fluorescent beads, is enjoying a renaissance as reagents in multiplex flow analyses. Surface plasmon resonance/light scatter probes have yet to find their niche; however, activity in this area has expanded lately. The relatively new field of luminescence emission/light scatter probes is experiencing growing pains as methods of stabilizing the high emission intensities of highly reactive, semiconductor nanoparticles are perfected. Finally, the future is wide open for expansion into the field of enhanced Raman/light scatter probes. This would add another dimension to flow cytometry, which has not experienced a major modification since the...

Keywords

Light Scatter Surface Plasmon Resonance Band Semiconductor Nanoparticles CdSe Nanoparticles Sheath Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The author is thankful to Shuming Nie (Emory University/Georgia Institute of Technology) for his hospitality on a visit to Emory University to perform micro-Raman measurements, and for providing a copy of an article prior to publication and other clarifications, to Douglas Stuart (Emory University) for help with the Raman measurements, to Jorge Quintana (Beckman Coulter, Inc.) for providing powerpoint slides of his presentation on Flow-Cal beads, and to John Maples (Beckman Coulter, Inc.) for his photographs of a Wright’s stain of a blood sample that had been incubated with CD4 antibody–PS latex beads.

References

  1. 1.
    1. Howard M. Shapiro, Practical Flow Cytometry, 4th edn., Wiley-Liss, New York, NY, 2003.CrossRefGoogle Scholar
  2. 2.
    Diagnostic Applications of Latex Technology: Theory and Practice, sponsored by Bangs Laboratories, Inc., and Emerald Diagnostics, Inc., May 19–21, 1999, Indianapolis, IN.Google Scholar
  3. 3.
    The Latex Course™ 2002—Designing Microsphere-Based Tests and Assays, Bangs Laboratories, Inc., June 10–12, 2002, Indianapolis, IN.Google Scholar
  4. 4.
    4. L. J. Kricka and P. Fortina, Clin. Chem. 47 (2001) 1479; 48 (2002) 662; 48 (2002) 1620.Google Scholar
  5. 5.
    5. M. J. Fulwyler, J. D. Perrings, and L. S. Cram, Rev. Sci. Instrum. 44 (1973) 204.CrossRefGoogle Scholar
  6. 6.
    M. J. Fulwyler, British Patent No. 1,561,042 (1976).Google Scholar
  7. 7.
    7. P. K. Horan and L. L. Wheeless, Jr., Science 198 (1977) 149.CrossRefGoogle Scholar
  8. 8.
    Thomas M. McHugh and Mack J. Fulwyler, in Clinical Flow Cytometry, Principles and Application, K. D. Bauer, R. E. Duque, and T. V. Shankey, eds., Williams & Wilkins, Baltimore, MD, 1993, Chap. 32, p. 535.Google Scholar
  9. 9.
    K. H. Kortright, W. H. Coulter, C. Rodriguez, T. Russell, and R. Paul, U.S. Patent No. 5,223,398 (Jun 29, 1993).Google Scholar
  10. 10.
    T. Russell, K. H. Kortright, W. H. Coulter, C. M. Rodriguez, R. Paul, C. M. Hajek, and J. C. Hudson, U.S. Patent No. 5,231,005 (Jul 27, 1993).Google Scholar
  11. 11.
    T. Russell, C. M. Hajek, C. M. Rodriguez, and W. H. Coulter, U.S. Patent No. 5,260,192 (Nov 9, 1993).Google Scholar
  12. 12.
    K. H. Kortright, W. H. Coulter, C. Rodriguez, T. Russell, and R. Paul, U.S. Patent No. 5,464,752 (Nov 7, 1995).Google Scholar
  13. 13.
    13. J. C. Hudson, R. F. Brunhouse, C. Garrison, C. M. Rodriguez, R. Zwerner, and T. R. Russell, Cytometry 22 (1995) 150.CrossRefPubMedGoogle Scholar
  14. 14.
    O. Siiman, A. Burshteyn, and R. K. Gupta, U.S. Patent No. 5,169,754 (Dec 8, 1992).Google Scholar
  15. 15.
    O. Siiman, A. Burshteyn, and R. K. Gupta, U.S. Patent No. 5,466,609 (Nov 14, 1995).Google Scholar
  16. 16.
    O. Siiman, A. Burshteyn, and R. K. Gupta, U.S. Patent No. 5,639,620 (Jun 17, 1997).Google Scholar
  17. 17.
    O. Siiman, A. Burshteyn, and R. K. Gupta, U.S. Patent No. 5,707,877 (Jan 13, 1998).Google Scholar
  18. 18.
    O. Siiman, A. Burshteyn, and R. K. Gupta, U.S. Patent No. 5,776,706 (Jul 7, 1998).Google Scholar
  19. 19.
    19. O. Siiman, A. Burshteyn, and M. E. Insausti, J. Colloid Interface Sci. 234 (2001) 44.CrossRefPubMedGoogle Scholar
  20. 20.
    20. O. Siiman and A. Burshteyn, Cytometry 40 (2000) 316.CrossRefGoogle Scholar
  21. 21.
    O. Siiman, A. Burshteyn, O. Concepcion, and M. Forman, U.S. Patent No. 5,814,468 (Sep 29, 1998).Google Scholar
  22. 22.
    O. Siiman and A. Burshteyn, U.S. Patent No. 5,062,991 (Nov 5, 1991).Google Scholar
  23. 23.
    23. O. Siiman, J. Wilkinson, A. Burshteyn, P. Roth, and S. Ledis, Bioconjugate Chem. 10 (1999) 1090.CrossRefGoogle Scholar
  24. 24.
    24. C. Liu, B. Zou, A. J. Rondinone, and Z. J. Zhang, J. Phys. Chem. 104 (2000) 1141.CrossRefGoogle Scholar
  25. 25.
    25. Z. J. Zhang, Z. L. Wang, B. C. Chakoumakos, and J. S. Yin, J. Am. Chem. Soc. 120 (1998) 1800.CrossRefGoogle Scholar
  26. 26.
    J. A. Maples, R. H. Raynor, O. Siiman, M. J. Stiglitz, S. F. Healy, Jr., U.S. Patent No. 5,763,204 (Jun 9, 1998) and U.S. Patent No. 5,342,754 (Aug 30, 1994).Google Scholar
  27. 27.
    27. R. J. Schmittling, O. Siiman, N. Kenyon, and W. Bolton, Ann. NY Acad. Sci. 677 (1993) 447.CrossRefPubMedGoogle Scholar
  28. 28.
    28. N. S. Kenyon, R. J. Schmittling, O. Siiman, A. Burshteyn, and W. E. Bolton, Cytometry 16 (1994) 175.CrossRefPubMedGoogle Scholar
  29. 29.
    W. H. Coulter, R. K. Zwerner, R. J. Schmittling, and T. R. Russell, U.S. Patent No. 5,576,185 (Nov 19, 1996).Google Scholar
  30. 30.
    30. O. Siiman, A. Burshteyn, J. A. Maples, and J. K. Whitesell, Bioconjugate Chem. 11 (2000) 549.CrossRefGoogle Scholar
  31. 31.
    31. J. K. Whitesell and H. K. Chang, Science 261 (1993) 73.CrossRefGoogle Scholar
  32. 32.
    32. R.-M. Bohmer and N. J. C. King, Cytometry 5 (1984) 543.CrossRefGoogle Scholar
  33. 33.
    33. R. Festin, B. Bjorklund, and T. H. Totterman, J. Immunol. Methods 101 (1987) 23.CrossRefPubMedGoogle Scholar
  34. 34.
    34. Thomas H. Totterman and Roger Festin, in Colloidal Gold: Principles, Methods and Applications, Vol. 2, M. A. Hayat, ed., Academic Press, San Diego, 1989, Chap. 22, p. 431.Google Scholar
  35. 35.
    35. C. Neagu, K. O. van der Werf, C. A. J. Putman, Y. M. Kraan, B. G. de Grooth, N. F. van Hulst, and J. Greve, J. Struct. Biol. 112 (1994) 32.CrossRefPubMedGoogle Scholar
  36. 36.
    O. Siiman, A. Burshteyn, and M. Cayer, U.S. Patent No. 5,552,086 (Sep 3, 1996).Google Scholar
  37. 37.
    O. Siiman, K. Gordon, C. M. Rodriguez, A. Burshteyn, J. A. Maples, and J. K. Whitesell, U.S. Patent No. 5,945,293 (Aug 31, 1999).Google Scholar
  38. 38.
    38. O. Siiman and A. Burshteyn, J. Phys. Chem. B 42 (2000) 9795.CrossRefGoogle Scholar
  39. 39.
    39. O. Siiman, K. Gordon, A. Burshteyn, J. A. Maples, and J. K. Whitesell, Cytometry 41 (2000) 298.CrossRefPubMedGoogle Scholar
  40. 40.
    40. Max Born and Emil Wulf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn., Cambridge University Press, Cambridge, 1999.Google Scholar
  41. 41.
    41. Julius Adams Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941.Google Scholar
  42. 42.
    42. Craig F. Bohren and Donald F. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-Interscience, New York, 1983.Google Scholar
  43. 43.
    43. S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, Science 294 (2001) 137.CrossRefPubMedGoogle Scholar
  44. 44.
    44. I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, Jr., D. Gupta, P. A. Raju, M. J. Natan, and R. G. Freeman, Anal. Chem. 74 (2002) 2240.CrossRefPubMedGoogle Scholar
  45. 45.
    45. J. Yguerabide and E. E. Yguerabide, Anal. Biochem. 262 (1998) 157.CrossRefGoogle Scholar
  46. 46.
    J. Yguerabide, E. E. Yguerabide, D. E. Kohne, and J. T. Jackson, U.S. Patent No. 6,214,560 B1 (Apr 10, 2001).Google Scholar
  47. 47.
    47. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, J. Phys. Chem. B 103 (1999) 3854.CrossRefGoogle Scholar
  48. 48.
    48. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104 (2000) 10549.CrossRefGoogle Scholar
  49. 49.
    49. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105 (2001) 5599.CrossRefGoogle Scholar
  50. 50.
    50. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, J. Phys. Chem. B 107 (2003) 7337.CrossRefGoogle Scholar
  51. 51.
    51. J. T. Krug, II, G. D. Wang, S. R. Emory, and S. Nie, J. Am. Chem. Soc. 121 (1999) 9208.CrossRefGoogle Scholar
  52. 52.
    R. J. Fulton, U.S. Patent No. 5,736,330 (Apr 7, 1998).Google Scholar
  53. 53.
    V. S. Chandler, R. J. Fulton, and M. B. Chandler, U.S. Patent No. 5,981,180 (Nov 9, 1999).Google Scholar
  54. 54.
    M. B. Chandler and D. J. Chandler, U.S. Patent No. 6,268,222 B1 (Jul 31, 2001).Google Scholar
  55. 55.
    D. J. Chandler, B. A. Lambert, J. J. Reber, and S. L. Phipps, U.S. Patent No. 6,514,295 B1 (Feb 4, 2003).Google Scholar
  56. 56.
    D. J. Chandler, U.S. Patent No. 6,528,165 B2 (Mar 4, 2003).Google Scholar
  57. 57.
    57. R. Fulton, R. McDade, P. Smith, L. Kienker, and J. Kettman, Jr., Clin. Chem. 43 (1997) 1749.PubMedGoogle Scholar
  58. 58.
    58. C. Camilla, J. P. Defoort, M. Delaage, R. Auer, J. Quintana, T. Lary, R. Hamelik, S. Prato, B. Casano, M. Martin, and V. Fert, Cytometry Suppl. 8 (1998) 132.Google Scholar
  59. 59.
    59. R. Carson and D. Vignali, J. Immunol. Methods 227 (1999) 41.CrossRefGoogle Scholar
  60. 60.
    60. K. L. Kellar, R. R. Kalwar, K. A. Dubois, D. Crouse, W. D. Chafin, and B.-E. Kane, Cytometry 45 (2001) 27.CrossRefPubMedGoogle Scholar
  61. 61.
    61. M. C. Earley, R. F. Vogt, Jr., H. M. Shapiro, F. F. Mandy, K. L. Kellar, R. Bellisario, K. A. Pass, G. E. Marti, C. C. Stewart, and W. H. Hannon, Cytometry 50 (2002) 239.CrossRefPubMedGoogle Scholar
  62. 62.
    62. I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Ganan-Calvo, Science 295 (2002) 1695.CrossRefPubMedGoogle Scholar
  63. 63.
    63. I. Tsagkatakis, S. Peper, and E. Bakker, Anal. Chem. 73 (2001) 315.CrossRefPubMedGoogle Scholar
  64. 64.
    64. I. Tsagkatakis, S. Peper, R. Retter, M. Bell, and E. Bakker, Anal. Chem. 73 (2001) 6083.CrossRefPubMedGoogle Scholar
  65. 65.
    65. M. Telting-Diaz and E. Bakker, Anal. Chem. 74 (2002) 5251.CrossRefGoogle Scholar
  66. 66.
    66. R. Retter, S. Peper, M. Bell, I. Tsagkatakis, and E. Bakker, Anal. Chem. 74 (2002) 5420.CrossRefPubMedGoogle Scholar
  67. 67.
    J. Quintana, presented at CD38 Quantitation Conference, Francis F. Mandy, org., National Laboratory for HIV Immunology, Health Canada, Ottawa, Canada, November 1997.Google Scholar
  68. 68.
    68. T. Lindmo, O. Bormer, J. Ugelstad, and K. Nustad, J. Immunol. Methods 126 (1990) 183.CrossRefPubMedGoogle Scholar
  69. 69.
    69. J. Frengen, R. Schmid, B. Kierulf, K. Nustad, E. Paus, A. Berge, and T. Lindmo, Clin. Chem. 39 (1993) 2174.PubMedGoogle Scholar
  70. 70.
    70. J. Frengen, T. Lindmo, E. Paus, R. Schmid, and K. Nustad, J. Immunol. Methods 178 (1995) 141.CrossRefPubMedGoogle Scholar
  71. 71.
    71. J. Frengen, K. Nustad, R. Schmid, and T. Lindmo, J. Immunol. Methods 178 (1995) 131.CrossRefPubMedGoogle Scholar
  72. 72.
    J. Frengen, T. Lindmo, R. Schmid, J. Ugelstad, 70th Colloid and Surface Science Symposium, American Chemical Society, Clarkson University, June 16–19, 1996.Google Scholar
  73. 73.
    M. L. Bell, U.S. Patent No. 6,551,788 (April 22, 2003).Google Scholar
  74. 74.
    74. L. E. M. Miles, D. A. Lipschitz, C. P. Bieber, and J. D. Cook, Anal. Biochem. 61 (1974) 209.CrossRefPubMedGoogle Scholar
  75. 75.
    75. M. Bele, O. Siiman, and E. Matijevic, Cytometry Suppl. 11 (2002) 128.Google Scholar
  76. 76.
    76. M. Bele, O. Siiman, and E. Matijevic, J. Colloid Interface Sci. 254 (2002) 274.CrossRefPubMedGoogle Scholar
  77. 77.
    77. J. P. Nolan and F. F. Mandy, Cell. Mol. Biol. 47 (2001) 1241.Google Scholar
  78. 78.
    78. A. Goodey, J. J. Lavigne, S. M. Savoy, M. D. Rodriguez, T. Curey, A. Tsao, G., Simmons, J. Wright, S.-J. Yoo, Y. Sohn, E. V. Anslyn, J. B. Shear, D. P. Neikirk, and J. T. McDevitt, J. Am. Chem. Soc. 123 (2001) 2559.CrossRefPubMedGoogle Scholar
  79. 79.
    79. J. P. Nolan and L. A. Sklar, Trends in Biotechnology 20 (2002) 9.CrossRefGoogle Scholar
  80. 80.
    E. Willis, S. Allauzen, and S. Vlasenko, BioRadiations 111 (2003) 30, and other reports and articles in same issue on the Bio-Plex system, as distributed by Bio-Rad Laboratories, Inc., Hercules, CA 94547.Google Scholar
  81. 81.
    O. Siiman, C. Smith, P. Roth, A. Burshteyn, and R. Raynor, U. S. Patent No. 5,891,741 (Apr 6, 1999).Google Scholar
  82. 82.
    O. Siiman, A. Burshteyn, J. Wilkinson, and R. Mylvaganam, U. S. Patent No. 5,994,089 (Nov 30, 1999).Google Scholar
  83. 83.
    O. Siiman, A. Burshteyn, R. Mylvaganam, R. Raynor, P. Roth, C. Smith, and J. Wilkinson, U. S. Patent No. 6,387,622 (May 14, 2002).Google Scholar
  84. 84.
    S. Ledis, C. Healy, and O. Siiman, U.S. Patent application filed (Aug 1, 2003).Google Scholar
  85. 85.
    85. C. Smith, J. Wilkinson, P. Roth, and O. Siiman, Cytometry Suppl. 9 (1998) 56.Google Scholar
  86. 86.
    86. R. Mylvaganam, J. Wilkinson, C. Healy, W. Bolton, and O. Siiman, Cytometry Suppl. 9 (1998) 117.Google Scholar
  87. 87.
    87. O. Siiman, A. Burshteyn, O. Concepcion, and M. Forman, Cytometry 44 (2001) 30.CrossRefPubMedGoogle Scholar
  88. 88.
    O. Siiman, U.S. Patent Application Pub. No. US 2002/0142289 A1 published (Oct 3, 2002).Google Scholar
  89. 89.
    Ed Harlow and David Lane, Antibodies – A Laboratory Manual, Cold Spring Harbor Laboratory, 1988, Chap. 14.Google Scholar
  90. 90.
    90. T. W. J. Huizinga, M. de Haas, M. Kleijer, J. H. Nuijens, D. Roos, and A. E. G. Kr. von dem Borne, J. Clin. Invest. 86 (1990) 416.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    91. T. W. J. Huizinga, R. W. A. M. Kuijpers, M. Kleijer, T. W. J. Schulpen, H. T. M. Cuypers, D. Roos, and A. E. G. Kr. von dem Borne, Blood 76 (1990) 1927.PubMedGoogle Scholar
  92. 92.
    92. H. B. Fleit, C. D. Kobasiuk, C. Daly, R. Furie, P. C. Levy, and R. O. Webster, Blood 79 (1992) 2721.PubMedGoogle Scholar
  93. 93.
    93. P. Antal-Szalmas, I. Szollosi, G. Lakos, E. Kiss, I. Csipo, A. Sumegi, S. Sipka, J. A. G. van Strijp, K. P. M. van Kessel, and G. Szegedi, Cytometry 45 (2001) 115.CrossRefPubMedGoogle Scholar
  94. 94.
    94. S. Delaire, A. Elhabazi, A. Bensussan, and L. Boumsell, Cell. Mol. Life Sci. 54 (1998) 1265.CrossRefPubMedGoogle Scholar
  95. 95.
    95. A. Elhabazi, S. Delaire, A. Bensussan, L. Boumsell, and G. Bismuth, J. Immunol. 166 (2001) 4341.CrossRefPubMedGoogle Scholar
  96. 96.
    96. S. Delaire, C. Billard, R. Tordjman, A. Chedotal, A. Elhabazi, A. Bensussan, and L. Boumsell, J. Immunol. 166 (2001) 4348.CrossRefPubMedGoogle Scholar
  97. 97.
    97. X. Wang, A. Kumanogoh, C. Watanabe, W. Shi, K. Yoshida, and H. Kikutani, Blood 97 (2001) 3498.CrossRefPubMedGoogle Scholar
  98. 98.
    98. A. Elhabazi, A. Marie-Cardine, I. Chabbert-de Ponnat, A. Bensussan, and L. Boumsell, Crit. Rev. Immunol. 23 (2003) 65.CrossRefPubMedGoogle Scholar
  99. 99.
    99. A. N. Barclay, M. H. Brown, S. K. A. Law, A. J. McKnight, M. G. Tomlinson, and P. A. van der Merwe, The leukocyte antigen facts book, 2nd edn., Academic Press, San Diego, 1997, Sect. II, pp. 132–593.Google Scholar
  100. 100.
    100. N. Stahl, D. R. Borchelt, K. Hsaio, and S. B. Prusiner, Cell 51 (1987) 229.CrossRefPubMedGoogle Scholar
  101. 101.
    101. M. A. J. Ferguson, J. Cell Sci. 112 (1999) 2799.PubMedGoogle Scholar
  102. 102.
    102. A. P. Alivisatos, Scientific American 285 (2001) 66.CrossRefPubMedGoogle Scholar
  103. 103.
    103. H. Mattoussi, J. Am. Chem. Soc. 122 (2000) 12142.CrossRefGoogle Scholar
  104. 104.
    104. S. Empedocles and M. Bawendi, Acc. Chem. Res. 32 (1999) 389.CrossRefGoogle Scholar
  105. 105.
    105. M. Nirmal and L. Brus, Acc. Chem. Res. 32 (1999) 407.CrossRefGoogle Scholar
  106. 106.
    106. L. E. Brus and J. K. Trautman, Phil. Trans. R. Soc. Lond. 353A (1995) 313.CrossRefGoogle Scholar
  107. 107.
    107. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc. 119 (1997) 7019.CrossRefGoogle Scholar
  108. 108.
    108. J. W. Linnett, Wave Mechanics and Valency, Wiley, New York, NY, 1960, Chap. II.Google Scholar
  109. 109.
    Christopher B. Murray, Synthesis and Characterization of II–VI Quantum Dots and Their Assembly into 3D Quantum Dot Superlattices, Ph. D. thesis, Massachusetts Institute of Technology (Sep 1995).Google Scholar
  110. 110.
    110. P. E. Lippens and M. Lannoo, Phys. Rev. B 39 (1989) 10935.CrossRefGoogle Scholar
  111. 111.
    111. L. Spanhel, M. Haase, H. Weller, and A. Henglein, J. Am. Chem. Soc. 109 (1987) 5649.CrossRefGoogle Scholar
  112. 112.
    112. Ch.-H. Fischer, J. Lilie, H. Weller, L. Katsikas, and A. Henglein, Ber. Bunsenges. Phys. Chem. 93 (1989) 61.CrossRefGoogle Scholar
  113. 113.
    A. Henglein, 70th Colloid and Surface Science Symposium, American Chemical Society, Clarkson University, June 16–19, 1996.Google Scholar
  114. 114.
    114. L. Qu and X. Peng, J. Am. Chem. Soc. 124 (2002) 2049.CrossRefGoogle Scholar
  115. 115.
    115. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science 281 (1998) 2013.CrossRefPubMedGoogle Scholar
  116. 116.
    116. W. C. W. Chan and S. Nie, Science 281 (1998) 2016.CrossRefGoogle Scholar
  117. 117.
    117. M. E. Ackerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, Proc. Natl. Acad. Sci. USA 99 (2002) 12617.CrossRefGoogle Scholar
  118. 118.
    118. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, Nature Biotechnol. 21 (2003) 41.CrossRefGoogle Scholar
  119. 119.
    119. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, Nature Biotechnol. 21 (2003) 47.CrossRefGoogle Scholar
  120. 120.
    120. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, Science 300 (2003) 1434.CrossRefPubMedGoogle Scholar
  121. 121.
    121. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, Science 298 (2002) 1759.CrossRefPubMedGoogle Scholar
  122. 122.
    122. A. Watson, X. Wu, and M. Bruchez, BioTechniques 34 (2003) 296.CrossRefPubMedGoogle Scholar
  123. 123.
    123. T. M. Jovin, Nature Biotechnol. 21 (2003) 32.CrossRefGoogle Scholar
  124. 124.
    See, for example, their website at www.qdots.com and their newsletter article, K. Barovsky, Intellectual Property: Illuminating the Path to Licensing Compliance, Quantum Dot eVision, May 19, 2003.Google Scholar
  125. 125.
    125. M. Han, X. Gao, J. Z. Su, and S. Nie, Nature Biotechnol. 19 (2001) 631.CrossRefGoogle Scholar
  126. 126.
    126. W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, Curr. Opinion Biotech. 13 (2002) 40.CrossRefGoogle Scholar
  127. 127.
    127. H. Xu, M.Y. Sha, E. Y.Wong, J. Uphoff, Y. Xu, J. A. Treadway, A. Truong, E. O’Brien, S. Asquith, M. Stubbins, N. K. Spurr, E. H. Lai, and W. Mahoney, Nucleic Acids Res. 31 (2003) e43.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    128. I. Sondi, O. Siiman, S. Koester, and E. Matijevic, Langmuir 16 (2000) 3107.CrossRefGoogle Scholar
  129. 129.
    129. W. Hyun, R. H. Daniels, C. Z. Hotz, and M. Bruchez, Cytometry Suppl. 10 (2000) 182.Google Scholar
  130. 130.
    O. Siiman, unpublished results.Google Scholar
  131. 131.
    131. N. N. Mamedova, N. A. Kotov, A. L. Rogach, and J. Studer, NanoLetters 1 (2001) 281.CrossRefGoogle Scholar
  132. 132.
    132. D. M. Willard, L. L. Carillo, J. Jung, and A. van Orden, NanoLetters 1 (2001) 469.CrossRefGoogle Scholar
  133. 133.
    133. S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, NanoLetters 2 (2002) 817.CrossRefGoogle Scholar
  134. 134.
    134. D. L. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. 84 (1977) 1.CrossRefGoogle Scholar
  135. 135.
    135. J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, J. Chem. Soc., Faraday Trans. 2 75 (1979) 790.CrossRefGoogle Scholar
  136. 136.
    136. O. Siiman and W. P. Hsu, J. Chem. Soc., Faraday Trans. 1 82 (1986) 851.CrossRefGoogle Scholar
  137. 137.
    137. M. Faraday, Philos. Trans. Roy. Soc. London 147 (1857/58) 145.Google Scholar
  138. 138.
    138. M. Kerker, J. Colloid Interface Sci. 112 (1986) 302.CrossRefGoogle Scholar
  139. 139.
    139. M. Kerker, Proc. Roy. Inst. London 61 (1989) 229.Google Scholar
  140. 140.
    John M. Thomas, Michael Faraday and the Royal Institute (The Genius of Man and Place), Adam Hilger (IOP Publishing Ltd.), Bristol, England, 1991, p. 81.Google Scholar
  141. 141.
    141. M. Kerker, Cytometry 4 (1983) 1.CrossRefPubMedGoogle Scholar
  142. 142.
    142. Y.-W. C. Cao, R. Jin, and C. A. Mirkin, Science 297 (2002) 1536.CrossRefGoogle Scholar
  143. 143.
    143. S. Nie and S. R. Emory, Science 275 (1997) 1102.CrossRefGoogle Scholar
  144. 144.
    144. Z. Wang, S. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, Proc. Natl. Acad. Sci. USA 100 (2003) 8638.CrossRefPubMedGoogle Scholar
  145. 145.
    145. H. Feilchenfeld and O. Siiman, J. Phys. Chem. 90 (1986) 4590.CrossRefGoogle Scholar
  146. 146.
    146. O. Siiman and H. Feilchenfeld, J. Phys. Chem. 92 (1988) 453.CrossRefGoogle Scholar
  147. 147.
    147. G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, Nature 347 (1990) 301.CrossRefPubMedGoogle Scholar
  148. 148.
    148. G. J. Puppels, H. S. P. Garritsen, G. M. J. Segers-Nolten, F. F. M. de Mul, and J. Greve, Biophys. J. 60 (1991) 1046.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    149. G. J. Puppels, H. S. P. Garritsen, J. A. Kummer, and J. Greve, Cytometry 14 (1993) 251.CrossRefPubMedGoogle Scholar
  150. 150.
    150. Michel Manfait and Igor Nabiev, Applications in Medicine, in Raman Microscopy Developments and Applications, G. Turrell and J. Corset, eds., Academic Press Ltd., London, UK, 1996, Chap. 9, p. 379.Google Scholar
  151. 151.
    151. T. Vo-Dinh, L. R. Allain, and D. L. Stokes, J. Raman Spectrosc. 33 (2002) 511.CrossRefGoogle Scholar
  152. 152.
    Intel and Fred Hutchinson Cancer Research Center to Explore the Use of Nanotechnology Tools for Early Disease Detection, News Release, Stanford, CA, Oct 23, 2003, as posted on website www.fhcrc.org.Google Scholar
  153. 153.
    W. E. Doering and S. Nie, Anal.Chem., web release date: 03 Oct 2003; DOI: 10.1021/ac034672u.CrossRefPubMedGoogle Scholar
  154. 154.
    154. S. P. Mulvaney, M. D. Musick, C. D. Keating, and M. J. Natan, Langmuir 19 (2003) 4784.CrossRefGoogle Scholar
  155. 155.
    155. P. Hildebrandt and M. Stockburger, J. Phys. Chem. 88 (1984) 5935.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.DavieUSA

Personalised recommendations