Genomics of Disease pp 25-40

Part of the Stadler Genetics Symposia Series book series (SGSS)

| Cite as

Xanthomonas oryzae pv. oryzae AvrXA21 Activity Is Dependent on a Type One Secretion System, Is Regulated by a Two-Component Regulatory System that Responds to Cell Population Density, and Is Conserved in Other Xanthomonas spp.

  • Sang-Won Lee
  • Sang-Wook Han
  • Laura E. Bartley
  • Pamela C. Ronald

Abstract

The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae (Xoo) strains expressing the pathogen-associated molecule, AvrXA21. XA21 codes for a receptor-like kinase consisting of an extracellular leucine rich repeat (LRR) domain, a transmembrane domain, and a cytoplasmic kinase domain (Ronald et al., 1992; Song et al., 1995). We show that AvrXA21 activity requires the presence of rax (required for AvrXA21) A, raxB, and raxC genes that encode components of a type one secretion system (TOSS). In contrast, an hrpC- strain deficient in type three secretion maintains AvrXA21 activity. Xanthomonas campestris pv. campestris (Xcc) can express AvrXA21 activity if raxST, encoding a putative sulfotransferase, and raxA are provided in trans. Expression of rax genes is dependent on population density and other functioning rax genes, suggesting that AvrXA21 is involved in quorum sensing and that the AvrXA21 pathogen-associated molecule represents an entirely new class of Gramnegative bacterial signaling molecules. We discuss the implications of these results for models of plant innate immunity.

Here, we provide a brief overview of some of the major concepts and molecular features of plant and animal innate immune system perception. We then describe new results from our studies of the XA21–AvrXA21 interaction and discuss how these results call for some modifications in the way we think about plant innate immunity strategies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausubel, F.M., 2005, Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6:973–979.PubMedCrossRefGoogle Scholar
  2. Barton, G.M., and Medzhitov, R., 2003, Toll-like receptor signaling pathways, Science 300: 1524–1525.PubMedCrossRefGoogle Scholar
  3. Bowman, K.G., and Bertozzi, C.R., 1999, Carbohydrate sulfotransferases: mediators of extracellular communication, Chem. Biol. 6:R9.PubMedCrossRefGoogle Scholar
  4. Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B., and Kleinhofs, A., 2002, The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases, Proc. Nat. Acad. Sci. USA 99:9328–9333.PubMedCrossRefGoogle Scholar
  5. Brunner, F., Rosahl, S., Lee, J., Rudd, J. J., Geiler, C., Kauppinen, S., Rasmussen, G., Scheel, D., and Nuernberger, T., 2002, Pep-13, a plant defence-inducing pathogen-associated pattern from Phytophthora transglutaminases, EMBO 21:6681–6688.CrossRefGoogle Scholar
  6. Burdman, S., Shen, Y., Lee, S.-W., Xue, Q., and Ronald, P., 2004, RaxH/RaxR: A Two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity, MPMI 17:602–612.PubMedGoogle Scholar
  7. Charles, T.C., Jin, S., and Nester, E.W., 1992, Two-component sensory transduction systems in phytobacteria, Ann. Rev. Phytopath. 30:463–484.CrossRefGoogle Scholar
  8. Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., Liu, G., Xu, J., Ling, Z., Cao, G., Ma, B., Wang, Y., Zhao, X., Li, S., and Zhu, L., 2006, A B-lectin receptor kinase gene conferring rice blast resistance, Plant J. 46:794–804.PubMedCrossRefGoogle Scholar
  9. Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G., 2006, The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception, Plant Cell 18:465–476.PubMedCrossRefGoogle Scholar
  10. Chisholm, S. T., Coaker, G., Day, B., and Staskawicz, B.J., 2006, Host-microbe interactions: shaping the evolution of the plant immune response, Cell 124:803–814.PubMedCrossRefGoogle Scholar
  11. Dangl, J.L., and Jones, J.D.G., 2001, Plant pathogens and integrated defence responses to infection, Nature 411:826.PubMedCrossRefGoogle Scholar
  12. Dardick, C., and Ronald, P., 2006, Plant and animal pathogen recognition receptors signal through non-RD kinases, PLoS Pathog 2:e2.PubMedCrossRefGoogle Scholar
  13. Dodds, P.N., Lawrence, G.J., Catanzariti, A.M., Teh, T., Wang, C.I., Ayliffe, M.A., Kobe, B., and Ellis, J.G., 2006, Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes, Proc. Nat. Acad. Sci. USA 103:8888–8893.PubMedCrossRefGoogle Scholar
  14. Erbs, G., and Newman, M.-A., 2003, The role of lipololysaccharides in induction of plant defence responses, Mol. Plant Path. 4:421–425.CrossRefGoogle Scholar
  15. Fuqua, W.C., Winans, S.C., and Greenberg, E.P., 1994, Quorum sensing in bacteria: the LuxR-Lux1 family of cell density-responsive transcriptional regulators, J. Bacteriol. 176:269–275.PubMedGoogle Scholar
  16. Felix, G., Duran, J.D., Volko, S., and Boller, T., 1999, Plants have a sensitive perception system for the most conserved domain of bacterial flagellin, Plant J. 18:265–279.PubMedCrossRefGoogle Scholar
  17. Flor, H.H., 1971, Current status of the gene for gene concept. Ann. Rev. Phytopath. 9:275–296.CrossRefGoogle Scholar
  18. Girardin, S.E., Sansonetti, P.J., and Philpott, D.J., 2002, Intracellular vs. extracellular recognition of pathogens—common concepts in mammals and flies, Trends Microbiol. 10:193–199.PubMedCrossRefGoogle Scholar
  19. Goes da Silva, F., Shen, Y., Dardick, C., Burdman, S., Yadav, R., Sharma, P., and Ronald, P., 2004, Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response, MPMI 17:593–601.Google Scholar
  20. Gomez-Gomez, L., Felix, G., and Boller, T. (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana, Plant J. 18:277–284.PubMedCrossRefGoogle Scholar
  21. Greenberg, J.T., and Yao, N., 2004, The role and regulation of programmed cell death in plant–pathogen interactions, Cell. Microbiol. 6:201–211.PubMedCrossRefGoogle Scholar
  22. Henderson, I.R., Navarro-Garcia, F., Desvaux, M., Fernandez, R.C., and Ala’Aldeen, D., 2004, Type V protein secretion pathway: the autotransporter Story. Microbiol. Mol. Biol. Rev. 68:692–744.PubMedCrossRefGoogle Scholar
  23. Inohara, N., and Nunez, G., 2003, NODs: intracellular proteins involved in inflammation and apoptosis, Nat. Rev. Immunol. 3:371–382.PubMedCrossRefGoogle Scholar
  24. Janeway, C.A., Jr., and Medzhitov, R., 2002, Innate immune recognition, Annu. Rev. Immunol. 20:197–216.PubMedCrossRefGoogle Scholar
  25. Jha, G., Rajeshwari, R., and Sonti, R.V., 2005, Bacterial type two secretion system secreted proteins: double edged swords for plant pathogens, Mol. Plant In. 18:891–898.Google Scholar
  26. Jurk, M., Heil, F., Vollmer, J., Schetter, C., Krieg, A. M., Wagner, H., Lipford, G., and Bauer, S., 2002, Human TLR7 and TLR8 independently confer responsiveness to the antiviral compound R-848, Nat. Immunol. 3:499.PubMedCrossRefGoogle Scholar
  27. Kauffman, H.E., Reddy, A.P.K., Hsieh, S.P.Y., and Merca, S.D., 1973. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae, Plant Dis. Rep. 57:537–541.Google Scholar
  28. Kleerebezem, M., Quadri, L.E., Kuipers, O.P., and de Vos, W.M., 1997, Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol. Microbiol. 24:895–904.PubMedCrossRefGoogle Scholar
  29. Leulier, F., Parquet, C., Pili-Floury, S., Ryu, J.H., Caroff, M., Lee, W. J., Mengin-Lecreulx, D., and Lemaitre, B., 2000, The Drosophila immune system detects bacteria through specific peptidoglycan recognition, Nat. Immunol. 4:478–484.CrossRefGoogle Scholar
  30. Matsubayashi, Y., Ogawa, M., Morita, A., and Sakagami, Y., 2002, An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine, Science 296:1470–1472.PubMedCrossRefGoogle Scholar
  31. McDowell, J.M., and Woffenden, B.J., 2003, Plant defense, one post, multiple guards? Trends Biotechnol. 21:178–183.PubMedCrossRefGoogle Scholar
  32. Medzhitov, R., and Janeway, C.A., Jr., 1997, Innate immunity: the virtues of a nonclonal system of recognition, Cell 91:295–298.PubMedCrossRefGoogle Scholar
  33. Miller, M.B., Skorupski, K., Lenz, D.H., Taylor, R.K., and Bassler, B.L., 2002, Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae, Cell 110:303–314.PubMedCrossRefGoogle Scholar
  34. Mudgett, M.B., 2005, New insights into the function of phytopathogenic bacterial type III effectors in plants, Ann. Rev. Plant Biol. 56:509–531.CrossRefGoogle Scholar
  35. Novick, R.P., and Muir, T.W., 1999, Virulence gene regulation by peptides in staphylococci and other Gram-positive bacteria, Curr. Opin. Microbiol. 2:40–45.PubMedCrossRefGoogle Scholar
  36. Nurnberger, T., Brunner, F., Kemmerling, B., and Piater, L., 2004, Innate immunity in plants and animals: striking similarities and obvious differences, Immunol. Rev. 198:249–266.PubMedCrossRefGoogle Scholar
  37. Ramos, H.C., Rumbo, M., and Sirard, J.C., 2004 Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa, Trends Microbiol. 12:509–517.Google Scholar
  38. Risoen, P.A., Brurberg, M.B., Eijsink, V.G., and Nes, I.F., 2000, Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus, Mol. Microbiol. 37:619–628.PubMedCrossRefGoogle Scholar
  39. Roche, P., Debelle, F., Maillet, F., Lerouge, P., Faucher, C., Truchet, G., Denarie, J., and Prome, J.-C., 1991, Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lip-oligosaccharide signals, Cell 67:1131PubMedCrossRefGoogle Scholar
  40. Ronald, P.C., Albano, B., Tabien, R., Abenes, L., Wu, K.S., McCouch, S., and Tanksley, S.D., 1992, Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa-21, Mol. Gen. Genet. 236:113–120.PubMedGoogle Scholar
  41. Rooney, H.C., Van’t Klooster, J.W., van der Hoorn, R.A., Joosten, M.H., Jones, J.D., and de Wit, P.J., 2005, Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance, Science 308:1783–1786.PubMedCrossRefGoogle Scholar
  42. Shen, Y., Sharma, P., da Silva, F.G., and Ronald, P., 2002, The Xanthomonas oryzae pv. oryzae RaxP and RaxQ genes encode an ATP sulphurylase and adenosine-5’-phosphosulphate kinase that are required for AvrXa21 avirulence activity, Mol. Microbiol. 44:37–48.PubMedCrossRefGoogle Scholar
  43. Shiu, S.H., and Bleecker, A.B., 2003, Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis, Plant Physiol. 132:530–543.PubMedCrossRefGoogle Scholar
  44. Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., et al., 1995, A receptor kinase-like protein encoded by the rice disease resistance gence, Xa-21, Science 270:1804–1806.PubMedCrossRefGoogle Scholar
  45. Staskawicz, B.J., Mudgett, M.B., Dangl, J.L., and Galan, J.E., 2001, Common and contrasting themes of plant and animal diseases, Science 292:2285–2289.PubMedCrossRefGoogle Scholar
  46. Sun, X., Cao, Y., Yang, Z., Xu, C., Li, X., Wang, S., and Zhang, Q., 2004, Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein, Plant J. 37:517–527.PubMedCrossRefGoogle Scholar
  47. Sun, W., Dunning, F.M., Pfund, C., Weingarten, R., and Bent, A.F., 2006, Within-species flagellin polymorphism in Xanthomonas campestris pv. campestris and its impact on elicitation of ArabidopsisFLAGELLIN SENSING2-dependent defense, Plant Cell 18:764–779.PubMedCrossRefGoogle Scholar
  48. Szurek, B., Marois, E., Bonas, U., and Van den Ackerveken, G., 2001, Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper, Plant J. 26:523–534.PubMedCrossRefGoogle Scholar
  49. Taguchi, F., Shimizu, R., Inagaki, Y., Toyoda, K., Shiraishi, T., and Ichinose, Y., 2003, Post-translational modification of flagellin determines the specificity of HR production, Plant Cell Physiol. 44:342–349.PubMedCrossRefGoogle Scholar
  50. Takeuchi, K., Taguchi, F., Inagaki, Y., Toyoda, K., Shiraishi, T., and Ichinose, Y., 2003, Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity, J. Bacteriol. 185:6658–6665.PubMedCrossRefGoogle Scholar
  51. Thomma, B.P., Penninckx, I.A., Broekaert, W.F., and Cammue, B.P., 2001, The complexity of disease signaling in Arabidopsis, Curr. Opin. Immunol. 13:63–68.PubMedCrossRefGoogle Scholar
  52. Teplitski, M., Chen, H., Rajamani, S., Gao, M., Merighi, M., Sayre, R.T., Robinson, J.B., Rolfe, B.G., and Bauer, W.D., 2004, Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria, Plant Physiol. 134:137–146.PubMedCrossRefGoogle Scholar
  53. Tortosa, P., and Dubnau, D., 1999, Competence for transformation: a matter of taste, Curr. Opin. Microbiol. 2:588–592.PubMedCrossRefGoogle Scholar
  54. van’t Slot, K., and Knogge, W,K., 2002, A dual role for microbial pathogen-derived effector proteins in plant disease and resistance, Crit. Rev. Plant Sci. 21:229–271.CrossRefGoogle Scholar
  55. Wagner, V.E., Bushnell, D., Passador, L., Brooks, A.I., and Iglewski, B.H., 2003, Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment, J. Bacteriol. 185:2080–2095.PubMedCrossRefGoogle Scholar
  56. Wang, G.L., Ruan, D.L., Song, W.Y., Sideris, S., Chen, L., Pi, L.Y., Zhang, S., Zhang, Z., Fauquet, C., Gaut, B.S., Whalen, M.C., and Ronald, P.C., 1998, Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution, Plant Cell 10:765–779.PubMedCrossRefGoogle Scholar
  57. Wang, G.L., Song, W.Y., Ruan, D.L., Sideris, S., and Ronald, P.C., 1996, The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants, Mol. Plant Microbe Interact. 9:850–855.PubMedGoogle Scholar
  58. Waters, C.M., and Bassler, B.L., 2005, Quorum sensing: Cell-to cell communication in bacteria, Ann. Rev. Cell Develop. Biol. 21:319–346.CrossRefGoogle Scholar
  59. Werling, D., and Jungi, T.W., 2003, TOLL-like receptors linking innate and adaptive immune response, Vet. Immunol. Immunop. 91:1–12.CrossRefGoogle Scholar
  60. Zhu, W., MaGbanua, M.M., and White, F.F., 2000, Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. Oryzae, J. Bacteriol. 182:1844–1853.PubMedCrossRefGoogle Scholar
  61. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T., 2004, Bacterial disease resistance in Arabidopsis through flagellin perception, Nature 428:764–767.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sang-Won Lee
    • 1
  • Sang-Wook Han
  • Laura E. Bartley
  • Pamela C. Ronald
  1. 1.Department of Plant Pathology, One Shields AvenueUniversity of CaliforniaDavisUSA

Personalised recommendations