In Search of Atropos’ Scissors: Severing the Life-Thread of Plasmodium

  • Marcel DeponteEmail author
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Protozoa of the genus Plasmodium are interesting models to study the mode of cell death of unicellular organisms. It is well known that the malaria-causing parasites can be killed in vitro and that they also die in vivo. The central question is how does cell death occur in Plasmodium? To date, the hypothesis that some stages of malaria parasites are able to undergo a form of programmed cell death is supported by available data, but there is no evidence showing that certain proteins are required for the observed processes. Here we present the current knowledge on Plasmodium metacaspases, because these putative proteases are the most promising candidates that might be essential for the execution of a programmed cell death in malaria parasites.


Programme Cell Death Basic Residue Unicellular Organism Trypanosoma Brucei Plasmodium Berghei 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deponte M, Becker K. Plasmodium falciparum—do killers commit suicide? Trends Parasitol 2004; 20:165–69.PubMedCrossRefGoogle Scholar
  2. 2.
    Hurd H, Carter V. The role of programmed cell death in Plasmodium-mosquito interactions. Int J Parasitol 2004; 34:1459–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Madeo F, Herker E, Wissing S et al. Apoptosis in yeast. Curr Opin Microbiol 2004; 7:655–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Madeo F, Herker E, Maldener C et al. A caspase-related protease regulates apoptosis in yeast. Mol Cell 2002; 9:911–17.PubMedCrossRefGoogle Scholar
  5. 5.
    Uren AG, O’Rourke K, Aravind LA et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 2000; 6:961–67.PubMedGoogle Scholar
  6. 6.
    Mottram JC, Helms MJ, Coombs GH et al. Clan CD cysteine peptidases of parasitic protozoa. Trends Parasitol 2003; 19:182–87.PubMedCrossRefGoogle Scholar
  7. 7.
    Sinden RE, Gilles HM. The malaria parasites. In: Warrell DA, Gilles HM, eds. Essential Malariology, fourth ed. London: Arnold, 2005:8–34.Google Scholar
  8. 8.
    Snow RW, Guerra CA, Noor AM et al. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 2005; 434:214–17.PubMedCrossRefGoogle Scholar
  9. 9.
    Greenwood B, Mutabingwa T. Malaria in 2002. Nature 2002; 415:670–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Wiesner J, Ortmann R, Jomaa H et al. New antimalarial drugs. Angew Chem Int Ed Engl 2003; 42:5274–93.PubMedCrossRefGoogle Scholar
  11. 11.
    Attaran A, Roberts DR, Curtis CF et al. Balancing risks on the backs of the poor. Nat Med 2000; 6:729–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Gardner MJ, Hall N, Fung E et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002; 419:498–511.PubMedCrossRefGoogle Scholar
  13. 13.
    Carlton JM, Angiuoli SV, Suh BB et al. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 2002; 419:512–19.PubMedCrossRefGoogle Scholar
  14. 14.
    Hall N, Karras M, Raine JD et al. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic and proteomic analyses. Science 2005; 307:82–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Bahl A, Brunk B, Coppel RL et al. PlasmoDB: the Plasmodium genome resource. An integrated database providing tools for accessing, analyzing and mapping expression and sequence data (both finished and unfinished). Nucleic Acids Res 2002; 30:87–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Crabb BS, Rug M, Gilberger TW et al. Transfection of the human malaria parasite Plasmodium falciparum. Methods Mol Biol 2004; 270:263–76.PubMedGoogle Scholar
  17. 17.
    Thathy V, Menard R. Gene targeting in Plasmodium berghei. Methods Mol Med 2002; 72:317–31.PubMedGoogle Scholar
  18. 18.
    Nicholson DW. Caspase structure, proteolytic substrates and function during apoptotic cell death. Cell Death Differ 1999; 6:1028–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Vercammen D, van de Cotte B, De Jaeger G et al. Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem. 2004; 279:45329–36.PubMedCrossRefGoogle Scholar
  20. 20.
    Watanabe N, Lam E. Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 2005; 280:14691–99.PubMedCrossRefGoogle Scholar
  21. 21.
    Bozhkov PV, Suarez MF, Filonova LH et al. Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc Natl Acad Sci USA 2005; 102:14463–68.PubMedCrossRefGoogle Scholar
  22. 22.
    Suarez MF, Filonova LH, Smertenko A et al. Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 2004; 14:R339–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Al-Olayan EM, Williams GT, Hurd H. Apoptosis in the malaria protozoan, Plasmodium berghei: a possible mechanism for limiting intensity of infection in the mosquito. Int J Parasitol 2002; 32:1133–43.PubMedCrossRefGoogle Scholar
  24. 24.
    Szallies A, Kubata BK, Duszenko M. A metacaspase of Trypanosoma brucei causes loss of respiration competence and clonal death in the yeast Saccharomyces cerevisiae. FEBS Lett 2002; 517:144–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Singh GP, Chandra BR, Bhattacharya A et al. Hyper-expansion of asparagines correlates with an abundance of proteins with prion-like domains in Plasmodium falciparum. Mol Biochem Parasitol 2004; 137:307–19.PubMedCrossRefGoogle Scholar
  26. 26.
    Riedl SJ, Renatus M, Schwarzenbacher R et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 2001; 104:791–800.PubMedCrossRefGoogle Scholar
  27. 27.
    Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for com-parative protein modeling. Electrophoresis 1997; 18:2714–23.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  1. 1.Adolf Butenandt-Institute for Physiological ChemistryLudwig Maximilians UniversityMunichGermany

Personalised recommendations