Assimilation and Network Design

  • Thomas Kaminski
  • Peter J. Rayner
Part of the Ecological Studies book series (ECOLSTUD, volume 203)

Information on the carbon cycle comes from a variety of sources. The methods described in this chapter provide a formalism for combining this information. Without such a formalism we are left making ad hoc choices about how to improve our understanding in the light of disagreements among various streams of information. The introduction of such methods into carbon cycle research, principally via the atmospheric studies of Enting et al. (1993, 1995), revolutionised the field and laid the groundwork for most of the subsequent investigations.

The present chapter is concerned with quantitative network design, by which we understand the optimisation of a measurement strategy via minimisation of this posterior uncertainty for target quantities of particular interest. Examples of such target quantities are the long-term global mean terrestrial flux to the atmosphere over a period in the past or in the future. The computational tool that transforms the information provided by an observational network of the carbon cycle into an estimate of posterior uncertainty is a Carbon Cycle Data Assimilation System (CCDAS). Hence, network design is closely linked to assimilation both conceptually and computationally. Much of the work reviewed in this chapter lies in a small subset of possible network design applications for the carbon cycle. In particular, it uses a limited set of types of observations. This is not an inherent limitation of the approach but rather a limitation in modelling approaches that can combine many streams of measurements. This is changing now. Hence, much of the chapter looks forward to applications that combine different measurement approaches. It is useful, therefore, to describe the problem in general even if most cited examples are from simpler cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Barrett. Steady state turnover time of carbon in the Australian terrestrial biosphere. Global Biogeochem. Cycles 16(4), 2002. doi:10.1029/2002GB001860.Google Scholar
  2. I. G. Enting. Inverse Problems in Atmospheric Constituent Transport, Cambridge University Press, 2002.Google Scholar
  3. I. G. Enting, C. M. Trudinger, R. J. Francey, and H. Granek. Synthesis inversion of atmospheric CO2 using the GISS tracer transport model. Tech. Paper No. 29, CSIRO Div. Atmos. Res., 1993.Google Scholar
  4. I. G. Enting, C. M. Trudinger, and R. J. Francey. A synthesis inversion of the concentration and δ13C of atmospheric CO2. Tellus, 47B:35-52, 1995.Google Scholar
  5. R. Giering and T. Kaminski Recipes for adjoint code construction. ACM Trans. Math. Software, 24(4):437-474. 1998.CrossRefGoogle Scholar
  6. P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, New York, 1981.Google Scholar
  7. M. Gloor, S. M. Fan, S. Pacala, and J. Sarmiento. Optimal sampling of the atmosphere for purpose of inverse modeling: A model study. Global Biogeochem. Cycles 14:407-428, 2000.CrossRefGoogle Scholar
  8. K. R. Gurney, R. M. Law, A. S. Denning, P. J. Rayner, D. Baker, P. Bousquet, L. Bruhwiler, Y.-H. Chen, P. Ciais, S. Fan, I. Y. Fung, M. Gloor, M. Heimann, K. Higuchi, J. John, T. Maki, S. Maksyutov, K. Masarie, P. Peylin, M. Prather, B. C. Pak, J. Randerson, J. Sarmiento, S. Taguchi, T. Takahashi, and C.-W. Yuen. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415:626-630, 2002.CrossRefGoogle Scholar
  9. K. R. Gurney, R. M. Law, A. S. Denning, P. J. Rayner, D. Baker, P. Bousquet, L. Bruhwiler, Y.-H. Chen, P. Ciais, S. Fan, I. Y. Fung, M. Gloor, M. Heimann, K. Higuchi, J. John, E. Kowalczyk, T. Maki, S. Maksyutov, P. Peylin, M. Prather, B. C. Pak, J. Sarmiento, S. Taguchi, T. Takahashi, and C.-W. Yuen. TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus, 55B(2):555-579, 2003. doi:10.1034/j.1600-0560.2003.00049.x.Google Scholar
  10. M. Hardt and F. Scherbaum. Optimizing the station distributions of seismic networks for after-shock recordings by simulated annealing. In EOS Supplement, Transactions of the Fall Meeting, 1992, page 351. A.G.U., 1992.Google Scholar
  11. M. Hardt and F. Scherbaum. The design of optimum networks for after-shock recordings. Geophys. J. Int., 117:716-726, 1994.CrossRefGoogle Scholar
  12. M. Heimann. The global atmospheric tracer model TM2. Technical Report No. 10, Deutsches Klimarechenzentrum. Hamburg, Germany (ISSN 0940-9327), 1995.Google Scholar
  13. S. Houweling, F.-M. Breon, I. Aben, C. Rödenbeck, M. Gloor, M. Heimann, and P. Ciais. Inverse modeling of CO2 sources and sinks using satellite data: A synthetic inter-comparison of meas-urement techniques and their performance as a function of space and time. Atmos. Chem. Phys., 4:523-538, 2004.CrossRefGoogle Scholar
  14. T. Kaminski and M. Heimann. Inverse modeling of atmospheric carbon dioxide fluxes. Science, 294:5541, October 2001.CrossRefGoogle Scholar
  15. T. Kaminski, P. J. Rayner, M. Heimann, and I. G. Enting. On aggregation errors in atmospheric transport inversions. J. Geophys. Res., 106:4703-4715, 2001.CrossRefGoogle Scholar
  16. T. Kaminski, W. Knorr, P. Rayner, and M. Heimann. Assimilating atmospheric data into a terres-trial biosphere model: A case study of the seasonal cycle. Global Biogeochem. Cycles, 16:1066, 2002. doi:10.1029/2001GB001463.CrossRefGoogle Scholar
  17. T. Kaminski, R. Giering, M. Scholze, P. Rayner, and W. Knorr. An example of an automatic dif-ferentiation-based modelling system. In V. Kumar, L. Gavrilova, C. J. K. Tan, and P. L’Ecuyer, editors, Computational Science—ICCSA 2003, International Conference Montreal, Canada, May 2003, Proceedings, Part II, volume 2668 of Lecture Notes in Computer Science, pages 95-104, Springer, Berlin, 2003.Google Scholar
  18. W. Knorr. Satellitengestützte Fernerkundung und Modellierung des globalen CO2-Austauschs der Landvegetation: Eine Synthese. PhD thesis, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1997.Google Scholar
  19. W. Knorr. Annual and interannual CO2 exchanges of the terrestrial biosphere: Process-based simu-lations and uncertainties. Glob. Ecol. Biogeogr., 9:225-252, 2000.CrossRefGoogle Scholar
  20. W. Knorr and M. Heimann. Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model. Tellus, Ser. B, 47 (4):471-489, 1995.CrossRefGoogle Scholar
  21. W. Knorr and J. Kattge. Inversion of terrestrial biosphere model parameter values against eddy covariance measurements using Monte Carlo sampling. Global Change Biol. 11:1333-1351, 2005.CrossRefGoogle Scholar
  22. R. M. Law, P. J. Rayner, L. P. Steele, and I. G. Enting. Using high temporal frequency data for CO2 inversions. Global Biogeochem. Cy., 16:1053, 2002. doi:10.1029/2001GB001593.CrossRefGoogle Scholar
  23. R. M. Law, P. J. Rayner, L. P. Steele, and I. G. Enting. Data and modelling requirements for CO2 inversions using high frequency data. Tellus, 55B(2):512-521, 2003. doi:10.1034/j.1600-0560. 2003.0029.x.Google Scholar
  24. R. M. Law, P. J. Rayner, and Y. P. Wang. Inversion of diurnally-varying synthetic CO2: Network optimisation for an Australian test case. Global Biogeochem. Cycles 18(1):GB1044, 2004. doi:10.1029/2003GB002136.CrossRefGoogle Scholar
  25. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations for fast computing machines. J. of Chem. Phys., 21:1087-1092, 1953.CrossRefGoogle Scholar
  26. B. Pak. Parameter optimization using the adjoint of a biosphere model. Abstract A11F-02. EOS Trans. AGU, 85(47), December 2004.Google Scholar
  27. P. K. Patra and S. Maksyutov. Incremental approach to the optimal network design for CO2 surface source inversion. Geophys. Res. Lett., 29(10):1459, 2002. dol:10.1029/2001GL013943.CrossRefGoogle Scholar
  28. P. K. Patra, S. Maksyutov, D. Baker, P. Bousquet, L. Bruhwiler, Y-H. Chen, P. Ciais, A. S. Denning, S. Fan, I. Y. Fung, M. Gloor, K. R. Gurney, M. Heimann, K. Higuchi, J. John, R. M. Law, T. Maki, P. Peylin, M. Prather, B. Pak, P. J. Rayner, J. L. Sarmiento, S. Taguchi, T. Takahashi, and C-W. Yuen. Sensitivity of optimal extension of CO2 observation networks to model transport. Tellus B, 55(2):498-511, 2003.CrossRefGoogle Scholar
  29. P. Peylin, P. J. Rayner, P. Bousquet, C. Carouge, F. Hourdin, P. Ciais, P. Heinrich, and AeroCarb Contributors. Daily CO2 flux estimate over Europe from continuous atmospheric measure-ments: Part 1 inverse methodology. Atmos. Chem. Phys., 5:3173-3186, 2005.Google Scholar
  30. J. T. Randerson, C. J. Still, J. J. Balle, I. Y. Fung, S. C. Doney, P. P. Tans, T. J. Conway, J. W. C. White, B. Vaughn, N. Suits, and A. S. Denning. Carbon isotope discrimination of arctic and boreal biomes inferred from remote atmospheric measurements and a biosphere-atmosphere model. Global Biogeochem. Cycles 16(3), 2002. doi:10.1029/2001GB001435.Google Scholar
  31. P. J. Rayner. Optimizing CO2 observing networks in the presence of model error: Results from transcom 3. Atmos. Chem. Phys., 4:413-421, 2004.Google Scholar
  32. P. J. Rayner, I. G. Enting, and C. M. Trudinger. Optimizing the CO2 observing network for con-straining sources and sinks. Tellus, 48B:433-444, 1996.Google Scholar
  33. P. J. Rayner and D. M. O’Brien. The utility of remotely sensed CO2 concentration data in surface source inversions. Geophys. Res. Lett, 28:175-178, 2001.CrossRefGoogle Scholar
  34. P. Rayner, M. Scholze, W. Knorr, T. Kaminski, R. Giering, and H. Widmann. Two decades of ter-restrial carbon fluxes from a Carbon Cycle Data Assimilation System (CCDAS). Global Biogeochem. Cyc., 19, 2005 doi:10.1029/2004GB002254.Google Scholar
  35. D. Santaren, P. Peylin, N. Viovy, and P. Ciais. Parameter estimation in biogeochemical surface model using nonlinear inversion: Optimization with measurements of a pine forest. Geophy. Res. Abs. 5:12020, 2003.Google Scholar
  36. M. Scholze. Model Studies on the Response of the Terrestrial Carbon Cycle on Climate Change and Variability. Examensarbeit, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 2003.Google Scholar
  37. A. Tarantola. Inverse Problem Theory—Methods for Data Fitting and Model Parameter Estimation. Elsevier Science, New York, 1987.Google Scholar
  38. T. Vukićević, B. H. Braswell, and D. Schimel. A diagnostic study of temperature controls on global terrestrial carbon exchange. Tellus, 53B(2):150-170, 2001.Google Scholar
  39. Y. P. Wang, R. Leuning, H. Cleugh, and P. A. Coppin. Parameter estimation in surface exchange models using non-linear inversion: How many parameters can we estimate and which meas-urements are most useful? Glob. Change Biol., 7:495-510, 2001.CrossRefGoogle Scholar
  40. M. Williams, P. A. Schwarz, B. E. Law, J. Irvine, and M. R. Kurpius. An improved analysis of forest carbon dynamics using data assimilation. Glob. Change Biol., 11:89-105, 2005.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Thomas Kaminski
    • 1
  • Peter J. Rayner
    • 2
  1. 1.FastOpt GmbHHamburgGermany
  2. 2.LSCE/IPSLLaboratoire CEA-CNRS-UVSQ, Bat. 701 LSCE – CEA de Saclay Orme des MerisiersGif/YvetteFrance

Personalised recommendations