KNN-Based Piezoelectric Ceramics

  • Marija Kosec
  • Barbara Malič
  • Andreja Benčan
  • Tadej Rojac

Alkaline niobates and, more particularly, the sodium potassium niobate solid solution became the topic of much research at the end of the 1990s, because of increased environmental awareness. Prior to this, a lot of work on these materials was carried out in the 1950s and 1960s. The compositions with the highest electromechanical coupling coefficients are those close to the morphotropic phase boundary (MPB) at 52.5% Na, and the most studied composition has been K0.5Na0.5NbO3, subsequently referred to as KNN (Shirane et al. 1954; Egerton and Dillon 1959; Jaeger and Egerton 1962; Jaffe et al. 1971).


Piezoelectric Property Piezoelectric Ceramic Morphotropic Phase Boundary Mechanochemical Synthesis Sodium Niobate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn CW, Song HC, Nahm S, Park SH, Uchino K (2005) Effect of MnO2 on the piezoelectric properties of (1-x) (Na0.5 K0.5 )NbO3 -xBaTiO3 ceramics. Jpn J Appl Phy 44:1361-1364.CrossRefGoogle Scholar
  2. Ahn ZS, Schulze WA (1987) Conventionally sintered (Na0.5 K0.5 )NbO3 with barium additions. J Am Ceram Soc 70(1):C18-C21.CrossRefGoogle Scholar
  3. Ahtee M, Glazer AM (1974) Phase transitions in sodium niobate-potassium niobate solid solutions. Ferroelectrics 7(1-4):93-95.Google Scholar
  4. Ahtee M, Glazer AM (1976) Lattice parameters and tilted octahedra in sodium-potassium niobate solid solutions. Acta Cryst A32:434-446.Google Scholar
  5. Ahtee M, Hewat AW (1978) Structural phase transitions in sodium-potassium niobate solid solu-tions by neutron powder diffraction. Acta Cryst A34:309-317.Google Scholar
  6. Amini MM, Sacks MD (1991) Synthesis of potassium niobate from metal alkox ides. J Am Ceram Soc 74(1):53-59.CrossRefGoogle Scholar
  7. Appendino P (1973) Contribution of study with system Na2 O − Nb2 O5 . Ann Chim (Rome) 63: 547-556.Google Scholar
  8. Attia J, Bellaiche L, Gemeiner P, Dkhil B, Mali č B (2005) Study of potassium-sodium-niobate alloys: A combined experimental and theoretical approach. J Phys IV Fr 128:55-60.CrossRefGoogle Scholar
  9. Birol H, Damjanovi ć D, Setter N (2005) Preparation and characterization of KNbO3 ceramics. J Am Ceram Soc 88(7):1754-1759.CrossRefGoogle Scholar
  10. Bizeto MA, Constantino VRL (2004) Structural aspects and thermal behavior of the proton-exchanged layered niobate K4 Nb6 O17 . Mater Res Bull 39(11):1729-1736.CrossRefGoogle Scholar
  11. Bobnar V, Bernard J, Kosec M (2004) Relaxor-like dielectric properties and history-dependent effects in the lead-free K0.5 Na0.5 NbO3 -SrTiO3 . Appl Phy Lett 85(6):994-996.CrossRefGoogle Scholar
  12. Bomlai P, Wichianrat P, Muensit S, Milne SJ (2007) Effect of calcination and excess alkali carbon-ate on the phase formation and particle morphology of Na0.5 K0.5 NbO3 powders. J Am Ceram Soc 90(5):1650-1655.CrossRefGoogle Scholar
  13. Calderon-Moreno JM, Camargo ER (2003) Electron microscopy studies on the formation and evo-lution of sodium niobate nanoparticles from a polymeric precursor. Catal Today 78:539-542.CrossRefGoogle Scholar
  14. Camargo ER, Popa M, Kakihana M (2002) Sodium niobate (NaNbO3 ) powders synthesized by a wet-chemistry method using a water-soluble malic acid complex. Chem Mater 14:2365-2368.CrossRefGoogle Scholar
  15. Castro A, Jimenez B, Hungria T, Moure A, Pardo L (2004) Sodium niobate ceramics prepared by mechanical activation assisted methods. J Eur Ceram Soc 24(6):941-945.CrossRefGoogle Scholar
  16. Chang Y, Yang Z, Chao X, Zhang R, Li X (2007) Dielectric and piezoelectric properties of alkaline earth titanate doped (K0.5 Na0.5 )NbO3 ceramics. Mater Lett 61:785-789.CrossRefGoogle Scholar
  17. Du H, Li Z, Tang F, Qu S, Pei Z, Zhiou W (2006) Preparation and piezoelectric properties of (K0.5 Na0.5 )NbO3 lead-free piezoelectric ceramics with pressure-less sintering. Mater Sci Eng B131:83-87.CrossRefGoogle Scholar
  18. Du H, Tang F, Liu D, Zhu D, Zhou W, Qu S (2007) The microstructure and ferroelectric properties of (K0.5 Na0.5 )NbO3 -LiNbO3 lead free piezoelectric ceramics. Mater Sci Eng B136:165-169.CrossRefGoogle Scholar
  19. Dungan RH, Golding RD (1964) Metastable ferroelectric sodium niobate. J Am Ceram Soc 47(2): 73-76.CrossRefGoogle Scholar
  20. Egerton L, Bieling CA (1968) Isostatically hot-pressed sodium-potassium niobate transducer ma-terial for ultrasonic devices. Am Ceram Soc Bull 47(12):1151-1156.Google Scholar
  21. Egerton L, Dillon DM (1959) Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J Am Ceram Soc 42(9):438-442.CrossRefGoogle Scholar
  22. Fisher JG, Ben čan A, Bernard J, Holc J, Kosec M, Vernay S, Rytz D (2007a) Growth of (Na,K,Li)(Nb,Ta)O3 single crystals by solid state crystal growth. J Eur Ceram Soc 27(13-15): 4103-4106.CrossRefGoogle Scholar
  23. Fisher JG, Ben čan A, Holc J, Kosec M, Vernay S, Rytz D (2007b) Growth of potassium sodium niobate single crystals by solid state crystal growth. J Cryst Growth 303:487-492.CrossRefGoogle Scholar
  24. Fluckiger U, Arend H (1977) Synthesis of KNbO3 powder. J Am Ceram Soc Bull 56(6):575-577.Google Scholar
  25. Guo Y, Kakimoto K, Ohsato H (2004a) Dielectric and piezoelectric properties of lead free (Na0.5 K0.5 )NbO3 -SrTiO3 ceramics. Solid State Commun 129:279-284.CrossRefGoogle Scholar
  26. Guo Y, Kakimoto K, Ohsato H (2004b) Structure and electrical properties of lead-free (K0.5 Na0.5 )NbO3 -BaTiO3 ceramics. Jpn J Appl Phys 43(9B):6662-6666.CrossRefGoogle Scholar
  27. Guo Y, Kakimoto K, Ohsato H (2004c) Phase transitional behaviour and piezoelectric properties of (Na0.5 K0.5 )NbO3 -LiNbO3 ceramics. Appl Phys Lett 85(18):4121-4123.CrossRefGoogle Scholar
  28. Guo Y, Kakimoto K, Ohsato H (2005) (K0.5 Na0.5 )NbO3 -LiTaO3 lead-free piezoelectric ceramics. Mater Lett 59:241-244.Google Scholar
  29. Hagh NM, Jadidian B, Safari A (2007) Property-processing relationship in lead-free (K,Na,Li) NbO3 -solid solution system. J Electroceram 18:339-346.CrossRefGoogle Scholar
  30. Hagh NM, Jadidian B, Ashbahian E, Safari A (2008) Lead-free piezoelectric ceramics transducer in the donor-doped K1/2 Na1/2 NbO3 solid solution system. IEEE Trans Ultrason Ferroelectr Freq Control 55(1):214-224.CrossRefGoogle Scholar
  31. Haertling GH (1967) Properties of hot-pressed ferroelectric alkali niobate ceramics. J Am Ceram Soc 50:329-330.CrossRefGoogle Scholar
  32. Hollenstein E, Davis M, Damjanovic D, Setter N (2005) Piezoelectric properties of Li and Ta modified (K0.5 Na0.5 )NbO3 ceramics. Appl Phys Lett 87:182905/1-182905/3.Google Scholar
  33. Hungria T, Pardo L, Moure A, Castro A (2005) Effect of mechanochemical activation on the synthesis of NaNbO3 and processing of environmentally friendly piezoceramics. J All Comp 395 (1-2):166-173.CrossRefGoogle Scholar
  34. Irle E, Blachnik R, Gather B (1991) The phase diagrams of Na2 O and K2 O with Nb2 O5 and the ternary system Nb2 O5 -Na2 O-Y2 O3 . Thermochim Acta 179:157-169.CrossRefGoogle Scholar
  35. Jaeger RE, Egerton L (1962) Hot pressing of potassium-sodium niobates. J Am Ceram Soc 45(5): 209-213.CrossRefGoogle Scholar
  36. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London. JCPDS 71-2171.Google Scholar
  37. Jenko D, Ben čan A, Mali č B, Holc, J, Kosec M (2005) Electron microscopy studies of potassium sodium niobate ceramics. Microsc Microanal 11:572-580.CrossRefGoogle Scholar
  38. Kakimoto K, Akao K, Guo Y, Ohasto H (2005) Raman scattering study of piezoelectric (Na0.5 K0.5 )NbO3 -LiNbO3 ceramics. Jpn Soc Appl Phy 44(9B):7064-7067.CrossRefGoogle Scholar
  39. Katz L, Megaw HD (1967) The structure of potassium niobate at room temperature: The solution of a pseudosymmetric structure by Fourier methods. Acta Crystallogr 22:639-648.CrossRefGoogle Scholar
  40. Kodaira K, Shioya J, Shimada S, Matsushita T (1982) Sintering and dielectric properties of KNbO3 . J Mater Sci Lett 1:277-278.CrossRefGoogle Scholar
  41. Kosec M, Bobnar V, Hrovat M, Bernard J, Mali č B, Holc J (2004) New lead free relaxors based on the K0.5 Na0.5 NbO3 -SrTiO3 solid solution. J Mater Res 19(6):1849-1853.CrossRefGoogle Scholar
  42. Kosec M, Kolar D (1975) On activated sintering and electrical properties of NaKNbO3 . Mater Res Bull 10:335-340.CrossRefGoogle Scholar
  43. Lanfredi S, Dessemond L, Martins Rodrigues AC (2000) Dense ceramics of NaNbO3 produced from powders prepared by a new chemical route. J Eur Ceram Soc 20:983-990.CrossRefGoogle Scholar
  44. Lee HJ, Bae MS, Cho YK (2006) Transmission electron microscopy of 0.95 (Na0.5 K0.5 ) NbO3 -0.05BaTiO3 ceramics. J Am Ceram Soc, 89(11):3529-3532.CrossRefGoogle Scholar
  45. Lu CH, Lo SY, Lin HC (1998) Hydrothermal synthesis of nonlinear optical potassium niobate ceramic powder. Mater Lett 34:172-176.CrossRefGoogle Scholar
  46. Lu CH, Lo SY, Wang YL (2002) Glycothermal preparation of potassium niobate ceramic particles under supercritical conditions. Mater Lett 55:121-125.CrossRefGoogle Scholar
  47. Maeder MD, Damjanovic D, Setter N (2004) Lead free piezoelectric materials. J Electroceram 13:385-392.CrossRefGoogle Scholar
  48. Mali č B, Bernard J, Holc J, Jenko D, Kosec M (2005a) Alkaline-earth doping in (K,Na)NbO3 based piezoceramics. J Eur Ceram Soc 25:2707-2711.CrossRefGoogle Scholar
  49. Mali č B, Bernard J, Holc J, Kosec M (2005b) Strontium doped K0.5 Na0.5 NbO3 based piezoceram-ics. Ferroelectrics 314:149-156.CrossRefGoogle Scholar
  50. Matsubara M, Yamaguchi T, Sakamoto W, Kikuta K, Yogo T, Hirano S (2005a) Processing and piezoelectric properties of lead free (K,Na)(Nb,Ta)O3 . J Am Ceram Soc 88(5):1190-1196.CrossRefGoogle Scholar
  51. Matsubara M, Yamaguchi T, Kikuta K, Hirano S (2005b) Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Jpn J Appl Phy 44 (1):258-263.CrossRefGoogle Scholar
  52. Matsubara M, Kikuta K, Hirano S (2005c) Piezoelectric properties of (K0.5 Na0.5 )(Nb1−xTax ) O3 -K5.4 CuTa10 O2 9 ceramics. J Appl Phys 97:114105/1-114105/7.Google Scholar
  53. Matsubara M, Yamaguchi T, Kikuta K, Hirano S (2005d) Effect of Li substitution on the piezo-electric properties of potassium sodium niobate ceramics. Jpn J Appl Phys 44(8):6136-6142.CrossRefGoogle Scholar
  54. Matsubara M, Yamaguchi T, Kikuta K, Hirano SI (2004) Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid. Jpn J Appl Phys 43(10):7159-7196.CrossRefGoogle Scholar
  55. Megaw HD, Wells M (1958) The Space Group of NaNbO3 and (Na0.995 K0.005 )NbO3 , Acta Cryst 11:858-862.CrossRefGoogle Scholar
  56. Murty SN, Bhanumathi A (1989) Phase transitions in europium doped (Na,K)NbO3 ceramics. Ferroelectrics 94:285-290.CrossRefGoogle Scholar
  57. Murty SN, Umakantham K, Bhanumathi A (1988) Ferroelectric behaviour of lanthanum doped (Na,K)NbO3 ceramics. Ferroelectrics 82:141-147.CrossRefGoogle Scholar
  58. Nazeri-Eshghi A, Kuang AX, Mackenzie JD (1990) Preparation and properties of KNbO3 via the sol-gel method. J Mater Sci 25:3333-3337.CrossRefGoogle Scholar
  59. Nobre MAL, Lanfredi S (2003) Dielectric loss and phase transition of sodium potassium niobate ceramic investigated by impedance spectroscopy. Catal Today 78:529-538.CrossRefGoogle Scholar
  60. Nobre MAL, Longo E, Leite ER, Varela JA (1996) Synthesis and sintering of ultrafine NaNbO3 powder by use of polymeric precursors. Mater Lett 28:215-220.CrossRefGoogle Scholar
  61. Oh SW, Akedo J, Park JH, Kawakami Y (2006) Fabrication and evaluation of lead-free piezo-electric ceramic LF4 thick film deposited by aerosol deposition method. Jpn J Appl Phys 45 (9B):7465-7470.CrossRefGoogle Scholar
  62. Park SH, Ahn CW, Nahm S, Song JS (2004) Microstructure and piezoelectric properties of ZnO added (Na0.5 K0.5 )NbO3 . Jpn J Appl Phys 43(8B):L1072-L1074.CrossRefGoogle Scholar
  63. Park HY, Ahn CW, Song HC, Lee JH, Nahm S (2006) Microstructure and piezoelectric properties of 0.95(Na0.5 K0.5 )NbO3 -0.05BaTiO3 ceramics. Appl Phys Lett 89:062906/1-062906/3.Google Scholar
  64. Pithan C, Shiratori Y, Dornseiffer J, Haegel FH, Magrez A, Wasser R (2005) Microemulsion me-diated synthesis of nanocrystalline (KxNa1−x )NbO3 powders. J Cryst Growth 280:191-200.CrossRefGoogle Scholar
  65. Raevskii IP, Reznichenko LA, Ivliev MP, Smotrakov VG, Eremkin VV, Malitskaya MA, Shilkina LA, Shevtsova SI, Borodin AV (2003) Growth and study of single crystals of (Na,K)NbO3 solid solutions. Crystall Rep 48(3):486-490.CrossRefGoogle Scholar
  66. Reisman A, Holtzberg F (1955) Phase equilibria in the system K2 CO3 -Nb2 O5 by the method of differential thermal analysis. J Am Ceram Soc 77:2115-2118Google Scholar
  67. Reisman A, Holtzberg F, Triebwasser S, Berkenblit M (1956) Preparation of pure potassium metan-iobate. J Am Ceram Soc 78:719-720.Google Scholar
  68. Reisman A, Holtzberg F, Triebwasser S, Berkenblit M (1959) Metastability in niobate system. J Am Ceram Soc 81:1292-1295.Google Scholar
  69. Ringgaard E, Wurlitzer T (2005) Lead-free piezoceramics based on alkali niobates. J Eur Ceram Soc 25:2701-2706.CrossRefGoogle Scholar
  70. Rojac T, Kosec M, Mali č B, Holc J (2005a) Mechanochemical synthesis of NaNbO3 . Mater Res Bull 40:341-345.CrossRefGoogle Scholar
  71. Rojac T, Kosec M, Mali č B, Holc J (2005b) Mechanochemical synthesis of NaNbO3 , KNbO3 and K0.5 Na0.5 NbO3 . Sci Sintering 37:61-67.CrossRefGoogle Scholar
  72. Rojac T, Kosec M, Mali č B, Holc J (2006) The application of a milling map in the mechanochem-ical synthesis of ceramic oxides. J Eur Ceram Soc 26:3711-3716.CrossRefGoogle Scholar
  73. Rojac T, Kosec M, Šegedin P, Mali č B, Holc J (2007) The formation of a carbonate complex during the mechanochemical treatment of a Na2 CO3 -Nb2 O5 mixture. Solid State Ionics 177: 2987-2995.CrossRefGoogle Scholar
  74. Roth RS (1980) Thermal stability of long range order in oxides. Prog Solid St Chem 13(2): 159-192.CrossRefGoogle Scholar
  75. Roth RS, Parker HS, Brower WS, Minor DB (1974) Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors. NASA Contract. Rep., Report No. NASA-CR-134599, Con-tract No. C-29933C. NASA, Cleveland, pp 1-59.Google Scholar
  76. Ryu J, Choi JJ, Hahn BD, Park DS, Yoon WH, Kim HK (2007) Fabrication and ferroelectric prop-erties of highly dense lead-free piezoelectric K0.5 Na0.5 NbO3 thick films by aerosol deposition. Appl Phys Lett 90:1-3.Google Scholar
  77. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead free Piezoceramics. Nature 432:84-87.CrossRefGoogle Scholar
  78. Sano T, Saylor DM, Rohrer GS (2003) Surface energy anisotropy of SrTiO3 at 1400 ◦C in air. J Am Ceram Soc 86(11):1933-1939.CrossRefGoogle Scholar
  79. Shafer MW, Roy R (1959) Phase equilibria in the system Na2 O-Nb2 O5 . J Am Ceram Soc 42(10): 482-486.CrossRefGoogle Scholar
  80. Shimojo Y, Wang R (2005) Dielectric and piezoelectric properties of MeTiO3 (Me = Ba and Sr) modified (K,Na)NbO3 . J Kor Phy Soc 46(1):48-51.Google Scholar
  81. Shirane G, Newnham R, Pepinsky R (1954) Dielectric properties and phase transition of NaNbO3 and (Na,K)NbO3 . Phys Rev 96(3):581-588.CrossRefGoogle Scholar
  82. Shiratori Y, Magrez A, Pithan C (2004) Phase transformation of KNaNb2 O6 induced by size effect. Chem Phys Lett 391:288-292.CrossRefGoogle Scholar
  83. Shiratori Y, Magrez A, Dornseiffer J, Haegel FH, Pithan C, Waser R (2005a) Polymorphism in micro-, submicro- and nanocrystalline NaNbO3 . J Phys Chem B 109:20122-20130.CrossRefGoogle Scholar
  84. Shiratori Y, Magrez A, Pithan C (2005b) Particle size effect on the crystal structure symmetry of K0.5 Na0.5 NbO3 . J Eur Ceram Soc 25:2075-2079.CrossRefGoogle Scholar
  85. Takao H, Saito Y, Aoki Y, Horibuchi K (2006) Microstructural evolution of crystalline-orientated (K0.5 Na0.5 )NbO3 piezoelectric ceramics with a sintering aid of CuO. J Am Ceram Soc 89 (6):1951-1956.CrossRefGoogle Scholar
  86. Tang F, Du H, Li Z, Zhou W, Qu S, Pei Z (2006) Preparation and properties of (K0.5 Na0.5 ) NbO3 -LiNbO3 ceramics. Trans Nonferrous Met Soc China 16:466-469.CrossRefGoogle Scholar
  87. Tashiro S, Ishii K (2006) Grain size and piezoelectric properties of (Ba,K,Na)NbO3 lead-free ceramics. J Ceram Soc Jpn 114(5):386-391.CrossRefGoogle Scholar
  88. Tashiro S, Nagata K (2004) Infuence of mixing condition and nonstoichiometry on piezoelectric properties of (K,Na,Pb)NbO3 ceramics. Jpn J Appl Phys 43(9B):6711-6715.CrossRefGoogle Scholar
  89. Tennery VJ, Hang KW (1968) Thermal and X-ray diffraction studies of the NaNbO3 -KNbO3 sys-tem. J Appl Phys 39(10):4749-4753. CrossRefGoogle Scholar
  90. Wada S, Muraoka K, Kakemoto H, Tsurumi T, Kumagai H (2004) Enhanced piezoelectric proper-ties of potassium niobate single crystals by domain engineering. Jpn J Appl Phys 43(9B):6692-6700.CrossRefGoogle Scholar
  91. Wang R, Xie R, Sekiya T, Shimojo Y, Akimune Y, Hirosaki N, Itoh M (2002) Piezoelectric properties of spark plasma sintered (Na0.5 K0.5 )NbO3 -PbTiO3 ceramics. Jpn J Appl Phys 41: 7119-7122.CrossRefGoogle Scholar
  92. Wang R, Xue RJ, Hanada K, Matsusaki K, Bando H, Itoh M (2005) Phase diagram and enhanced piezo-electricity in the strontium titanate doped potassium-sodium niobate solid solution. Phys Stat Sol 202(6):R57-R59.CrossRefGoogle Scholar
  93. Wang RP, Xie RJ, Sekiya T, Shimoyo Y (2004) Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma sintering method. Mater Res Bull 39:1709-1715.CrossRefGoogle Scholar
  94. Yang Z, Chang Y, Liu B, Wei L (2006) Effect of composition on phase structure, microstructure and electrical properties of (K0.5 Na0.5 )NbO3 -LiSbO3 ceramics. Mater Sci Eng A432:292-298.Google Scholar
  95. Zang GZ, Wang JF, Chen HC, Su WB, Wang CM (2006) Perovskite (Na0.5 K0.5 )1−x (LiSb)x Nb1−xO3 lead free piezoceramics. Appl Phys Lett 88:212908/1-212908/3.Google Scholar
  96. Zhang BP, Li JF, Wang K, Zhang H (2006a) Compositional dependence of piezoelectric properties in NaxK1−xNbO3 lead-free ceramics prepared by spark plasma sintering. J Am Ceram Soc 89 (2):706-709.CrossRefGoogle Scholar
  97. Zhang S, Xia R, Shrout TR, Zang G, Wang J (2006b) Piezoelectric properties in perov-skite0.948(K0.5 Na0.5 )NbO3 -0.052LiSbO3 lead-free ceramics. J Appl Phys100:104108/1-104108/6.Google Scholar
  98. Zhen Y, Li JF (2006) Normal sintering of (K,Na)NbO3 -based ceramics: Influence of sinter-ing temperature on densification, microstructure, and electrical properties. J Am Ceram Soc 89 (12):3669-3675.CrossRefGoogle Scholar
  99. Zuo R, Roedel J, Chen R, Li L (2006) Sintering and electrical properties of lead-free Na0.5 K0.5 NbO3 piezoelectric ceramics. J Am Ceram Soc 89:2010-2015.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marija Kosec
    • 1
  • Barbara Malič
    • 1
  • Andreja Benčan
    • 1
  • Tadej Rojac
    • 1
  1. 1.The Glenn Howatt Electronic Ceramics Laboratory, Department of Materials Science and EngineeringJoǎzef Stefan Institute1000 LjubljanaSlovenia

Personalised recommendations