Global warming and cyanobacterial harmful algal blooms

  • Valerie J Paul
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 619)


The Earth and the oceans have warmed significantly over the past four decades, providing evidence that the Earth is undergoing long-term climate change. Increasing temperatures and changing rainfall patterns have been documented. Cyanobacteria have a long evolutionary history, with their first occurrence dating back at least 2.7 billion years ago. Cyanobacteria often dominated the oceans after past mass extinction events. They evolved under anoxic conditions and are well adapted to environmental stress including exposure to UV, high solar radiation and temperatures, scarce and abundant nutrients. These environmental conditions favor the dominance of cyanobacteria in many aquatic habitats, from freshwater to marine ecosystems. A few studies have examined the ecological consequences of global warming on cyanobacteria and other phytoplankton over the past decades in freshwater, estuarine, and marine environments, with varying results. The responses of cyanobacteria to changing environmental patterns associated with global climate change are important subjects for future research. Results of this research will have ecological and biogeochemical significance as well as management implications.


Global Warming Mass Extinction Cyanobacterial Bloom Microcystis Aeruginosa Marine Cyanobacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrantes N, Antunes SC, Pereira MJ, Goncalves F (2006) Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecologia 29: 54-64CrossRefGoogle Scholar
  2. Albert S, O’Neil JM, Udy JW, Ahern KS, O’Sullivan CM, Dennison WC (2005) Blooms of the cyanobacterium Lyngbya majuscula in coastal Queensland, Australia: disparate sites, common factors. Mar Poll Bull 51: 428-437CrossRefGoogle Scholar
  3. Antonov JI, Levitus S, Boyer TP (2005) Thermosteric sea level rise, 1955-2003. Geophys Res Lett 32:L12602CrossRefGoogle Scholar
  4. Barnett TP, Pierce DW, AchutaRao KM, Gleckler PJ, Santer BD, Gregory JM, Washington WM (2005) Penetration of human-induced warming into the world’s oceans. Science 309: 284-287PubMedCrossRefGoogle Scholar
  5. Briand J-F, Leboulanger C, Humbert J-F (2004) Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming. J Phycol 40: 231-238CrossRefGoogle Scholar
  6. Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57: 9347-9377CrossRefGoogle Scholar
  7. Canfield DE (1999) A breath of fresh air. Nature 400: 503-504CrossRefGoogle Scholar
  8. Capper A, Cruz-Rivera E, Paul VJ, Tibbetts IR (2006) Chemical deterrence of a marine cyanobacterium against sympatric and non-sympatric consumers. Hydrobiologia 553: 319-326CrossRefGoogle Scholar
  9. Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276: 1221-1229CrossRefGoogle Scholar
  10. Carmichael WW, Mahmood NA, Hyde EG (1990) Natural toxins from cyanobacteria (blue-green algae). In: Hall S, Strichartz G (eds.) Marine toxins: origin, structure, and molecular pharmacology. American Chemical Society, Washington, D.C. Pp. 87-106Google Scholar
  11. Carpenter SR, Fisher SG, Grimm NB, Kitchell JF (1992) Global change and freshwater ecosystems. Annu Rev Ecol Syst 23: 119-139CrossRefGoogle Scholar
  12. Castenholz RW, Garcia-Pichel F (2000) Cyanobacterial responses to UV-radiation. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp. 591-611Google Scholar
  13. Chorus I (ed) (2001) Cyanotoxins: occurrence, causes, consequences. Springer-Verlag, Berlin, 357 ppGoogle Scholar
  14. Christoffersen, K (1996) Ecological implications of cyanobacterial toxins in aquatic food webs. Phycologia 35: 42-50CrossRefGoogle Scholar
  15. Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol App Pharmacol 203: 264-272CrossRefGoogle Scholar
  16. Copper P (1994) Ancient reef ecosystem expansion and collapse. Coral Reefs 13:3-11CrossRefGoogle Scholar
  17. DeMott WR, Zhang Q-X, Carmichael W W (1991) Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol Oceanogr 36: 1346-1357CrossRefGoogle Scholar
  18. Dittmann E, Neilan BA, Börner T (2001) Molecular biology of peptide and polykeide biosynthesis in cyanobacteria. Appl Microbiol Biotechnol 57: 467-473PubMedCrossRefGoogle Scholar
  19. Donner SD, Skirving WJ, Little CM, Oppenheimer M, Hoegh-Guldberg O (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Global Change Biol 11: 2251-2265CrossRefGoogle Scholar
  20. Edwards DJ, Gerwick WH (2004) Lyngbyatoxin biosynthesis: sequence of biosynthetic gene cluster and identification of a novel aromatic phenyltransferase. J Am Chem soc 126: 11432-11433PubMedCrossRefGoogle Scholar
  21. Elmetri I, Bell PRF (2004) Effects of phosphorus on the growth and nitrogen fixation rates of Lyngbya majuscula: implications for management in Moreton Bay, Queensland. Mar Ecol Prog Ser 281: 27-35CrossRefGoogle Scholar
  22. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436: 686-688PubMedCrossRefGoogle Scholar
  23. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289: 756-758PubMedCrossRefGoogle Scholar
  24. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact on anthropogenic CO2 on the CaCO3 system in the oceans. Science 305: 362-366PubMedCrossRefGoogle Scholar
  25. Fulton RS III, Paerl HW (1987) Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton. J Plank Res 9: 837-855CrossRefGoogle Scholar
  26. Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Env Microbiol 59: 163-169Google Scholar
  27. Garcia-Pichel F, Wingard CE, Castenholz RW (1993) Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl Env Microbiol 59: 170-176Google Scholar
  28. Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol Oceanogr 45: 1058-1066CrossRefGoogle Scholar
  29. Gerwick WH, Tan LT, Sitachitta N (2001) Nitrogen-containing metabolites from marine cyanobacteria. In:Cordell GA (ed) lkaloids: Chemistry and Biology, Vol. 57 Academic Press, NY, pp 75-184Google Scholar
  30. Gilbert JJ (1996) Effect of temperature on the response of planktonic rotifers to a toxic cyanobacterium. Ecology 77: 1174-1180CrossRefGoogle Scholar
  31. Gustafsson S, Rengefors K, Hansson L-A (2005) Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects. Ecology 86: 2561-2567CrossRefGoogle Scholar
  32. Hallock P (2005) Global change and modern coral reefs: new opportunities to understand shallow-water carbonate depositional processes. Sedimentary Geology 175: 19-33CrossRefGoogle Scholar
  33. He Y-Y, Häder D-P (2002) Involvement of reactive oxygen species in the UV-B damage to the cyanobacterium Anabaena sp. J Photochem Photobiol B: Biol 66: 73-80CrossRefGoogle Scholar
  34. He Y-Y, Klisch M, Häder D-P (2002) Adaptation of cyanobacteria to UV-B stress correlated with oxidative stress and oxidative damage. Photochem Photobiol 76: 188-196PubMedCrossRefGoogle Scholar
  35. Hegerl GC and Bindoff NL (2005) Warming the world’s oceans. Science 309: 254-255CrossRefGoogle Scholar
  36. Jin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH (2000) Pattern of marine mass extinction near the Permian-Triassic Boundary in South China. Science 289: 432-436.PubMedCrossRefGoogle Scholar
  37. Kaebernick M, Dittmann E, Börner T, Neilan BA (2002) Multiple alternate transcripts direct the biosynthesis of microcystin, a cyanobacterial nonribosomal peptide. Appl Environ Microbiol 68: 449-455PubMedCrossRefGoogle Scholar
  38. Kaebernick M, Neilan BA (2001) Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol Ecol 35: 1-9PubMedCrossRefGoogle Scholar
  39. Kaebernick M, Neilan BA, Börner T, Dittmann E (2000) Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl Environ Microbiol 66: 3387-3392PubMedCrossRefGoogle Scholar
  40. Kasting JF, Siefert JL (2002) Life and the evolution of Earth’s atmosphere. Science 296: 1066-1068.PubMedCrossRefGoogle Scholar
  41. Kerr RA (2005) The story of O2. Science 308: 1730-1732PubMedCrossRefGoogle Scholar
  42. Kirk KL, Gilbert JJ (1992) Variation in herbivore response to chemical defenses: zooplankton foraging on toxic cyanobacteria. Ecology 73: 2208-2217CrossRefGoogle Scholar
  43. Kuffner IB, Paul VJ (2001) Effects of nitrate, phosphate and iron on the growth of macroalgae and benthic cyanobacteria from Cocos Lagoon, Guam. Mar Ecol Prog Ser 222: 63-72CrossRefGoogle Scholar
  44. Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science 10: 113-390CrossRefGoogle Scholar
  45. Lehtimaki J, Sivonen K, Luukkainen R, Niemela S I (1994) The effects of incubation time, temperature, light, salinity, and phosphorus on growth and hepatoxin production by Nodularia strains. Arch Hydrobiol 130:269-282Google Scholar
  46. Levitus S, Antonov J, and Boyer T (2005) Warming of the world ocean, 1955-2003. Geophys Res Lett 32:L02604CrossRefGoogle Scholar
  47. Liu Z, Häder DP, Sommaruga R (2004) Occurrence of mycosporine-like amino acids (MAAs) in the bloom-forming cyanobacterium Microcystis aeruginosa. J Plank Res 26: 963-966CrossRefGoogle Scholar
  48. Moore RE (1996) Cyclic peptides and depsipeptides from cyanobacteria: a review. J Ind Microbiol 16: 134-143PubMedCrossRefGoogle Scholar
  49. Moss B, McKee D, Atkinson D, Collings SE, Eaton JW, Gill AB, Hatton HK, Heyes T and Wilson D (2003) How important is climate? Effects of waming, nutrient addition and fish on phytoplankton in shallow lake microcosms. J Appl Ecol 40: 782-792CrossRefGoogle Scholar
  50. Murrell MC, Lores EM (2004) Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: importance of cyanobacteria. J Plank Res 26: 371-382CrossRefGoogle Scholar
  51. Nagle DG, Paul VJ (1998) Chemical defense of a marine cyanobacterial bloom. J. Exp Mar Biol Ecol 225: 29-38CrossRefGoogle Scholar
  52. Nagle DG, Paul VJ (1999) Production of secondary metabolites by filamentous tropical marine cyanobacteria: ecological functions of the compounds. J. Phycol 35: 1412-1421CrossRefGoogle Scholar
  53. O’Neil J, Dennison WC (2005) Lyngbya majusculain Southeast Queensland waterways. Chapt. 6 In: Abal E, Dennison WC (eds) Healthy Waterways - healthy catchments. South East Queensland Regional Water Quality Strategy, Brisbane City Council. Brisbane, Australia. pp 119-148.Google Scholar
  54. Paerl HW (2006) Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. These proceedings, in press.Google Scholar
  55. Paerl HW, Bland PT, Bowles ND, Haibach ME (1985) Adaptation to high intensity, low wavelength light among surface blooms of the cyanobacterium Microcystis aeruginosa. Appl Env Microbiol 49:1046-1052Google Scholar
  56. Pangilinan RF (2000) Effects of light and nutrients on intraspecific secondary metabolite variation in the benthic cyanobacterium Lyngbya majuscula. M.S. thesis, University of Guam, 29 p.Google Scholar
  57. Park S, Brett MT, Müller-Solger A, Goldman CR (2004) Climatic forcing and primary productivity in a subalpine lake: Interannual variability as a natural experiment. Limnol Oceaogr 49: 614-619Google Scholar
  58. Paul VJ, Thacker R, Banks K, Golubic S (2005) Benthic cyanobacterial bloom impacts on the reefs of South Florida (Broward County, USA). Coral Reefs 24: 693-697CrossRefGoogle Scholar
  59. Paul VJ, Cruz-Rivera E, Thacker RW (2001) Chemical mediation of macroalgal-herbivore interactions: ecological and evolutionary perspectives. In: McClintock J, Baker B (eds) Marine Chemical Ecology, CRC Press, LLC, pp. 227-265Google Scholar
  60. Pennings SC, Pablo SR, Paul VJ (1997) Chemical defenses of the tropical benthic, marine cyanobacterium Hormothamnion enteromorphoides: diverse consumers and synergisms. Limnol Oceanogr 42: 911-917CrossRefGoogle Scholar
  61. Prospero JM, Lamb PJ (2003) African droughts and dust transport to the Caribbean: climate change implications. Science 302: 1024-1027PubMedCrossRefGoogle Scholar
  62. Raikow DF, Sarnell O, Wilson AE, Hamilton SK (2004) Dominance of the noxious cyanobacterium Microcystis aeruginosa in low-nutrient lakes is associated with exotic zebra mussels. Limnol Oceanogr 49: 482-487Google Scholar
  63. Ramos AG, Martel A, Codd GA, Soler E, Coca J, Rdo A, Morrison LF, Metcalf JS, Ojeda A, Suarez S, Petit M (2005) Bloom of the marine diazotrophic cyanobacterium Trichodesmium erythraeum in the Northwest African upwelling. Mar Ecol Prog Ser 301: 303-305CrossRefGoogle Scholar
  64. Rapala J, Sivonen K, Lyra C, Niemela S I (1997) Variation of microcystins, cyanobacterial hepatoxins, in Anabaena spp. as a function of growth stimuli. Appl Environ Microbiol 63: 2206-2212PubMedGoogle Scholar
  65. Richardson LL, Kuta KG (2003) Ecological physiology of the black band disease cyanobacterium Phormidium corallyticum. FEMS Microbiol Ecol 43: 287-298CrossRefPubMedGoogle Scholar
  66. Robarts RD, Zohary T (1987) Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. N Z J Mar Freshw Res 21: 391-399CrossRefGoogle Scholar
  67. Rohrlack T, Christoffersen K, Dittmann E, Nogueira I, Vasconcelos V, Börner T (2005) Ingestion of microcystins by Daphnia: Intestinal uptake and toxic effects. Limnol Oceanogr 50: 440-448CrossRefGoogle Scholar
  68. Rohrlack T, Dittmann E, Börner T, Christoffersen K (2001) Effects of cell-bound microcystins on survival and feeding of Daphnia spp. Appl Env Microbiol 67: 3523-3529CrossRefGoogle Scholar
  69. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305: 367-371PubMedCrossRefGoogle Scholar
  70. Scheffer M, Straile D, van Nes EH, Hosper H (2001) Climatic warming causes regime shifts in lake food webs. Limnol Oceanogr 46: 1780-1783Google Scholar
  71. Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp. 13-35Google Scholar
  72. Sellner KG, Olson MM, Kononen K (1994) Copepod grazing in a summer cyanobacteria bloom in the Gulf of Finland Hydrobiologia 293: 249-254Google Scholar
  73. Sheehan PM, Harris MT (2004) Microbialite resurgence after the Late Ordovician extinction. Nature 430: 75-78PubMedCrossRefGoogle Scholar
  74. Sivonen K (1990) Effects of light, temperature, nitrate orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl Environ Microbiol 56: 2658-2666PubMedGoogle Scholar
  75. Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400: 554-557PubMedCrossRefGoogle Scholar
  76. Thacker RW, Ginsburg DW, Paul VJ (2001) Effects of nutrient enrichment and herbivore exclusion on coral reef macroalgae and cyanobacteria. Coral Reefs 19: 318-329CrossRefGoogle Scholar
  77. Third Assessment Report of the Intergovernmental Panel on Climate Change IPCC (WG I) (2001) Climate Change 2001: The Scientific Basis. Cambridge Univ. Press, CambridgeGoogle Scholar
  78. Tillett D, Dittmann E, Erhard M, von Döhren, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chemistry & Biology 7: 753-764Google Scholar
  79. Tonk L, Visser PM, Christiansen G, Dittmann E, Snelder EOFM, Wiedner C, Mur LR, Huisman J (2005) The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. App Env Microbiol 71: 5177-5181CrossRefGoogle Scholar
  80. Treydte KS, Schleser GH, Helle G, Frank DC, Winiger M, Haug GH, Esper J (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440: 1179-1182PubMedCrossRefGoogle Scholar
  81. Tsuda RT, Kami HT (1973) Algal succession on artificial reefs in a marine lagoon environment in Guam. J Phycol 9: 260-264Google Scholar
  82. Utkilen H, Gjolme N (1992) Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Appl Environ Microbiol 58: 1321-1325PubMedGoogle Scholar
  83. Verburg P, Hecky RE, Kling H (2003) Ecological consequences of a century of warming in Lake Tanganyika. Science 301: 505-507PubMedCrossRefGoogle Scholar
  84. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416: 389-395PubMedCrossRefGoogle Scholar
  85. Watanabe M F, Oishi S (1985) Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Appl Environ Microbiol 49: 1342-1344PubMedGoogle Scholar
  86. Watkinson AJ, O’Neil JM, Dennison WC (2005) Ecophysiology of the marine cyanobacterium Lyngbya majuscula (Oscillatoriaceae) in Moreton Bay, Australia. Harmful Algae 4: 697-715CrossRefGoogle Scholar
  87. Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309: 1844-1846PubMedCrossRefGoogle Scholar
  88. Wiedner C, Visser PM, Fastner J, Metcalf JS, Codd GA, Mur LR (2003) Effects of light on the microcystin content of Microcystis strain PCC 7806. Appl Env Microbiol 69: 1475-1481CrossRefGoogle Scholar
  89. Xie S, Pancost RD, Yin H, Wang H, Evershed RP (2005) Two episodes of microbial change coupled with Permo/Triassic faunal mass extinctions. Nature 434: 494-497PubMedCrossRefGoogle Scholar
  90. Xue L, Zhang Y, Zhang T, An L, Wang X (2005) Effects of enhanced ultraviolet-B radiation on algae and cyanobacteria. Crit Rev Microbiol 31: 79-89PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Valerie J Paul
    • 1
  1. 1.Smithsonian Marine Station at Fort PierceFort Pierce

Personalised recommendations