Investigation of Animal Reservoir(s) of SARS-CoV

  • Zhihong Hu
  • Zhengli Shi

Severe acute respiratory syndrome (SARS) is a novel infectious disease in the new millennium. It has been ascertained that a new coronavirus, SARS-CoV, is the etiological agent of SARS. While the extraordinarily rapid isolation and full genome sequencing of SARS-CoV constituted a remarkable scientific achievement, identification of the actual animal reservoir(s) of SARS-CoV is more difficult. Initial evidences indicated that the masked palm civet (Paguma larvata) was the primary suspect of the animal origin of SARS (Guan et al., 2003; Song et al., 2005). Recent studies suggested that horseshoe bat is one of the real reservoirs (Lau et al., 2005; Li et al., 2005) and masked palm civet may have only served as an intermediate amplification host for SARS-CoV and fulfilled efficient interspecies transmission (Lau et al., 2005). This chapter will summarize the studies on the animal reservoir(s) of SARS-CoV.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Center for Disease Control and Prevention (CDC). (2003). Prevalence of IgG antibody to SARS-associated coronavirus in animal traders–Guangdong Province, China, 2003. Morbidity and Mortality Weekly Report, 52, 986–987Google Scholar
  2. Chen, W., Yan, M., Yang, L., Ding, B., He, B., Wang, Y., Liu, X., Liu, C., Zhu, H., You, B., Huang, S., Zhang, J., Mu, F., Xiang, Z., Feng, X., Wen, J., Fang, J., Yu, J., Yang, H., Wang, J. (2005). SARS-associated coronavirus transmitted from human to pig. Emerging Infectious Disease, 11, 446–448Google Scholar
  3. Chinese SARS Molecular Epidemiology Consortium. (2004). Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science, 303, 1666–1669PubMedCrossRefGoogle Scholar
  4. Chua, K. B., Lam, S. K., Goh, K. J., Hooi, P. S., Ksiazek, T. G., Kamarulzaman, A., Olson, J., Tan, C. T. (2001). The presence of Nipah virus in respiratory secretions and urine of patients during an outbreak of Nipah virus encephalitis in Malaysia. Journal of Infection, 42, 40–43PubMedCrossRefGoogle Scholar
  5. Fouchier, R. A., Kuiken, T., Schutten, M., van Amerongen, G., van Doornum, G. J., van den Hoogen, B. G., Peiris, M., Lim, W., Stohr, K., Osterhaus, A. D. (2003). Aetiology: Koch’s postulates fulfilled for SARS virus. Nature, 423, 240PubMedCrossRefGoogle Scholar
  6. Glass, W. G., Subbarao, K., Murphy, B., Murphy, P. M. (2004). Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. Journal of Immunology, 173, 4030–4039Google Scholar
  7. Guan, Y., Zheng, B. J., He, Y. Q., Liu, X. L., Zhuang, Z. X., Cheung, C. L., Luo, S. W., Li, P. H., Zhang, L. J., Guan, Y. J., Butt, K. M., Wong, K. L., Chan, K. W., Lim, W., Shortridge, K. F., Yuen, K. Y., Peiris, J. S., Poon, L. L. (2003). Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 302, 276–278PubMedCrossRefGoogle Scholar
  8. Halpin, K., Young, P. L., Field, H. E., Mackenzie, J. S. (2000). Isolation of Hendra virus from pteropid bats: A natural reservoir of Hendra virus. Journal of General Virology, 81, 1927–1932PubMedGoogle Scholar
  9. Hsu, V. P., Hossain, M. J., Parashar, U. D., Ali, M. M., Ksiazek, T. G., Kuzmin, I., Niezgoda, M., Rupprecht, C., Bresee, J., Breiman, R. F. (2004). Nipah virus encephalitis reemergence, Bangladesh. Emerging Infectious Disease, 10, 2082–2087Google Scholar
  10. Hu, W., Bai, B., Hu, Z., Chen, Z., An, X., Tang, L., Yang, J., Wang, H., Wang, H. (2005). Development and evaluation of a multitarget real-time taqman reverse transcription PCR for detection of Severe Acute Respiratory Syndrome-associated coronavirus and surveillance for an apparently related coronavirus found in masked palm civets. Journal of Clinical Microbiology 43, 2040–2046CrossRefGoogle Scholar
  11. Kan, B., Wang, M., Jing, H., Xu, H., Jiang, X., Yan, M., Liang, W., Zheng, H., Wan, K., Liu, Q., Cui, B., Xu, Y., Zhang, E., Wang, H., Ye, J., Li, G., Li, M., Cui, Z., Qi, X., Chen, K., Du, L., Gao, K., Zhao, Y. T., Zou, X. Z., Feng, Y. J., Gao, Y. F., Hai, R., Yu, D., Guan, Y., Xu, J. (2005). Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. Journal of Virology, 79, 11892–11900PubMedCrossRefGoogle Scholar
  12. Lai, M. M. C., Holmes, K. V. (2001). Coronaviruses. In Fields Virology. Knipe, D. M., Howley, P. M., eds. Lippincott, Philadelphia, PA, pp. 1163–1185Google Scholar
  13. Lau, S. K., Woo, P. C., Li, K. S., Huang, Y., Tsoi, H. W., Wong, B. H., Wong, S. S., Leung, S. Y., Chan, K. H., Yuen, K. Y. (2005). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the National Academy Sciences of the United States of America, 102, 14040–10405CrossRefGoogle Scholar
  14. Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J. H., Wang, H., Crameri, G., Hu, Z., Zhang, H., Zhang, J., McEachern, J., Field, H., Daszak, P., Eaton, B. T., Zhang, S., Wang, L. F. (2005). Bats are natural reservoirs of SARS-like coronaviruses. Science, 310, 676–679PubMedCrossRefGoogle Scholar
  15. Liang, G., Chen, Q., Xu, J., Liu, Y., Lim, W., Peiris, J. S., Anderson, L. J., Ruan, L., Li, H., Kan, B., Di, B., Cheng, P., Chan, K. H., Erdman, D. D., Gu, S., Yan, X., Liang, W., Zhou, D., Haynes, L., Duan, S., Zhang, X., Zheng, H., Gao, Y., Tong, S., Li, D., Fang, L., Qin, P., Xu, W.; SARS Diagnosis Working Group. (2004). Laboratory diagnosis of four recent sporadic cases of community-acquired SARS, Guangdong Province, China. Emerging Infectious Disease, 10, 1774–1781Google Scholar
  16. Liang, L., He, C., Lei, M., Li, S., Hao, Y., Zhu, H., Duan, Q. (2005). Pathology of guinea pigs experimentally infected with a novel reovirus and coronavirus isolated from SARS patients. DNA Cell Biology, 24, 485–490CrossRefGoogle Scholar
  17. Mackenzie, J. S., Chua, K. B., Daniels, P. W., Eaton, B. T., Field, H. E., Hall, R. A., Halpin, K., Johansen, C. A., Kirkland, P. D., Lam, S. K., McMinn, P., Nisbet, D. J., Paru, R., Pyke, A. T., Ritchie, S. A., Siba, P., Smith, D. W., Smith, G. A., van den Hurk, A. F., Wang, L. F., Williams, D. T. (2001). Emerging viral diseases of Southeast Asia and the Western Pacific. Emerging Infectious Disease, 7, 497–504CrossRefGoogle Scholar
  18. Mackenzie, J. S., Field, H. E. (2004). Emerging encephalitogenic viruses: Lyssaviruses and henipaviruses transmitted by frugivorous bats. Archives of Virology Supplement, 18, 97–111Google Scholar
  19. Marra, M. A., Jones, S. J., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S., Khattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., Cloutier, A., Coughlin, S. M., Freeman, D., Girn, N., Griffith, O. L., Leach, S. R., Mayo, M., McDonald, H., Montgomery, S. B., Pandoh, P. K., Petrescu, A. S., Robertson, A. G., Schein, J. E., Siddiqui, A., Smailus, D. E., Stott, J. M., Yang, G. S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T. F., Bowness, D., cCzub, M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G. A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R. C., Krajden, M., Petric, M., Skowronski, D. M., Upton, C., Roper, R. L. (2003). The Genome sequence of the SARS-associated coronavirus. Science, 300, 1399–1404PubMedCrossRefGoogle Scholar
  20. Martina, B. E. E., Haagmans, B. L., Kuiken, T., Fouchier, R. A. M., Rimmelzwaan, G. F., Amerongen, G. V., Peiris, J. S. M., Lim, W., Osterhaus, A. D. M. E. (2003). SARS virus infection of cats and ferrets. Nature, 425, 915PubMedCrossRefGoogle Scholar
  21. McAuliffe, J., Vogel, L., Roberts, A., Fahle, G., Fischer, S., Shieh, W. J., Butler, E., Zaki, S., St Claire, M., Murphy, B., Subbarao, K. (2004). Replication of SARS coronavirus administered into the respiratory tract of African green rhesus and cynomolgus monkeys. Virology, 330, 8–15PubMedCrossRefGoogle Scholar
  22. Normile, D. (2004). Infectious diseases. Viral DNA match spurs China’s civet roundup. Science, 303, 292PubMedCrossRefGoogle Scholar
  23. Poon, L. L., Chu, D. K., Chan, K. H., Wong, O. K., Ellis, T. M., Leung, Y. H., Lau, S. K., Woo, P. C., Suen, K.Y., Yuen, K. Y., Guan, Y., Peiris, J. S. (2005). Identification of a novel coronavirus in bats. Journal of Virology, 79, 2001–2009PubMedCrossRefGoogle Scholar
  24. Qin, C., Wang, J., Wei, Q., She, M., Marasco, W. A., Jiang, H., Tu, X., Zhu, H., Ren, L., Gao, H., Guo, L., Huang, L., Yang, R., Cong, Z., Guo, L., Wang, Y., Liu, Y., Sun, Y., Duan, S., Qu, J., Chen, L., Tong, W., Ruan, L., Liu, P., Zhang, H., Zhang, J., Zhang, H., Liu, D., Liu, Q., Hong, T., He, W. (2005). An animal model of SARS produced by infection of Macaca mulatta with SARS coronavirus. Journal of Pathology 206, 251–259PubMedCrossRefGoogle Scholar
  25. Qu, X. X., Hao, P., Song, X. J., Jiang, S. M., Liu, Y. X., Wang, P. G., Rao, X., Song, H. D., Wang, S.Y., Zuo, Y., Zheng, A. H., Luo, M., Wang, H. L., Deng, F., Wang, H. Z., Hu, Z. H., Ding, M. X., Zhao, G. P., Deng, H. K. (2005). Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. Journal of Biological Chemistry, 280, 29588–29595PubMedCrossRefGoogle Scholar
  26. Reynes, J. M., Counor, D., Ong, S., Faure, C., Seng, V., Molia, S., Walston, J., Georges-Courbot, M. C., Deubel, V., Sarthou, J. L. (2005). Nipah virus in Lyle’s flying foxes, Cambodia. Emerging Infectious Disease, 11, 1042–1047Google Scholar
  27. Roberts, A., Vogel, L., Guarner, J., Hayes, N., Murphy, B., Zaki, S., Subbarao, K. (2005a). Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. Journal of Virology, 79, 503–511PubMedCrossRefGoogle Scholar
  28. Roberts, A., Paddock, C., Vogel, L., Butler, E., Zaki, S., Subbarao, K. (2005b). Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. Journal of Virology, 79, 5833–5838PubMedCrossRefGoogle Scholar
  29. Rowe, T., Gao, G., Hogan, R. J., Crystal, R. G., Voss, T. G., Grant, R. L., Bell, P., Kobinger, G. P., Wivel, N. A., Wilson, J. M. (2004). Macaque model for severe acute respiratory syndrome. Journal of Virology, 78, 11401–11404PubMedCrossRefGoogle Scholar
  30. Siddell, S. G. (1995). The Coronaviridae. In the Viruses. Fraenkel-Conrat, H., Wagner, R. R., eds. Plenum Press, New YorkGoogle Scholar
  31. Subbarao, K., McAuliffe, J., Vogel, L., Fahle, G., Fischer, S., Tatti, K., Packard, M., Shih, W.-J., Murphy, B. (2004). Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. Journal of Virology, 78, 3572–3577PubMedCrossRefGoogle Scholar
  32. Song, H. D., Tu, C. C., Zhang, G. W., Wang, S. Y., Zheng, K., Lei, L. C., Chen, Q. X., Gao, Y. W., Zhou, H. Q., Xiang, H., Zheng, H. J., Chern, S. W., Cheng, F., Pan, C. M., Xuan, H., Chen, S. J., Luo, H. M., Zhou, D. H., Liu, Y. F., He, J. F., Qin, P. Z., Li, L. H., Ren, Y. Q., Liang, W. J., Yu, Y. D., Anderson, L., Wang, M., Xu, R. H., Wu, X. W., Zheng, H. Y., Chen, J. D., Liang, G., Gao, Y., Liao, M., Fang, L., Jiang, L.Y., Li, H., Chen, F., Di, B., He, L. J., Lin, J. Y., Tong, S., Kong, X., Du, L., Hao, P., Tang, H., Bernini, A., Yu, X. J., Spiga, O., Guo, Z. M., Pan, H. Y., He, W. Z., Manuguerra, J. C., Fontanet, A., Danchin, A., Niccolai, N., Li, Y. X., Wu, C. I., Zhao, G. P. (2005). Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proceedings of the National Academy Sciences of the United States of America, 102, 2430–2435CrossRefGoogle Scholar
  33. Tu, C. C., Crameri, G., Kong, X. G., Chen, J. D., Sun, Y. W., Yu, M., Xiang, H., Xia, X. Z., Liu, S. W., Ren, T., Y. D., Eaton, B. T., Xuan, H. & Wang, L. F. (2004). Antibodies to sars coronavirus in civets. Emerging Infectious Diseases 10, 2244–2248PubMedGoogle Scholar
  34. Wang, M., Jing, H. Q., Xu, H. F., Jiang, X. G., Kan, B., Liu, Q. Y., Wan, K. L., Cui, B. Y., Zheng, H., Cui, Z. G., Yan, M. Y., Liang, W. L., Wang, H. X., Qi, X. B., Li, Z. J., Li, M. C., Chen, K., Zhang, E. M., Zhang, S. Y., Hai, R., Yu, D. Z., Xu, J. G. (2005) Surveillance on severe acute respiratory syndrome associated coronavirus in animals at a live animal market of Guangzhou in 2004. Zhonghua Liu Xing Bing Xue Za Zhi, 26, 84–87PubMedGoogle Scholar
  35. Watts, J. (2004). China culls wild animals to prevent new SARS threat. Lancet, 363, 134PubMedCrossRefGoogle Scholar
  36. Webster, R. G. (2004). Wet markets – A continuing source of severe acute respiratory syndrome and influenza? Lancet, 363, 234–236PubMedCrossRefGoogle Scholar
  37. Weingartl, H. M., Copps, J., Drebot, M. A., Marszal, P., Smith, G., Gren, J., Andonova, M., Pasick, J., Kitching, P., Czub, M. (2004). Susceptibility of pigs and chickens to SARS coronavirus. Emerging Infectious Disease 10, 179–184Google Scholar
  38. Wentworth, D. E., Gillim-Ross, L., Espina, N., Bernard, K. A. (2004). Mice susceptible to SARS coronavirus. Emerging Infectious Disease, 10, 1293–1296Google Scholar
  39. Wu, D., Tu, C., Xin, C., Xuan, H., Meng, Q., Liu, Y., Yu, Y., Guan, Y., Jiang, Y., Yin, X., Crameri, G., Wang, M., Li, C., Liu, S., Liao, M., Feng, L., Xiang, H., Sun, J., Chen, J., Sun, Y., Gu, S., Liu, N., Fu, D., Eaton, B. T., Wang, L. F., Kong, X. (2005). Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates. Journal of Virology, 79, 2620–26255PubMedCrossRefGoogle Scholar
  40. Xu, H. F., Wang, M., Zhang, Z. B., Zou, X. Z., Gao, Y., Liu, X. N., Lu, E. J., Pan, B. Y., Wu, S. J., Yu, S.Y. (2004a). An epidemiologic investigation on infection with severe acute respiratory syndrome coronavirus in wild animals traders in Guangzhou. Zhonghua Yu Fang Yi Xue Za Zhi, 38, 81–83PubMedGoogle Scholar
  41. Xu, R. H., He, J. F., Evans, M. R., Peng, G. W., Field, H. E., Yu, D. W., Lee, C. K., Luo, H. M., Lin, W. S., Lin, P., Li, L. H., Liang, W. J., Lin, J. Y., Schnur, A. (2004b). Epidemiologic clues to SARS origin in China. Emerging Infectious Disease, 10, 1030–1037Google Scholar
  42. Yang, Z. Y., Werner, H. C., Kong, W. P., Leung, K., Traggiai, E., Lanzavecchia, A., Nabel, G. J. (2005). Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proceedings of the National Academy Sciences of the United States of America, 102, 797–801CrossRefGoogle Scholar
  43. Yu, S., Qiu, M., Chen, Z., Ye, X., Gao, Y., Wei, A., Wang, X., Yang, L., Wang, J., Wen, J., Song, Y., Pei, D., Dai, E., Guo, Z., Cao, C., Wang, J., Yang, R. (2005). Retrospective serological investigation of severe acute respiratory syndrome coronavirus antibodies in recruits from mainland China. Clinical and Diagnostic Laboratory Immunology, 12, 552–554PubMedGoogle Scholar
  44. Zheng, B. J., Wong, K. H., Zhou, J., Wong, K. L., Young, B. W., Lu, L. W., Lee, S. S. (2004). SARS-related virus predating SARS outbreak, Hong Kong. Emerging Infectious Disease, 10, 176–178Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zhihong Hu
    • 1
  • Zhengli Shi
    • 1
  1. 1.Wuhan Institute of VirologyChinese Academy of SciencesChina

Personalised recommendations