In the Grip of Algal Genomics

  • Arthur R. Grossman

Abstract

Algae are dominant primary producers on the Earth and have a major impact on global productivity and biogeochemical cycling. There are still few algal genomes that have been completely characterized, and resources directed toward algal genomic sequencing are limited. However, it is also becoming evident that algae and prokaryotic picoplankton have a critical role in the fixation and sequestration of carbon, and so the interest in algal genomics is expanding. There are some algae for which full or near-full genome sequences have been secured; these genomes include those of the red alga Cyanidioschyzon merolae, the green algae or chlorophytes Chlamydomonas reinhardtii and Volvox carteri, the marine picoeukaryote Ostreococcus tauri (two different strains of O. tauri have been sequenced), the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum, and the haptophyte Emiliania huxleyi. There is also a full sequence for the vestigal ‘red’ algal genome of the nucleomorph of the Cyptomonad Guillardia theta. In addition, numerous genomes of photosynthetic microbes, including marine Synechococcus and Prochlorococcus species have been sequenced. There have also been projects developed to define algal transcriptomes as determined by cDNA analysis, full genome sequences of numerous plastids, and the genomes of a variety of viruses that infect marine and freshwater algae. The recent efforts focused on acquiring and analyzing algal genome sequences have generated an influx of exciting data to a field that is in its infancy. In this review I discuss potential criteria for determining which organisms should be targeted for genome projects, successful forays into algal genomic sequencing, and some of the inferences generated from the analysis of the sequence information.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biegala IC, Not F, Vaulot D et al. Quantitative assessment of picoeukaryotes in the natural environment by using taxon-specific oligonucleotide probes in association with tyramide signal amplification-fluorescence in situ hybridization and flow cytometry. Appl Environ Microbiol 2003; 69(9):5519–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Díez B, Pedros-Alio C, Massana R. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 2001; 67(7):2932–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Graham LE, Wilcox LW. Algae. Upper Saddle River: Prentice Hall, 2000.Google Scholar
  4. 4.
    Berteau O, Mulloy B. Sulfated fucans, fresh perspectives: Structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 2003; 13(6):29R–40R.PubMedCrossRefGoogle Scholar
  5. 5.
    Feizi T, Mulloy B. Carbohydrates and glycoconjugates. Glycomics: The new era of carbohydrate biology. Curr Opin Struct Biol 2003; 13(5):602–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Drury JL, Dennis RG, Mooney DJ. The tensile properties of alginate hydrogels. Biomaterials 2004; 25(16):3187–99.PubMedCrossRefGoogle Scholar
  7. 7.
    Matsubara K. Recent advances in marine algal anticoagulants. Curr Med Chem Cardiovasc Hematol Agents 2004; 2(1):13–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Chamberlain JG. The possible role of long-chain, omega-3 fatty acids in human brain phytogeny. Perspect Biol Med 1996; 39(3):436–45.PubMedGoogle Scholar
  9. 9.
    Salem Jr N, Moriguchi T, Greiner RS et al. Alterations in brain function after loss of docosahexaenoate due to dietary restriction of n-3 fatty acids. J Mol Neurosci 2001; 16(2–3):299–307.PubMedCrossRefGoogle Scholar
  10. 10.
    Murdoch L. Discovering the Great Barrier Reef. Sydney: Harper Collins, 1996.Google Scholar
  11. 11.
    Coles SL, Brown BE. Coral bleaching—Capacity for acclimatization and adaptation. Adv Mar Biol 2003; 46:183–223.PubMedCrossRefGoogle Scholar
  12. 12.
    Beja O, Spudich EN, Spudich JL et al. Proteorhodopsin phototrophy in the ocean. Nature 2001; 411(6839):786–9.PubMedCrossRefGoogle Scholar
  13. 13.
    de la Torre JR, Christianson LM, Beja O et al. Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc Natl Acad Sci USA 2003; 100(22):12830–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Venter JC, Remington K, Heidelberg JF et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004; 304(5667):66–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Whitelaw CA, Barbazuk WB, Pertea G et al. Enrichment of gene-coding sequences in maize by genome filtration. Science 2003; 302(5653):2118–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Mayer K, Mewes HW. How can we deliver the large plant genomes? Strategies and perspectives. Curr Opin Plant Biol 2002; 5(2):173–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Turmel M, Otis C, Lemieux C. The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: Insights into the architecture of ancestral chloroplast genomes. Proc Natl Acad Sci USA 1999; 96(18):10248–53.PubMedCrossRefGoogle Scholar
  18. 18.
    Turmel M, Otis C, Lemieux C. The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: Insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci USA 2002; 99(17):11275–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Wakasugi T, Nagai T, Kapoor M et al. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: The existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA 1997; 94(11):5967–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Lemieux C, Otis C, Turmel M. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 2000; 403(6770):649–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Douglas S, Zauner S, Fraunholz M et al. The highly reduced genome of an enslaved algal nucleus. Nature 2001; 410(6832):1091–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Tada N, Shibata S, Otsuka S et al. Comparison of gene arrangements of chloroplasts between two centric diatoms, Skeletonema costatum and Odontella sinensis. DNA Seq 1999; 10(4–5):343–7.PubMedGoogle Scholar
  23. 23.
    Chu KH, Qi J, Yu ZG et al. Origin and phylogeny of chloroplasts revealed by a simple correlation analysis of complete genomes. Mol Biol Evol 2004; 21(1):200–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Stirewalt VL, Michalowski CB, Loffelhardt W et al. Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol Biol 1995; 13:327–332.CrossRefGoogle Scholar
  25. 25.
    Glockner G, Rosenthal A, Valentin K. The structure and gene repertoire of an ancient red algal plastid genome. J Mol Evol 2000; 51(4):382–90.PubMedGoogle Scholar
  26. 26.
    Hallick RB, Hong L, Drager RG et al. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res 1993; 21(15):3537–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang Z, Green BR, Cavalier-Smith T. Single gene circles in dinoflagellate chloroplast genomes. Nature 1999; 400(6740):155–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang Z, Cavalier-Smith T, Green BR. Evolution of dinoflagellate unigenic minicircles and the partially concerted divergence of their putative replicon origins. Mol Biol Evol 2002; 19(4):489–500.PubMedGoogle Scholar
  29. 29.
    Matsuzaki M, Misumi O, Shin IT et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 2004; 428(6983):653–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Armbrust EV, Berges JA, Bowler C et al. The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 2004; 306(5693):79–86.PubMedCrossRefGoogle Scholar
  31. 31.
    Debuchy R, Purton S, Rochaix JD. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: An important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 1989; 8:2803–2809.PubMedGoogle Scholar
  32. 32.
    Kindle KL, Schnell RA, Fernández E et al. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 1989; 109:2589–2601.PubMedCrossRefGoogle Scholar
  33. 33.
    Diener DR, Curry AM, Johnson KA et al. Rescue of a paralyzed flagella mutant of Chlamydomonas by transformation. Proc Natl Acad Sci USA 1990; 87:5739–5743.PubMedCrossRefGoogle Scholar
  34. 34.
    Mayfield SP, Kindle KL. Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc Natl Acad Sci USA 1990; 87:2087–2091.PubMedCrossRefGoogle Scholar
  35. 35.
    Shimogawara K, Fujiwara S, Grossman A et al. High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 1998; 148(4):1821–8.PubMedGoogle Scholar
  36. 36.
    Fernandez E, Cardenas J. Genetic and regulatory aspects of nitrate assimilation in algae. Oxford University Press, 1989:101–24.Google Scholar
  37. 37.
    Kindle KL. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 1990; 87:1228–1232.PubMedCrossRefGoogle Scholar
  38. 38.
    Goldschmidt-Clermont M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: A selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res 1991; 19:4083–4089.PubMedCrossRefGoogle Scholar
  39. 39.
    Nelson JAE, Savereide PB, Lefebvre PA. The CRY1 gene in Chlamydomonas reinhardtii: Structure and use as a dominant selectable marker for nuclear transformation. Mol Cell Biol 1994; 14:4011–4019.PubMedGoogle Scholar
  40. 40.
    Stevens DR, Rochaix JD, Purton S. The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet 1996; 251:23–30.PubMedGoogle Scholar
  41. 41.
    Lumbreras V, Stevens DR, Purton S. Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 1998; 14(4):441–447.CrossRefGoogle Scholar
  42. 42.
    Auchincloss AH, Loroch AI, Rochaix JD. The arginosuccinate lyase gene of Chlamydomonas reinhardtii: Cloning of the cDNA and its characterization as a selectable shuttle marker. Mol Gen Genet 1999; 261:21–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Kovar JL, Zhang J, Funke RP et al. Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J 2002; 29(1):109–17.PubMedCrossRefGoogle Scholar
  44. 44.
    Purton S, Rochaix JD. Complementation of a Chlamydomonas reinhardtii mutant using a genomic cosmid library. Plant Mol Biol 1994; 24:533–537.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang H, Herman PL, Weeks DP. Gene isolation through genomic complementation using an indexed library of Chlamydomonas reinhardtii DNA. Plant Mol Biol 1994; 24:663–672.PubMedCrossRefGoogle Scholar
  46. 46.
    Lefebvre PA, Silflow CD. Chlamydomonas: The cell and its genomes. Genetics 1999; 151(1):9–14.PubMedGoogle Scholar
  47. 47.
    Shrager J, Hauser C, Chang CW et al. Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiol 2003; 131(2):401–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Funke RP, Kovar JL, Weeks DP. Intracellular carbonic anhydrase is essential to photosynthesis in Chlamydomonas reinhardtii at atmospheric levels of CO2. Demonstration via genomic complementation of the high-CO2-requiring mutant ca-1. Plant Physiol 1997; 114(1):237–244.PubMedCrossRefGoogle Scholar
  49. 49.
    Randolph-Anderson BL, Sato R, Johnson AM et al. Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides. Plant Mol Biol 1998; 38:839–859.PubMedCrossRefGoogle Scholar
  50. 50.
    Wykoff DD, Davies JP, Melis A et al. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 1998; 117(1):129–39.PubMedCrossRefGoogle Scholar
  51. 51.
    Yildiz FH, Davies JP, Grossman A. Sulfur availability and the SAC1 gene control adenosine triphosphate sulfurylase gene expression in Chlamydomonas reinhardtii. Plant Physiol 1996; 112(2):669–75.PubMedCrossRefGoogle Scholar
  52. 52.
    Palombella AL, Dutcher SK. Identification of the gene encoding the tryptophan synthase beta-subunit from Chlamydomonas reinhardtii. Plant Physiol 1998; 117(2):455–464.PubMedCrossRefGoogle Scholar
  53. 53.
    Tam LW, Lefebvre PA. Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 1993; 135:375–384.PubMedGoogle Scholar
  54. 54.
    Davies JP, Yildiz F, Grossman AR. Mutants of Chlamydomonas with aberrant responses to sulfur deprivation. Plant Cell 1994; 6(1):53–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Davies J, Yildiz F, Grossman AR. Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 1996; 15:2150–2159.PubMedGoogle Scholar
  56. 56.
    Smith EF, Lefebvre PA. PF16 encodes a protein with armadillo repeats and localizes to a single microtubule of the central apparatus in Chlamydomonas flagella. J Cell Biol 1996; 132:359–370.PubMedCrossRefGoogle Scholar
  57. 57.
    Koutoulis A, Pazour GJ, Wilkerson CG et al. The Chlamydomonas reinhardtii ODA3 gene encodes a protein of the outer dynein arm docking complex. J Cell Biol 1997; 137(5):1069–1080.PubMedCrossRefGoogle Scholar
  58. 58.
    Smith EF, Lefebvre PA. PF20 gene product contains WD repeats and localizes to the intermicrotubule bridges in Chlamydomonas flagella. Mol Biol Cell 1997; 8:455–467.PubMedGoogle Scholar
  59. 59.
    Zhang D, Lefebvre PA. FAR1, a negative regulatory locus required for the repression if the nitrate reductase gene in Chlamydomonas reinhardtii. Genetics 1997; 146:121–133.PubMedGoogle Scholar
  60. 60.
    Asleson CM, Lefebvre PA. Genetic analysis of flagellar length control in Chlamydomonas reinhardtii: A new long-flagella locus and extragenic suppressor mutations. Genetics 1998; 148:693–702.PubMedGoogle Scholar
  61. 61.
    Davies JP, Yildiz FH, Grossman AR. Sac3, an Snf1-like serine/threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation. Plant Cell 1999; 11(6):1179–90.PubMedCrossRefGoogle Scholar
  62. 62.
    Wykoff DD, Grossman AR, Weeks DP et al. Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci USA 1999; 96(26):15336–41.PubMedCrossRefGoogle Scholar
  63. 63.
    Vysotskaia VS, Curtis DE, Voinov AV et al. Development and characterization of genome-wide single nucleotide pholymorphism markers in the green alga Chlamydomonas reinhardtii. Plant Physiol 2001; 127:386–389.PubMedCrossRefGoogle Scholar
  64. 64.
    Kathir P, LaVoie M, Brazelton WJ et al. Molecular map of the Chlamydomonas reinhardtii nuclear genome. Eukaryot Cell 2003; 2(2):362–79.PubMedCrossRefGoogle Scholar
  65. 65.
    Schroda M, Vallon O, Wollman FA et al. A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 1999; 11(6):1165–1178.PubMedCrossRefGoogle Scholar
  66. 66.
    Jeong BR, Wu-Scharf D, Zhang C et al. Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc Natl Acad Sci USA 2002; 99:1076–1081.CrossRefGoogle Scholar
  67. 67.
    Sineshchekov OA, Jung KH, Spudich JL. The rhodopsins mediate phototaxis to low-and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 2002; 99:225–230.CrossRefGoogle Scholar
  68. 68.
    Wilson NF, Lefebvre PA. Characterization of GSK3, a flagellar kinase with a putative role in the regulation of flagella length. Tenth International Chlamydomonas Conference 2002, (Abstract).Google Scholar
  69. 69.
    Davies JP, Weeks DP, Grossman AR. Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res 1992; 20(12):2959–65.PubMedCrossRefGoogle Scholar
  70. 70.
    Fuhrmann M, Oertel W, Hegemann P. A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 1999; 19(3):353–361.PubMedCrossRefGoogle Scholar
  71. 71.
    Minko I, Holloway SP, Nikaido S et al. Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas. Mol Gen Genet 1999; 262:421–425.PubMedCrossRefGoogle Scholar
  72. 72.
    Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 2003; 100(2):438–42.PubMedCrossRefGoogle Scholar
  73. 73.
    Davies JP, Grossman AR. Sequences controlling transcription of the Chlamydomonas reinhardtii beta 2-tubulin gene after deflagellation and during the cell cycle. Mol Cell Biol 1994; 14(8):5165–74.PubMedGoogle Scholar
  74. 74.
    Quinn JM, Merchant S. Two Copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell 1995; 7:623–638.PubMedCrossRefGoogle Scholar
  75. 75.
    Jacobshagen S, Kindle KL, Johnson CH. Transcription of CABII is regulated by the biological clock in Chlamydomonas reinhardtii. Plant Molecular Biology 1996; 31(6):1173–1184.PubMedCrossRefGoogle Scholar
  76. 76.
    Ohresser M, Matagne RF, Loppes R. Expression of the arylsulphatase reporter gene under the control of the NIT1 promoter of Chlamydomonas reinhardtii. Curr Genet 1997; 31:264–271.PubMedCrossRefGoogle Scholar
  77. 77.
    Villand P, Ericksson M, Samuelsson G. Regulation of genes by the environmental CO2 level. Plant Physiol 1997; 114:258–259.Google Scholar
  78. 78.
    Fuhrmann M, Ferbitz L, Eichler-Stahlberg A et al. Promoter activity monitored by heterologous expression of Renilla reniformis luciferase in Chlamydomonas reinhardtii. Tenth International Chlamydomonas Conference 2002, (Abstract).Google Scholar
  79. 79.
    Komine Y, Kikis E, Schuster G et al. Evidence for in vivo modulation of chloroplast RNA stability by 3′-UTR homopolymeric tails in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 2002; 99:4085–4090.PubMedCrossRefGoogle Scholar
  80. 80.
    Boynton JE, Gillham NW, Harris EH et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 1988; 240:1534–1538.PubMedCrossRefGoogle Scholar
  81. 81.
    Newman SM, Boynton JE, Gillham NW et al. Transformation of chloroplast ribosomal RNA in Chlamydomonas: Molecular and genetic characterization of integration events. Genetics 1990; 126:875–888.PubMedGoogle Scholar
  82. 82.
    Whitelegge JP, Koo D, Erickson J. Site-directed mutagenesis of the chloropolast psbA gene encoding the D1 polypeptide of photosystem II in Chlamydomonas reinhardtii changes at aspartate 170 affect the assembly of a functional water-splitting manganese cluster. In: Murata N, ed. Research in Photosynthesis. Dordrecht: Kluwer Academic Publishers, 1992:151–154.Google Scholar
  83. 83.
    Hong S, Spreitzer RJ. Nuclear mutation inhibits expression of the chloroplast gene that encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 1994; 106(2):673–678.PubMedGoogle Scholar
  84. 84.
    Takahashi Y, Matsumoto H, Goldschmidt-Clermont M et al. Directed disruption of the Chlamydomonas chloroplast psbK gene destabilizes the photosystem II reaction center complex. Plant Mol Biol 1994; 24:779–788.PubMedCrossRefGoogle Scholar
  85. 85.
    Hallahan BJ, Purton S, Ivison A et al. Analysis of the proposed Fe-Sx binding region in Chlamydomonas reinhardtii. Photosyn Res 1995; 46:257–264.CrossRefGoogle Scholar
  86. 86.
    Webber AN, Su H, Binghma SE et al. Site-directed mutations affecting the spectroscopic characteristics and mid-point potential of the primary donor in photosystem I. Biochemistry 1996; 39:12857–12863.CrossRefGoogle Scholar
  87. 87.
    Zhu G, Spreitzer RJ. Directed mutagenesis of chloroplast ribulose-1,5-bisphosphate carboxylase-oxygenase. Loop 6 substitutions complement for structual stability but decrease catalytic efficiency. J Biol Chem 1996; 271:18494–18498.PubMedCrossRefGoogle Scholar
  88. 88.
    Fischer N, Setif P, Rochaix JD. Targeted mutations in the psaC gene of Chlamydomonas reinhardtii: Preferential reduction of FB at low temperature is not accompanied by altered electron flow from Photosystem I to ferredoxin. Biochemistry 1997; 36:93–102.PubMedCrossRefGoogle Scholar
  89. 89.
    Lardans A, Gillham NW, Boynton JE. Site-directed mutations at residue 251 of the photosystem II D1 protein of Chlamydomonas that result in a nonphotosynthetic phenotype and impair D1 synthesis and accumulation. J Biol Chem 1997; 272:210–216.PubMedCrossRefGoogle Scholar
  90. 90.
    Larson EM, O’Brien CM, Zhu G et al. Specificity for activase is changed by a Pro-89 to Arg substitution in the large subunit of ribulose-1,5-biosphosphate carboxylase-oxgenase. J Biol Chem 1997; 272:17033–17037.PubMedCrossRefGoogle Scholar
  91. 91.
    Melkozernov AN, Su H, Lin S et al. Specific mutations near the primary donor in Photosystem I from Chlamydomonas reinhardtii alters the trapping time and spectroscopic properties of P700. Biochemistry 1997; 36:2898–2907.PubMedCrossRefGoogle Scholar
  92. 92.
    Xiong J, Hutchinson RS, Sayre RT et al. Modification of the photosystem II acceptor side function in a D1 mutant (arginine-269-glycine) of Chlamydomonas reinhardtii. Biochimica et Biophysica Acta 1997; 1322:60–76.PubMedCrossRefGoogle Scholar
  93. 93.
    Finazzi G, Furia A, Barbagallo RP et al. State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochimica et Biophysica Acta 1999; 1413(3):117–129.PubMedCrossRefGoogle Scholar
  94. 94.
    Higgs DC, Shapiro RS, Kindle KL et al. Small cis acting sequences that specify secondary structures in a chloroplast mRNA are essential for RNA stability and translation. Mol Cell Biol 1999; 19:8479–8491.PubMedGoogle Scholar
  95. 95.
    Harris EH. The Chlamydomonas sourcebook. A Comprehensive Guide to Biology and Laboratory Use. San Diego: Academic Press, 1989.Google Scholar
  96. 96.
    Harris EH. Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 2001; 52:363–406.PubMedCrossRefGoogle Scholar
  97. 97.
    Sager R. Genetic systems in Chlamydomonas. Science 1960; 132:1459–1465.PubMedCrossRefGoogle Scholar
  98. 98.
    Gorman DS, Levine RP. Cytochrome f and plastocyanin: Their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 1966; 54:1665–1669.CrossRefGoogle Scholar
  99. 99.
    Bennoun P, Levine RP. Detecting mutants that have impaired photosynthesis by their increased level of fluorescence. Plant Physiol 1967; 42:1284–1287.PubMedGoogle Scholar
  100. 100.
    Givan AL, Levine RP. The photosynthetic electron transport chain of Chlamydomonas reinhardtii. VII. Photosynthetic phosphorylation by a mutant strain of Chlamydomonas reinhardtii deficient in active P700. Plant Physiol 1967; 42:1264–1268.PubMedGoogle Scholar
  101. 101.
    Lavorel J, Levine RP. Fluorescence properties of wild-type Chlamydomonas reinhardtii and three mutant strains having impaired photosynthesis. Plant Physiol 1968; 43:1049–1055.PubMedGoogle Scholar
  102. 102.
    Levine RP. The analysis of photosynthesis using mutant strains of algae and higher plants. Annu Rev Plant Physiol 1969; 20:523–540.CrossRefGoogle Scholar
  103. 103.
    Levine RP, Goodenough UW. The genetics of photosynthesis and of the chloroplast in Chlamydomonas reinhardii. Annu Rev Genet 1970; 4:397–408.PubMedCrossRefGoogle Scholar
  104. 104.
    Moll B, Levine RP. Characterization of a photosynthetic mutant strain of Chlamydomonas reinhardi deficient in phosphoribulokinase activity. Plant Physiol 1970; 46:576–580.PubMedGoogle Scholar
  105. 105.
    Sato V, Levine RP, Neumann J. Photosynthetic phosphorylation in Chlamydomonas reinhardti. Effects of a mutation altering an ATP-synthesizing enzyme. Biochimica et Biophysica Acta 1971; 253:437–448.PubMedCrossRefGoogle Scholar
  106. 106.
    Pazour GJ, Dickert BL, Vucica Y et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 2000; 151(3):709–18.PubMedCrossRefGoogle Scholar
  107. 107.
    Snell WJ, Pan J, Wang Q. Cilia and flagella revealed: From flagellar assembly in Chlamydomonas to human obesity disorders. Cell 2004; 117(6):693–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Pennarun G, Bridoux AM, Escudier E et al. Isolation and expression of the human hPF20 gene orthologous to Chlamydomonas PF20: Evaluation as a candidate for axonemal defects of respiratory cilia and sperm flagella. Am J Respir Cell Mol Biol 2002; 26(3):362–70.PubMedGoogle Scholar
  109. 109.
    Li JB, Gerdes JM, Haycraft CJ et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 2004; 117(4):541–52.PubMedCrossRefGoogle Scholar
  110. 110.
    Grossman AR. Chlamydomonas reinhardtii and photosynthesis: Genetics to genomics. Curr Opin Plant Biol 2000; 3(2):132–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Grossman AR, Harris EE, Hauser C et al. Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot Cell 2003; 2(6):1137–50.PubMedCrossRefGoogle Scholar
  112. 112.
    Dent RM, Han M, Niyogi KK. Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii. Trends Plant Sci 2001; 6(8):364–71.PubMedCrossRefGoogle Scholar
  113. 113.
    Dutcher SK. Chlamydomonas reinhardtii: Biological rationale for genomics. J Eukaryot Microbiol 2000; 47(4):340–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Lilly JW, Maul JE, Stern DB. The Chlamydomonas reinhardtii organellar genomes respond transcriptionally and post-transcriptionally to abiotic stimuli. Plant Cell 2002; 14(11):2681–706.PubMedCrossRefGoogle Scholar
  115. 115.
    Im CS, Zhang Z, Shrager J et al. Analysis of light and CO(2) regulation in Chlamydomonas reinhardtii using genome-wide approaches. Photosynth Res 2003; 75(2):111–25.PubMedCrossRefGoogle Scholar
  116. 116.
    Zhang Z, Shrager J, Jain M et al. Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell 2004; 3(5):1331–48.PubMedCrossRefGoogle Scholar
  117. 117.
    Yoshioka S, Taniguchi F, Miura K et al. The novel Myb transcription factor LCR1 regulates the CO2-responsive gene Cah1, encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Plant Cell 2004; 16(6):1466–77.PubMedCrossRefGoogle Scholar
  118. 118.
    Miura K, Yamano T, Yoshioka S et al. Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 2004; 135(3):1595–607.PubMedCrossRefGoogle Scholar
  119. 119.
    Ledford HK, Baroli I, Shin JW et al. Comparative profiling of lipid-soluble antioxidants and transcripts reveals two phases of photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas reinhardtii. Mol Genet Genomics 2004; 272(4):470–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Moseley JL, Chang CW, Grossman AR. Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryot Cell 2006; 5(1):26–44.PubMedCrossRefGoogle Scholar
  121. 121.
    Eberhard S, Jain M, Im CS et al. Generation of an oligonucleotide array for analysis of gene expression in Chlamydomonas reinhardtii. Curr Genet 2006; 49(2):106–24.PubMedCrossRefGoogle Scholar
  122. 122.
    Wang Y, Sun S, Horken KM et al. Analyses of CIA5, the master regulator of the CCM in Chlamydomonas reinhardtii, and its control of gene expression. Can J Bot 2005; 83:765–779.CrossRefGoogle Scholar
  123. 123.
    Wagner V, Fiedler M, Markert C et al. Functional proteomics of circadian expressed proteins from Chlamydomonas reinhardtii. FEBS Lett 2004; 559(1–3):129–35.PubMedCrossRefGoogle Scholar
  124. 124.
    Wagner V, Gessner G, Mittag M. Functional proteomics: A promising approach to find novel components of the circadian system. Chronobiol Int 2005; 22(3):403–15.PubMedCrossRefGoogle Scholar
  125. 125.
    Im CS, Eberhard S, Huang K et al. Phototropin involvement in expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Plant J 2006, (In Press).Google Scholar
  126. 126.
    Stauber EJ, Fink A, Markert C et al. Proteomics of Chlamydomonas reinhardtii light-harvesting proteins. Eukaryot Cell 2003; 2(5):978–94.PubMedCrossRefGoogle Scholar
  127. 127.
    Elrad D, Grossman AR. A genome’s-eye view of the light-harvesting polypeptides of Chlamydomonas reinhardtii. Curr Genet 2004; 45(2):61–75.PubMedCrossRefGoogle Scholar
  128. 128.
    La Fontaine S, Quinn JM, Nakamoto SS et al. Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryot Cell 2002; 1(5):736–57.PubMedCrossRefGoogle Scholar
  129. 129.
    Richly E, Leister D. NUPTs in sequenced eukaryotes and their genomic organization in relation to NUMTs. Mol Biol Evol 2004; 21(10):1972–80.PubMedCrossRefGoogle Scholar
  130. 130.
    Savard F, Richard C, Guertin M. The Chlamydomonas reinhardtii LI818 gene represents a distant relative of the cabI/II genes that is regulated during the cell cycle and in response to illumination. Plant Mol Biol 1996; 32(3):461–73.PubMedCrossRefGoogle Scholar
  131. 131.
    Richard C, Ouellet H, Guertin M. Characterization of the LI818 polypeptide from the green unicellular alga Chlamydomonas reinhardtii. Plant Mol Biol 2000; 42(2):303–16.PubMedCrossRefGoogle Scholar
  132. 132.
    Gutman BL, Niyogi KK. Chlamydomonas and Arabidopsis. A dynamic duo. Plant Physiol 2004; 135(2):607–10.PubMedCrossRefGoogle Scholar
  133. 133.
    Li XP, Bjorkman O, Shih C et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 2000; 403(6768):391–5.PubMedCrossRefGoogle Scholar
  134. 134.
    Li XP, Gilmore AM, Caffarri S et al. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 2004; 279(22):22866–74.PubMedCrossRefGoogle Scholar
  135. 135.
    Niyogi KK, Li XP, Rosenberg V et al. Is PsbS the site of nonphotochemical quenching in photosynthesis? J Exp Bot 2005; 56(411):375–82.PubMedCrossRefGoogle Scholar
  136. 136.
    Bisova K, Krylov DM, Umen JG. Genome-wide annotation and expression profiling of cell cycle regulatory genes in Chlamydomonas reinhardtii. Plant Physiol 2005; 137(2):475–91.PubMedCrossRefGoogle Scholar
  137. 137.
    Rosakis A, Koster W. Transition metal transport in the green microalga Chlamydomonas reinhardtii—genomic sequence analysis. Res Microbiol 2004; 155(3):201–10.PubMedCrossRefGoogle Scholar
  138. 138.
    Rosakis A, Koster W. Divalent metal transport in the green microalga Chlamydomonas reinhardtii is mediated by a protein similar to prokaryotic Nramp homologues. Biometals 2005; 18(1):107–20.PubMedCrossRefGoogle Scholar
  139. 139.
    Dutcher SK. Purification of basal bodies and basal body complexes from Chlamydomonas reinhardtii. Methods Cell Biol 1995; 47:323–34.PubMedCrossRefGoogle Scholar
  140. 140.
    Dutcher SK. Flagellar assembly in two hundred and fifty easy-to-follow steps. Trends Genet 1995; 11(10):398–404.PubMedCrossRefGoogle Scholar
  141. 141.
    Zhao B, Schneid C, Iliev D et al. The circadian RNA-binding protein CHLAMY 1 represents a novel type heteromer of RNA recognition motif and lysine homology domain-containing subunits. Eukaryot Cell 2004; 3(3):815–25.PubMedCrossRefGoogle Scholar
  142. 142.
    Dunahey TG, Jarvis EE, Roessler PG. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 1995; 31:1004–1012.CrossRefGoogle Scholar
  143. 143.
    Apt KE, Kroth-Pancic PG, Grossman AR. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Gen 1996; 252:572–579.Google Scholar
  144. 144.
    Zaslavskaia LA, Lippmeier JC, Kroth PG et al. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 2000; 36:379–386.CrossRefGoogle Scholar
  145. 145.
    Falciatore A, Casotti R, Leblanc C et al. Transformation of nonselectable reporter genes in marine diatoms. Mar Biotechnol 1999; 1(3):239–251.PubMedCrossRefGoogle Scholar
  146. 146.
    Falciatore A, d’Alcala MR, Croot P et al. Perception of environmental signals by a marine diatom. Science 2000; 288(5475):2363–6.PubMedCrossRefGoogle Scholar
  147. 147.
    Apt KE, Zaslavskaia LA, Lippmeier JC et al. In vivo characterization of diatom multipartite plastid targeting signals. J Cell Sci 2002; 115:4061–4069.PubMedCrossRefGoogle Scholar
  148. 148.
    Zaslavskaia LA, Lippmeier JC, Shih C et al. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 2001; 292:2073–2075.PubMedCrossRefGoogle Scholar
  149. 149.
    Armbrust EV. Identification of a new gene family expressed during the onset of sexual reproduction in the centric diatom Thalassiosira weissflogii. Appl Environ Microbiol 1999; 65(7):3121–8.PubMedGoogle Scholar
  150. 150.
    Armbrust EV, Galindo HM. Rapid evolution of a sexual reproduction gene in centric diatoms of the genus Thalassiosira. Appl Environ Microbiol 2001; 67(8):3501–13.PubMedCrossRefGoogle Scholar
  151. 151.
    Mann DG, Chepurnov VA, Droop SJM. Sexuality, incompatibility, size variation, and preferential polyendry in natural populations and clones of Sellaphora pupula (Bacilliarophyceae). J Phycol 1999; 35:152–170.CrossRefGoogle Scholar
  152. 152.
    Mann DG. Patterns of sexual reproduction in diatoms. Hydrobiologia 1993; 269/270:11.CrossRefGoogle Scholar
  153. 153.
    Armbrust EV, Chisholm SW. Role of light and cell cycle on the induction of spermatogenesis in a centric diatom. J Phycol 1990; 26:470–478.CrossRefGoogle Scholar
  154. 154.
    Vaulot D, Olson RJ, Chisholm SW. Light and dark control of the cell cycle in two marine phytoplankton species. Exp Cell Res 1986; 167:38–52.PubMedCrossRefGoogle Scholar
  155. 155.
    Vaulot D, Olson RJ, Merkel S et al. Cell cycle response to nutrient starvation in two phytoplankton species, Thalassiosira weissflogii and Hymenomonas carterae. Mar Biol 1987; 95:625–630.CrossRefGoogle Scholar
  156. 156.
    Veldhuis MJW, Cucci TL, Sieracki ME. Cellular DNA content of marine phytoplankton using two new fluorophores: Taxonimic and ecological implications. J Phycol 1997; 33:527–541.CrossRefGoogle Scholar
  157. 157.
    Hildebrand M, Volcani BE, Gassmann W et al. A gene family of silicon transporters. Nature 1997; 385(6618):688–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Hildebrand M, Dahlin K, Volcani BE. Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: Sequences, expression analysis, and identification of homologs in other diatoms. Mol Gen Genet 1998; 260(5):480–6.PubMedCrossRefGoogle Scholar
  159. 159.
    Hildebrand M, Wetherbee R. Components and control of silicification in diatoms. Prog Mol Subcell Biol 2003; 33:11–57.PubMedGoogle Scholar
  160. 160.
    Reimann BEF, Lewin JC, Volcani BE. Studies on the biochemistry and fine structure of silica shell formation in diatoms. II. The structure of the cell wall of Navicula pelliculosa (Breb.) Hilse. J Phycol 1966; 2:74–84.CrossRefGoogle Scholar
  161. 161.
    Crawford RM, Schmid AMM. Ultrastructure of silica deposition in diatoms. In: Leadbeater BS, Riding R, eds. Biomineralization in Lower Plants and Animals. The Systematics Society, 1986.Google Scholar
  162. 162.
    Pickett-Heaps JD, Kowalski SE. Valve morphogenesis and the microtubule center of the diatom Hantzschia amphioxysis. Eur J Cell Biol 1981; 25:150–170.PubMedGoogle Scholar
  163. 163.
    Pickett-Heaps JD. Valve morphogenesis and the microtubule center in three species of the diatom Nitzschia. J Phycol 1983; 19:269–181.CrossRefGoogle Scholar
  164. 164.
    Kröger N, Deutzmann R, Sumper M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 1999; 286(5442):1129–32.PubMedCrossRefGoogle Scholar
  165. 165.
    Kröger N, Deutzmann R, Bergsdorf C et al. Species-specific polyamines from diatoms control silica morphology. Proc Natl Acad Sci USA 2000; 97(26):14133–8.PubMedCrossRefGoogle Scholar
  166. 166.
    Kröger N, Lorenz S, Brunner E et al. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 2002; 298(5593):584–6.PubMedCrossRefGoogle Scholar
  167. 167.
    Poulsen N, Sumper M, Kröger N. Biosilica formation in diatoms: Characterization of native silaffin-2 and its role in silica morphogenesis. Proc Natl Acad Sci USA 2003; 100(21):12075–80.PubMedCrossRefGoogle Scholar
  168. 168.
    Poulsen N, Kröger N. Silica morphogenesis by alternative processing of silaffins in the diatom Thalassiosira pseudonana. J Biol Chem 2004, (In Press).Google Scholar
  169. 169.
    Lutz K, Groger C, Sumper M et al. Biomimetic silica formation: Analysis of the phosphate-induced self-assembly of polyamines. Phys Chem Chem Phys 2005; 7(14):2812–5.PubMedCrossRefGoogle Scholar
  170. 170.
    Vrieling EG, Gieskes WWC, Beelen TPM. Silicon deposition in diatoms: Control by the pH inside the silicon deposition vesicle. J Phycol 1999; 35:548–559.CrossRefGoogle Scholar
  171. 171.
    Morgan DM. Polyamines. An overview. Mol Biotechnol 1999; 11:229–250.PubMedCrossRefGoogle Scholar
  172. 172.
    Igarashi K, Kashiwagi K. Polyamines: Mysterious modulators of cellular functions. Biochem Biophys Res Commun 2000; 271:559–564.PubMedCrossRefGoogle Scholar
  173. 173.
    Oeltjen A, Marquardt J, Rhiel E. Differential circadian expression of genes fcp2 and fcp6 in Cyclotella cryptica. Int Microbiol 2004; 7:127–131.PubMedGoogle Scholar
  174. 174.
    Buchel C. Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 2003; 42(44):13027–34.PubMedCrossRefGoogle Scholar
  175. 175.
    Lavaud J, Rousseau B, van Gorkom HJ et al. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol 2002; 129(3):1398–406.PubMedCrossRefGoogle Scholar
  176. 176.
    Lavaud J, Rousseau B, Etienne AL. Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms. Biochemistry 2003; 42(19):5802–8.PubMedCrossRefGoogle Scholar
  177. 177.
    Lohr M, Wilhelm C. Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci USA 1999; 96(15):8784–9.PubMedCrossRefGoogle Scholar
  178. 178.
    Reinfelder JR, Milligan AJ, Morel FM. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol 2004; 135:2106–2111.PubMedCrossRefGoogle Scholar
  179. 179.
    Tonon T, Harvey D, Qing R et al. Identification of a fatty acid Delta11-desaturase from the microalga Thalassiosira pseudonana. FEBS Lett 2004; 563(1–3):28–34.PubMedCrossRefGoogle Scholar
  180. 180.
    Tonon T, Sayanova O, Michaelson LV et al. Fatty acid desaturases from the microalga Thalassiosira pseudonana. Febs J 2005; 272(13):3401–12.PubMedCrossRefGoogle Scholar
  181. 181.
    Wen ZY, Chen F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 2003; 21(4):273–94.PubMedCrossRefGoogle Scholar
  182. 182.
    Lebeau T, Robert JM. Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products. Appl Microbiol Biotechnol 2003; 60(6):624–32.PubMedGoogle Scholar
  183. 183.
    Round FE, Crawford RM, Mann DG. The Diatoms. Cambridge, UK: Cambridge University Press, 1990.Google Scholar
  184. 184.
    Aspinall-O’Dea M, Wentworth M, Pascal A et al. In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants. Proc Natl Acad Sci USA 2002; 99(25):16331–5.CrossRefGoogle Scholar
  185. 185.
    Peterson RB, Havir EA. Photosynthetic properties of an Arabidopsis thaliana mutant possessing a defective PsbS gene. Planta 2001; 214:142–152.PubMedCrossRefGoogle Scholar
  186. 186.
    Holt NE, Zigmantas D, Valkunas L et al. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 2005; 307(5708):433–6.PubMedCrossRefGoogle Scholar
  187. 187.
    Kuroiwa T, Kuroiwa H, Sakai A et al. The division apparatus of plastids and mitochondria. Int Rev Cytol 1998; 181:1–41.PubMedCrossRefGoogle Scholar
  188. 188.
    Nozaki H, Matsuzaki M, Misumi O et al. Cyanobacterial genes transmitted to the nucleus before divergence of red algae in the Chromista. J Mol Evol 2004; 59(1):103–13.PubMedCrossRefGoogle Scholar
  189. 189.
    Ciniglia C, Yoon HS, Pollio A et al. Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol Ecol 2004; 13(7):1827–38.PubMedCrossRefGoogle Scholar
  190. 190.
    Minoda A, Sakagami R, Yagisawa F et al. Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 2004; 45(6):667–71.PubMedCrossRefGoogle Scholar
  191. 191.
    Ohta N, Matsuzaki M, Misumi O et al. Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 2003; 10(2):67–77.PubMedCrossRefGoogle Scholar
  192. 192.
    Kuroiwa T. Mechanism of mitochondrial and plastid divisions: Memory of 3 genome sequences of Cyanidioschyzon merolae as an origin of enkaryote. Tanpakushitsu Kakusan Koso 2005; 50(2):97–110.PubMedGoogle Scholar
  193. 193.
    Miyagishima SY, Nishida K, Mori T et al. A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell 2003; 15(3):655–65.PubMedCrossRefGoogle Scholar
  194. 194.
    Miyagishima SY, Nozaki H, Nishida K et al. Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: The duplication of FtsZ is implicated in endosymbiosis. J Mol Evol 2004; 58(3):291–303.PubMedCrossRefGoogle Scholar
  195. 195.
    Nishida K, Misumi O, Yagisawa F et al. Triple immunofluorescent labeling of FtsZ, dynamin, and EF-Tu reveals a loose association between the inner and outer membrane mitochondrial division machinery in the red alga Cyanidioschyzon merolae. J Histochem Cytochem 2004; 52(7):843–9.PubMedCrossRefGoogle Scholar
  196. 196.
    Miyagishima S, Kuroiwa H, Kuroiwa T. The timing and manner of disassembly of the apparatuses for chloroplast and mitochondrial division in the red alga Cyanidioschyzon merolae. Planta 2001; 212(4):517–28.PubMedCrossRefGoogle Scholar
  197. 197.
    Miyagishima S, Takahara M, Mori T et al. Plastid division is driven by a complex mechanism that involves differential transition of the bacterial and eukaryotic division rings. Plant Cell 2001; 13(10):2257–68.CrossRefGoogle Scholar
  198. 198.
    Miyagishima S, Takahara M, Kuroiwa T. Novel filaments 5 nm in diameter constitute the cytosolic ring of the plastid division apparatus. Plant Cell 2001; 13(3):707–21.PubMedCrossRefGoogle Scholar
  199. 199.
    Miyagishima S, Itoh R, Aita S et al. Isolation of dividing chloroplasts with intact plastid-dividing rings from a synchronous culture of the unicellular red alga Cyanidioschyzon merolae. Planta 1999; 209(3):371–5.PubMedCrossRefGoogle Scholar
  200. 200.
    Kuroiwa T. The discovery of the division apparatus of plastids and mitochondria. J Electron Microsc (Tokyo) 2000; 49(1):123–34.Google Scholar
  201. 201.
    Maruyama S, Misumi O, Ishii Y et al. The minimal eukaryotic ribosomal DNA units in the primitive red alga Cyanidioschyzon merolae. DNA Res 2004; 11(2):83–91.PubMedCrossRefGoogle Scholar
  202. 202.
    Cavalier-Smith T. Membrane heredity and early chloroplast evolution. Trends Plant Sci 2000; 5(4):174–82.PubMedCrossRefGoogle Scholar
  203. 203.
    Maier UG, Douglas SE, Cavalier-Smith T. The nucleomorph genomes of cryptophytes and chlorarachniophytes. Protist 2000; 151(2):103–9.PubMedCrossRefGoogle Scholar
  204. 204.
    He Q, Dolganov N, Bjorkman O et al. The high light-inducible polypeptides in Synechocystis PCC6803. Expression and function in high light. J Biol Chem 2001; 276(1):306–314.PubMedCrossRefGoogle Scholar
  205. 205.
    Wastl J, Sticht H, Maier UG et al. Identification and characterization of a eukaryotically encoded rubredoxin in a cryptomonad alga. FEBS Lett 2000; 471(2–3):191–6.PubMedCrossRefGoogle Scholar
  206. 206.
    Wastl J, Maier UG. Transport of proteins into cryptomonads complex plastids. J Biol Chem 2000; 275(30):23194–8.PubMedCrossRefGoogle Scholar
  207. 207.
    Henriksen K, Stipp SLS, Young JR et al. Tailoring calcite: Nanoscale AFM of coccolith biocrystals. Am Mineralogist 2003; 88:2040–2044.Google Scholar
  208. 208.
    Young JR, Davis SA, Bown PR et al. Coccolith ultrastructure and biomineralisation. J Struct Biol 1999; 126(3):195–215.PubMedCrossRefGoogle Scholar
  209. 209.
    Marsh ME. Regulation of CaCO3 formation in coccolithophores. Comp Biochem Physiol B Biochem Mol Biol 2003; 136(4):743–54.PubMedCrossRefGoogle Scholar
  210. 210.
    Brown CW, Yoder JA. Coccolithophorid blooms in the global ocean. J Geophys Res 1994; 99:7467–7482.CrossRefGoogle Scholar
  211. 211.
    Holligan PM, Groom SB, DSH. What controls the distribution of the coccolithophore, Emiliania huxleyi, in the North Sea? Fish Oceanogr 1993; (2):175–183.CrossRefGoogle Scholar
  212. 212.
    Wahlund TM, Hadaegh AR, Clark R et al. Analysis of expressed sequence tags from calcifying cells of marine coccolithophorid (Emiliania huxleyi). Mar Biotechnol (NY) 2004; 6(3):278–90.PubMedCrossRefGoogle Scholar
  213. 213.
    Wahlund TM, Zhang X, Read BA. Expression profiles from calcifying and noncalcifying cultures of Emiliania huxleyi. J Micropaleontol 2004; 51:145–155.CrossRefGoogle Scholar
  214. 214.
    Nguyen B, Bowers RM, Wahlund TM et al. Suppressive subtractive hybridization of and differences in gene expression content of calcifying and noncalcifying cultures of Emiliania huxleyi strain 1516. Appl Environ Microbiol 2005; 71(5):2564–75.PubMedCrossRefGoogle Scholar
  215. 215.
    Paasche E, Bruback S. Enhanced calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) under phosphorus limitation. Phycologia 1994; 33:324–330.Google Scholar
  216. 216.
    van Bleijswijk JD, Velduis MJW. In situ gross growth rates of Emiliania huxleyi in enclosures with different phosphate loadings revealed by diel changes in DNA content. Mar Ecol Prog Ser 1995; 121:271–277.CrossRefGoogle Scholar
  217. 217.
    Bachvaroff TR, Concepcion GT, Rogers CR et al. Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome. Protist 2004; 155(1):65–78.PubMedCrossRefGoogle Scholar
  218. 218.
    Hackett JD, Yoon HS, Soares MB et al. Migration of the plastid genome to the nucleus in a peridinin dinoflagellate. Curr Biol 2004; 14(3):213–8.PubMedGoogle Scholar
  219. 219.
    Hackett JD, Scheetz TE, Yoon HS et al. Insights into a dinoflagellate genome through expressed sequence tag analysis. BMC Genomics 2005; 6(1):80.PubMedCrossRefGoogle Scholar
  220. 220.
    Nikaido I, Asamizu E, Nakajima M et al. Generation of 10,154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Res 2000; 7(3):223–7.PubMedCrossRefGoogle Scholar
  221. 221.
    Scala S, Carels N, Falciatore A et al. Genome properties of the diatom Phaeodactylum tricornutum. Plant Physiol 2002; 129(3):993–1002.PubMedCrossRefGoogle Scholar
  222. 222.
    Crepineau F, Roscoe T, Kaas R et al. Characterisation of complementary DNAs from the expressed sequence tag analysis of life cycle stages of Laminaria digitata (Phaeophyceae). Plant Mol Biol 2000; 43(4):503–13.PubMedCrossRefGoogle Scholar
  223. 223.
    Bergh O, Borsheim KY, Bratbak G et al. High abundance of viruses found in aquatic environments. Nature 1989; 340(6233):467–8.PubMedCrossRefGoogle Scholar
  224. 224.
    Proctor LM, Fuhrman JA. Viral mortality of marine bacteria and cyanobacteria. Nature 1990; 343:60–62.CrossRefGoogle Scholar
  225. 225.
    Culley AI, Lang AS, Suttle CA. High diversity of unknown picorna-like viruses in the sea. Nature 2003; 424(6952):1054–7.PubMedCrossRefGoogle Scholar
  226. 226.
    Cochlan WP, Wilkner J, Stewart GF et al. Spatial distribution of viruses, bacteria and chlorophyll a in neritic, oceanic and estuarine environments. Mar Ecol Prog Ser 1993; 92:77–87.CrossRefGoogle Scholar
  227. 227.
    Paul JH, Rose JB, Jiang SC et al. Distribution of viral abundance in the reef environment of Key Largo, Florida. Appl Environ Microbiol 1993; 59:718–724.PubMedGoogle Scholar
  228. 228.
    Frank H, Moebius K. An electron microscopic study of bacteriophages from marine waters. Helgolander Meeresunters 1987; 41:385–414.CrossRefGoogle Scholar
  229. 229.
    Suttle C. Crystal ball. The viriosphere: The greatest biological diversity on Earth and driver of global processes. Environ Microbiol 2005; 7(4):481–2.PubMedCrossRefGoogle Scholar
  230. 230.
    Mann NH. Phages of the marine cyanobacterial picophytoplankton. FEMS Microbiol Rev 2003; 27(1):17–34.PubMedCrossRefGoogle Scholar
  231. 231.
    Millard A, Clokie MR, Shub DA et al. Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Proc Natl Acad Sci USA 2004; 101(30):11007–12.PubMedCrossRefGoogle Scholar
  232. 232.
    Lindell D, Sullivan MB, Johnson ZI et al. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA 2004; 101(30):11013–8.PubMedCrossRefGoogle Scholar
  233. 233.
    Bailey S, Clokie MR, Millard A et al. Cyanophage infection and photoinhibition in marine cyanobacteria. Res Microbiol 2004; 155(9):720–5.PubMedCrossRefGoogle Scholar
  234. 234.
    Zeidner G, Bielawski JP, Shmoish M et al. Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates. Environ Microbiol 2005; 7(10):1505–13.PubMedCrossRefGoogle Scholar
  235. 235.
    Lindell D, Jaffe JD, Johnson ZI et al. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 2005; 438(7064):86–9.PubMedCrossRefGoogle Scholar
  236. 236.
    Moebius K, Nattkemper H. Bacteriophage sensitivity patterns among bacteria isolated from marine waters. Helgolander Meeresunters 1981; 34:375–385.CrossRefGoogle Scholar
  237. 237.
    Suttle CA. The ecological, evolutionary and geochemical consequences of viral infection of cyanobacteria and eukaryotic algae. In: Hurst CJ, ed. Viral Ecology. New York: Academic Press, 2000:248–286.Google Scholar
  238. 238.
    van Etten JL, Graves MV, Muller DG et al. Phycodnaviridae-Large DNA algal viruses. Arch Virol 2002; 147:1479–1516.PubMedCrossRefGoogle Scholar
  239. 239.
    Delaroque N, Muller DG, Bothe G et al. The complete DNA sequence of the Ectocarpus siliculosus Virus EsV-1 genome. Virology 2001; 287(1):112–32.PubMedCrossRefGoogle Scholar
  240. 240.
    Lang AS, Culley AI, Suttle CA. Genome sequence and characterization of a virus (HaRNAV) related to picorna-like viruses that infects the marine toxic bloom-forming alga Heterosigma akashiwo. Virology 2004; 320(2):206–17.PubMedCrossRefGoogle Scholar
  241. 241.
    Brussaard CP, Noordeloos AA, Sandaa RA et al. Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla. Virology 2004; 319(2):280–91.PubMedCrossRefGoogle Scholar
  242. 242.
    Nagasaki K, Tomaru Y, Takao Y et al. Previously unknown virus infects marine diatom. Appl Environ Microbiol 2005; 71:3528–3535.PubMedCrossRefGoogle Scholar
  243. 243.
    Shackelton LA, Holmes EC. The evolution of large DNA viruses: Combining genomic information of viruses and their hosts. Trends Microbiol 2004; 12(10):458–65.PubMedCrossRefGoogle Scholar
  244. 244.
    Iyer LM, Aravind L, Koonin EV. Common origin of four diverse families of large eukaryotic DNA viruses. J Virol 2001; 75(23):11720–34.PubMedCrossRefGoogle Scholar
  245. 245.
    Sandaa RA, Heldal M, Castberg T et al. Isolation and characterization of two viruses with large genome size infecting Chrysochromulina ericina (Prymnesiophyceae) and Pyramimonas orientalis (Prasinophyceae). Virology 2001; 290(2):272–80.PubMedCrossRefGoogle Scholar
  246. 246.
    Jacobsen A, Bratbak G, Heldal M. Isolation and characterization of a virus infecting Phaeocystis pouchetii (Prymnesiophyseae). J Phycol 1996; 32:923–927.CrossRefGoogle Scholar
  247. 247.
    Van Etten JL, Meints RH. Giant viruses infecting algae. Annu Rev Microbiol 1999; 53:447–94.PubMedCrossRefGoogle Scholar
  248. 248.
    Müller DG, Kapp M, Knippers R. Viruses in marine brown algae. Adv Virus Res 1998; 50:49–67.PubMedCrossRefGoogle Scholar
  249. 249.
    Chen F, Suttle CA, Short SM. Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes. Appl Environ Microbiol 1996; 62:2869–2874.PubMedGoogle Scholar
  250. 250.
    Short SM, Suttle CA. Sequence analysis of marine virus communities reveals that groups of related algal viruses are widely distributed in nature. Appl Environ Microbiol 2002; 68(3):1290–6.PubMedCrossRefGoogle Scholar
  251. 251.
    Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol 2005; 13(6):278–84.PubMedCrossRefGoogle Scholar
  252. 252.
    Wilson WH, Schroeder DC, Allen MJ et al. Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science 2005; 309(5737):1090–2.PubMedCrossRefGoogle Scholar
  253. 253.
    Allen MJ, Schroeder DC, Wilson WH. Preliminary characterisation of repeat families in the genome of EhV-86, a giant algal virus that infects the marine microalga Emiliania huxleyi. Arch Virol 2005.Google Scholar
  254. 254.
    Allen MJ, Schroeder DC, Holden MT et al. Evolutionary history of the Coccolithoviridae. Mol Biol Evol 2006; 23(1):86–92.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Arthur R. Grossman
    • 1
  1. 1.Department of Plant BiologyThe Carnegie InstitutionStanfordUSA

Personalised recommendations