Hydrogen Fuel Production by Transgenic Microalgae

  • Anastasios Melis
  • Michael Seibert
  • Maria L. Ghirardi
Part of the Advances in Experimental Medicine and Biology book series (volume 616)


This chapter summarizes the state-of-art in the field of green algal H2-production and examines physiological and genetic engineering approaches by which to improve the hydrogen metabolism characteristics of these microalgae. Included in this chapter are emerging topics pertaining to the application of sulfur-nutrient deprivation to attenuate O2-evolution and to promote H2-production, as well as the genetic engineering of sulfate uptake through manipulation of a newly reported sulfate permease in the chloroplast of the model green alga Chlamydomonas reinhardtii. Application of the green algal hydrogenase assembly genes is examined in efforts to confer H2-production capacity to other commercially significant unicellular green algae. Engineering a solution to the O2 sensitivity of the green algal hydrogenase is discussed as an alternative approach to sulfur nutrient deprivation, along with starch accumulation in microalgae for enhanced H2-production. Lastly, current efforts aiming to optimize light utilization in transgenic microalgae for enhanced H2-production under mass culture conditions are presented. It is evident that application of genetic engineering technologies and the use of transgenic green algae will improve prospects for commercial exploitation of these photosynthetic micro-organisms in the generation of H2, a clean and renewable fuel.


Green Alga Unicellular Green Alga Repair Cycle Hydrogenase Gene Sulfate Permease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gaffron H. Reduction of CO2 with H2 in green plants. Nature 1939;143:204–205.CrossRefGoogle Scholar
  2. 2.
    Gaffron H, Rubin J. Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 1942;26:219–240.CrossRefPubMedGoogle Scholar
  3. 3.
    Florin L, Tsokoglou A, Happe T. A novel type of [Fe]-hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 2001;276:6125–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Melis A, Happe T. Hydrogen production: Green algae as a source of energy. Plant Physiol 2001;127:740–748.PubMedCrossRefGoogle Scholar
  5. 5.
    Forestier M, King P, Zhang L et al. Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 2003;270:2750–2758.PubMedCrossRefGoogle Scholar
  6. 6.
    Ghirardi ML, Togasaki RK, Seibert M. Oxygen sensitivity of algal H2 production. App Biochem Biotech 1997;63–65:141–151.CrossRefGoogle Scholar
  7. 7.
    Cleland RE, Melis A, Neale PJ. Mechanism of photoinhibition: Photochemical reaction center inactivation in system II of chloroplasts. Photosynth Res 1986;9:79–88.CrossRefGoogle Scholar
  8. 8.
    Demeter S, Neale PJ, Melis A. Photoinhibition: Impairment of the primary charge separation between P680 and pheophytin in photosystem II of chloroplasts. FEBS Lett 1987;214:370–374.CrossRefGoogle Scholar
  9. 9.
    Barber J. Molecular basis of the vulnerability of PSII to damage by light. Aust J Plant Physiol 1994;22:201–208.CrossRefGoogle Scholar
  10. 10.
    Melis A. Photosystem-II damage and repair cycle in chloroplasts: What modulates the rate of photodamage in vivo? Trends in Plant Science 1999;4:130–135.PubMedCrossRefGoogle Scholar
  11. 11.
    Yokthongwattana K, Melis A. Photoinhibition and recovery in oxygenic photosynthesis: Mechanism of a photosystem II damage and repair cycle. In: Demmig-Adams B et al, eds. Photoprotection, Photoinhibition, Gene Regulation and Environment. Springer, The Netherlands: 2006:175–191.CrossRefGoogle Scholar
  12. 12.
    Melis A. Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1991;1058:87–106.CrossRefGoogle Scholar
  13. 13.
    Aro EM, Virgin I, Andersson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1993;1143:113–134.PubMedCrossRefGoogle Scholar
  14. 14.
    Melis A. Photostasis in plants: Mechanisms and regulation. In: Williams TP, Thistle A, eds. Photostasis and Related Phenomena. New York: Plenum Publishing Corporation, 1998:207–221.Google Scholar
  15. 15.
    Mattoo AK, Edelman M. Intramembrane translocation and posttranslational palmitoylation of the chloroplast 32-kD herbicide-binding protein. Proc Natl Acad Sci USA 1987;84:1497–1501.PubMedCrossRefGoogle Scholar
  16. 16.
    Vasilikiotis C, Melis A. Photosystem-II reaction center damage and repair cycle-Chloroplast acclimation strategy to irradiance stress. Proc Natl Acad Sci USA 1994;91:7222–7226.PubMedCrossRefGoogle Scholar
  17. 17.
    Kim JH, Nemson JA, Melis A. Photosystem-II reaction center damage and repair in the green alga Dunaliella salina: Analysis under physiological and adverse irradiance conditions. Plant Physiol 1993;103:181–189.PubMedCrossRefGoogle Scholar
  18. 18.
    Melis A, Zhang L, Forestier M et al. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 2000;122:127–135.PubMedCrossRefGoogle Scholar
  19. 19.
    Melis A, Chen HC. Chloroplast sulfate transport in green algae: Genes, proteins and effects. Photosynth Res 2005;86:299–307.PubMedCrossRefGoogle Scholar
  20. 20.
    Hell R. Molecular physiology of plant sulfur metabolism. Planta 1997;202:138–148.PubMedCrossRefGoogle Scholar
  21. 21.
    Wykoff DD, Davies JP, Melis A et al. The regulation of photosynthetic electron-transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 1998;117:129–139.PubMedCrossRefGoogle Scholar
  22. 22.
    Cao H, Zhang L, Melis A. Bioenergetic and metabolic processes for the survival of sulfur-deprived Dunaliella salina (Chlorophyta). J appl Phycol 2001;13:25–34.CrossRefGoogle Scholar
  23. 23.
    Antal TK, Krendeleva TE, Laurinavichene TV et al. The relationship between photosystem 2 activity and hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cells. Doklady Akad Nauk (Biochemistry and Biophysics) 2001;381:371–375.Google Scholar
  24. 24.
    Ghirardi ML, Zhang L, Lee JW et al. Microalgae: A green source of renewable H2. Trends Biotech 2000;18:506–511.CrossRefGoogle Scholar
  25. 25.
    Zhang L, Happe T, Melis A. Biochemical and morphological characterization of sulfur deprived and H2-producing Chlamydomonas reinhardtii (green algae). Planta 2002;214:552–561.PubMedCrossRefGoogle Scholar
  26. 26.
    Kosourov S, Tsygankov A, Seibert M et al. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of Culture parameters. Biotech Bioeng 2002;78:731–740.CrossRefGoogle Scholar
  27. 27.
    Kosourov S, Seibert M, Ghirardi ML. Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 2003;44:146–155.PubMedCrossRefGoogle Scholar
  28. 28.
    Antal TK, Krendeleva TE, Rubin AB et al. The dependence of algal H2 production on photosystem II and O2-consumption activity in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta 2003;1607:153–160.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen HC, Melis A. Localization and function of SulP, a nuclear-encoded chloroplast sulfate permease in Chlamydomonas reinhardtii. Planta 2004;220:198–210.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen HC, Newton AJ, Melis A. Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth Res 2005;84:289–296.PubMedCrossRefGoogle Scholar
  31. 31.
    Melis A. Photosynthetic hydrogen metabolism in unicellular green algae. In: Eaton-Rye J et al, eds. Photosynthesis: A Comprehensive Treatise. Physiology, Biochemistry, Biophysics and Molecular Biology. Vol. 1. The Netherlands: Springer, 2006:175–191.Google Scholar
  32. 32.
    Happe T, Naber JD. Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur J Biochem 1993;214:475–81.PubMedCrossRefGoogle Scholar
  33. 34.
    Urbig T, Schulz R, Senger H. Inactivation and reactivation of the hydrogenases of the green-algae Scenedesmus obliquus and Chlamydomonas reinhardtii. Zeitschrift fur Naturforschung 1993;48:41–45.Google Scholar
  34. 35.
    Happe T, Mosler B, Naber JD. Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem 1994;222:769–774.PubMedCrossRefGoogle Scholar
  35. 36.
    Happe T, Kaminski A. Differential regulation of the [Fe]-hydrogenase during anaerobic adaptation in the gree alga Chlamydomonas reinhardtii. Eur J Biochem 2002;269:1022–1032.PubMedCrossRefGoogle Scholar
  36. 37.
    Stirnberg M, Happe T. Identification of a cis-acting element controlling anaerobic expression of the HydA gene from Chlamydomonas reinhardtii. In: Miyake J, Igarashi Y, Roegner M, eds. Biohydrogen III. Oxford: Elsevier Science, 2004:117–127.CrossRefGoogle Scholar
  37. 38.
    Peters JW, Lanzilotta WN, Lemon BJ et al. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom resolution. Science 1998;282:1853–1858.PubMedCrossRefGoogle Scholar
  38. 39.
    Nicolet Y, Piras C, Legrand P et al. Desulfovibrio desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center. Structure 1999;7:13–23.PubMedCrossRefGoogle Scholar
  39. 40.
    Casalot L, Rousset M. Maturation of the [NiFe] hydrogenases. Trends Microbiol 2001;9:228–237.PubMedCrossRefGoogle Scholar
  40. 41.
    Paschos A, Glass RS, Bock A. Carbamoylphosphate requirements for synthesis of the active center of [NiFe]-hydrogenases. FEBS Lett 2001;488:9–12.PubMedCrossRefGoogle Scholar
  41. 42.
    Reissmann S, Hochleitner E, Wang H et al. Taming of a poison: Biosynthesis of the NiFe-hydrogenase cyanide ligands. Science 2003;299:1067–1070.PubMedCrossRefGoogle Scholar
  42. 43.
    Vignais PM, Billoud B, Meyer J. Classification and phylogeny of hydrogenases. FEMS Micro Rev 2001;25:455–501.Google Scholar
  43. 44.
    Posewitz MC, King PW, Smolinski SL et al. Discovery of two novel radical SAM proteins required for the assembly of an active [Fe]-hydrogenase. J Biol Chem 2004b;279:25711–25720.PubMedCrossRefGoogle Scholar
  44. 45.
    Posewitz MC, King PW, Smolinski SL et al. Identification of genes required for hydrogenase activity in Chlamydomonas reinhardtii. Biochem Soc Trans 2005;33:102–104.PubMedCrossRefGoogle Scholar
  45. 46.
    Sofia HJ, Chen G, Hetzler BG et al. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods. Nucleic Acids Res 2001;29:1097–1106.PubMedCrossRefGoogle Scholar
  46. 47.
    Frey PA. Radical mechanisms of enzymatic catalysis. Annu Rev Biochem 2001;70:121–148.PubMedCrossRefGoogle Scholar
  47. 48.
    Ugulava NB, Gibney BR, Jarrett JT. Iron-sulfur cluster interconversions in biotin synthase: Dissociation and reassociation of iron during conversion of [2Fe-2S] to [4Fe-4S] clusters. Biochemistry 2000;39:5206–5214.PubMedCrossRefGoogle Scholar
  48. 49.
    Krebs C, Henshaw TF, Cheek J et al. Conversion of 3Fe-4S to 4Fe-4S clusters in native pyruvate formate-lyase activating enzyme: Mössbauer characterization and implications for the mechanism. J Am Chem Soc 2000;122:12497–12506.CrossRefGoogle Scholar
  49. 50.
    Ollagnier-de Choudens S, Sanakis Y, Hewitson KS et al. Reductive cleavage of S-Adenosylmethionine by biotin synthase from Escherichia coli. J Biol Chem 2002;277:13449–13454.PubMedCrossRefGoogle Scholar
  50. 51.
    Berkovitch F, Nicolet Y, Wan JT et al. Crystal structure of biotin synthase, an S-Adenosylmethionine-dependent radical enzyme. Science 2004;303:76–79.PubMedCrossRefGoogle Scholar
  51. 52.
    Allen RM, Chatterjee R, Ludden PW et al. Incorporation of iron and sulfur from NifB cofactor into the iron-molybdenum cofactor of dinitrogenase. J Biol Chem 1995;270:26890–26896.PubMedCrossRefGoogle Scholar
  52. 53.
    Rubach JK, Brazzolotto X, Gaillard J et al. Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermatoga maritime. FEBS Lett 2005;579:5055–5060.PubMedCrossRefGoogle Scholar
  53. 54.
    Asada Y, Koike Y, Schnackenbert J et al. Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942. Biochim Biophys Acta 2000;1490:269–278.PubMedGoogle Scholar
  54. 55.
    King PW, Posewitz MC, Ghirardi ML et al. Functional studies of the [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J. Bacteriol 2006;188:2163–2172.PubMedCrossRefGoogle Scholar
  55. 56.
    Girbal L, von Abendroth G, Winkler M et al. Homologous and Heterologous over expression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities. Appl Environm Microbiol 2005;71:2777–2781.CrossRefGoogle Scholar
  56. 57.
    Adams MW. The structure and mechanism of iron hydrogenases. Biochim Biophys Acta 1990;1020:115–145.PubMedCrossRefGoogle Scholar
  57. 58.
    Bleijlevens B, Buhrke T, van der Linden E et al. The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of Ralstonia eutropha H16 by way of a cyanide ligand to nickel. J Biol Chem 2004;279:46686–46691.PubMedCrossRefGoogle Scholar
  58. 59.
    Ghirardi ML, King PW, Posewitz MC et al. Approaches to developing biological H2-photoproducing organisms and processes. Biochem Soc Trans 2005;33:70–72.PubMedCrossRefGoogle Scholar
  59. 60.
    Nicolet Y, de Lacey AL, Vernede X et al. J Am Chem Soc 2001;123:1596–1601.PubMedCrossRefGoogle Scholar
  60. 61.
    Cohen J, Kim K, Posewitz M et al. Molecular dynamics and experimental investigation of H2 and O2 diffusion in [FeFe]-hydrogenase. Biochem Soc Trans 2005a;33:80–82.PubMedCrossRefGoogle Scholar
  61. 62.
    Cohen J, Kim K, King P et al. Finding gas diffusion pathways in proteins: Application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. Structure 2005b;13:1321–1329.PubMedCrossRefGoogle Scholar
  62. 63.
    Tsygankov A, Kosourov S, Seibert M et al. Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. J Intern Hydrogen Energy 2002;27:1239–1244.CrossRefGoogle Scholar
  63. 64.
    White AL, Melis A. Biochemistry of hydrogen metabolism in Chlamydomonas reinhardtii wild type and a Rubiscoless mutant. Intl J Hydrogen Energy 2006;31:455–464.CrossRefGoogle Scholar
  64. 65.
    Posewitz MC, Smolinski SL, Kankagiri S et al. Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell 2004a;16:2151–2163.PubMedCrossRefGoogle Scholar
  65. 66.
    Mouille G, Maddelein ML, Libessart N et al. Preamylopectin processing: A mandatory step for starch biosynthesis in plants. Plant Cell 1996;8:1353–1366.PubMedCrossRefGoogle Scholar
  66. 67.
    Ball S. Regulation of starch biosynthesis. In: Rochaix JD, Goldschmidt-Clermont M, Merchant S, eds. The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Vol 7. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1998:549–567.Google Scholar
  67. 68.
    Myers AM, Morell MK, James MG et al. Recent progress towards understanding biosynthesis of the amylopectin crystal. Plant Physiol 2000;122:989–997.PubMedCrossRefGoogle Scholar
  68. 69.
    Zabawinski C, van den Koornhuyse N, d’Hulst C et al. Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. J Bacteriol 2001;183:1069–1077.PubMedCrossRefGoogle Scholar
  69. 70.
    Kruse O, Rupprecht J, Bader KP et al. Improved photobiological H2 production in engineered green algal cells. J Biol Chem 2005;280:34170–34177.PubMedCrossRefGoogle Scholar
  70. 71.
    Melis A. Green alga hydrogen production: Progress, challenges and prospects. Intl J Hydrogen Energy 2002;27:1217–1228.CrossRefGoogle Scholar
  71. 72.
    Ley AC, Mauzerall DC. Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim Biophys Acta 1982;680:95–106.CrossRefGoogle Scholar
  72. 73.
    Greenbaum E. Energetic efficiency of H2 photoevolution by algal water-splitting. Biophys J 1988;54:365–368.CrossRefPubMedGoogle Scholar
  73. 74.
    Melis A, Neidhardt J, Benemann JR. Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J appl Phycol 1999;10:515–525.CrossRefGoogle Scholar
  74. 75.
    Polle JEW, Kanakagiri S, Melis A. tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 2003;217:49–59.PubMedGoogle Scholar
  75. 76.
    Melis A. Bioengineering of green algae to enhance photosynthesis and hydrogen production. Chapter 12. In: Collins AF, Critchley C, eds. Artificial Photosynthesis: From Basic Biology to Industrial Application. Wiley-Verlag and Co., 2005:229–240.Google Scholar
  76. 77.
    Humphrey W, Dalke D, Schulten K. VDM-visual molecular dynamics. J Molec Graphics 1996;14:33–38.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Anastasios Melis
    • 1
  • Michael Seibert
    • 2
  • Maria L. Ghirardi
    • 2
  1. 1.Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyUSA
  2. 2.National Renewable Energy LaboratoryBasic Science CenterGoldenUSA

Personalised recommendations