Extracting Planar Kinematic Models Using Interactive Perception

  • Dov Katz
  • Oliver Brock
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 8)

Roboticists are working towards the deployment of autonomous mobile manipulators in unstructured and dynamic environments. Adequate autonomy and competency in unstructured environments would open up a variety of important applications for robotics, ranging from planetary exploration to elder care and from the disposal of improvised explosive devices to flexible manufacturing and construction in collaborationwith human experts. Ongoing research efforts seek to enable the use of autonomous robots for these applications through the development of adequate hardware platforms [10, 26, 31], robust and task-oriented control strategies [19], and new learning frameworks [2, 5, 6, 27].

For unstructured and dynamic environments, it is not possible to provide the robot with a detailed a priori model of the world. Consequently, an autonomous robot has to continuously acquire perceptual information to successfully execute mobility and manipulation tasks [12, 17, 25, 29]. This extraction can be performed most effectively, if it occurs in the context of a specific task.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aloimonos J. and Weiss I. and Bandyopadhyay A.: Active Vision. International Journal of Computer Vision 1, 333-356 (1988)CrossRefGoogle Scholar
  2. 2.
    Azad, P., Asfour, T., Dillmann, R.: Toward an Unified Representation for Imitation of Human Motion on Humanoids. In: International Conference on Robotics and Automation. Rome, Italy (2007)Google Scholar
  3. 3.
    Bajcsy, R.: Active Perception. IEEE Proceedings 76(8), 996-1006 (1988)Google Scholar
  4. 4.
    Blake, A., Yuille, A.: Active Vision. MIT Press (1992)Google Scholar
  5. 5.
    Brock, O., Fagg, A., Grupen, R., Platt, R., Rosenstein, M., Sweeney, J.: A Framework for Learning and Control in Intelligent Humanoid Robots. International Journal of Humanoid Robotics 2(3), 301-336 (2005)CrossRefGoogle Scholar
  6. 6.
    Brooks, R., Aryananda, L., Edsinger, A., Fitzpatrick, P., Kemp, C., O’Reilly, U.M., TorresJara, E., Varshavskaya, P., Weber, J.: Sensing and manipulating built-for-human environments. International Journal of Humanoid Robotics 1(1), 1-28 (2004)CrossRefGoogle Scholar
  7. 7.
    Christiansen, A.D., Mason, M., Mitchell, T.: Learning reliable manipulation strategies without initial physical models. In: International Conference on Robotics and Automation, vol. 2, pp. 1224-1230. Cincinnati, Ohio, USA (1990)CrossRefGoogle Scholar
  8. 8.
    Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active Learning with Statistical Methods. Journal of AI Research 4, 129-145 (1996)MATHGoogle Scholar
  9. 9.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press and McGraw-Hill (2001)MATHGoogle Scholar
  10. 10.
    Deegan, P., Thibodeau, B., Grupen, R.: Designing a Self-Stabilizing Robot For Dynamic Mobile Manipulation. In: Robotics: Science and Systems - Workshop on Manipulation for Human Environments. Philadelphia, Pennsylvania, USA (2006)Google Scholar
  11. 11.
    Edsinger, A.: Robot Manipulation in Human Environments. Ph.D. thesis, Massachusetts Institute of Technology (2007)Google Scholar
  12. 12.
    Edsinger, A., Kemp, C.C.: Manipulation in Human Environments. In: IEEE/RSJ International Conference on Humanoid Robotics. Beijing, China (2006)Google Scholar
  13. 13.
    Fitzpatrick, P., Metta, G.: Grounding vision through experimental manipulation. Philosophical Transactions of the Royal Society: Mathematical, Physical, and Engineering Sciences 361(1811),2165-2185 (2003)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall Professional Technical Reference (2002)Google Scholar
  15. 15.
    Hutchinson, S.A., Hager, G.D., Corke, P.I.: A tutorial on visual servo control. IEEE Transactions on Robotics and Automation 12(5), 651-670 (1996)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Katz, D., Brock, O.: Interactive Perception: Closing the Gap Between Action and Perception. In: International Conference on Robotics and Automation Workshop: From features to actions - Unifying perspectives in computational and robot vision. Rome, Italy (2007)Google Scholar
  18. 18.
    Katz, D., Horrell, E., Yang, Y., Burns, B., Buckley, T., Grishkan, A., Zhylkovskyy, V., Brock, O., Learned-Miller, E.: The UMass Mobile Manipulator UMan: An Experimental Platform for Autonomous Mobile Manipulation. In: Workshop on Manipulation in Human Environments at Robotics: Science and Systems (2006)Google Scholar
  19. 19.
    Khatib, O., Yokoi, K., Brock, O., Chang, K.S., Casal, A.: Robots in Human Environments: Basic Autonomous Capabilities. International Journal of Robotics Research 18(7), 684-696 (1999)Google Scholar
  20. 20.
    Koederink, J.J., Van Doorn, A.J.: Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer. Optica Acta. 22, 773-791 (1975)Google Scholar
  21. 21.
    Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision (DARPA). In: Proceedings of the 1981 DARPA Image Understanding Workshop, pp. 121-130 (1981)Google Scholar
  22. 22.
    Martin J ägersand: On-line Estimation of Visual-Motor Models for Robot Control and Visual Simulation. Ph.D. thesis, University of Rochester (1997)Google Scholar
  23. 23.
    Maybank, S.: The Angular Velocity Associated with the Optical Flowfield Arising from Motion through a Rigid Environment. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 401, pp. 317-326 (1985)Google Scholar
  24. 24.
    Metta, G., Fitzpatrick, P.: Early integration of vision and manipulation. Adaptive Behavior 11(2),109-128 (2003)CrossRefGoogle Scholar
  25. 25.
    Neo, E.S., Sakaguchi, T., Yokoi, K., Kawai, Y., Maruyama, K.: Operating Humanoid Robots in Human Environments. In: Workshop on Manipulation for Human Environments, Robotics: Science and Systems (2006)Google Scholar
  26. 26.
    Nishiwaki, K., Kuffner, J., Kagami, S., Inaba, M., Inoue, H.: The experimental humanoid robot H7: a research platform for autonomous behaviour. Philosophical Transactions of the Royal Society 365, 79-108 (2007)CrossRefGoogle Scholar
  27. 27.
    Saxena, A., Driemeyer, J., Kearns, J., Ng, A.Y.: Robotic Grasping of Novel Objects. In: Neural Information Processing Systems (2006)Google Scholar
  28. 28.
    Stoytchev, A.: Behavior-Grounded Representation of Tool Affordances. In: International Conference on Robotics and Automation, pp. 3071-3076. Barcelona, Spain (2005)Google Scholar
  29. 29.
    Sutton, M., Stark, L., Bowyer, K.: Function from visual analysis and physical interaction: a methodology for recognition of generic classes of objects. Image and Vision Computing 16, 746-763 (1998)CrossRefGoogle Scholar
  30. 30.
    Waxman, A.M., Ullman, S.: Surface Structure and Three-Dimensional Motion from Image Flow Kinematics. The International Journal of Robotics Research 4, 72-94 (1985)CrossRefGoogle Scholar
  31. 31.
    Wimboeck, T., Ott, C., Hirzinger, G.: Impedance Behaviors for Two-Handed Manipulation: Design and Experiments. In: International Conference on Robotics and Automation. Rome, Italy (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dov Katz
    • 1
  • Oliver Brock
    • 1
  1. 1.Computer Science DepartmentUniversity of Massachusetts AmherstAmherstUSA

Personalised recommendations