Lung Interstitial Pressure and Structure in Acute Hypoxia

  • Giuseppe Miserocchi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 618)


The air blood barrier is a gas exchanger and is well designed to fulfill this task as its main feature is its minimum thickness that in turn reflects a minimum amount of extravascular water. The maintenance of a minimum water volume is due to mechanisms able to control interstitial fluid turnover and to offset transient conditions of increase in this volume. The hydraulic pressure in the lung interstitium is ~ -10 cmH2O and reflects the equilibrium between the lymphatic absorption pressure and the microvascular filtration through the basement membrane whose hydraulic permeability is kept very low due to the macromolecular organization of heparansulphate proteoglycans (HS-PGs). When microvascular filtration is increased, the increase in extravascular water is minimal in face of a considerable increase in interstitial pressure (up to ~ 5 cmH2O) because of the high elastance of the extracellular matrix thanks to the mechanical role of matrix chondroitin sulphate proteoglycans (CS-PGs). This increase in pressure buffers microvascular filtration. Hypoxia causes fragmentation of CS-PGs of the extracellular matrix and of HS-PGs of the basement membrane: the result is a decrease in tissue elastance and an increase in permeability of the endothelial and epithelial barriers. When the overall PGs fragmentation overcomes a critical threshold, severe lung edema develops. Recovery from severe lung edema requires that extracellular integrity is restored. We provide evidence for a prompt lung cellular response to interstitial edema. We interpret this response as a fine mechanism to detect minor increases in extravascular water and to promote the reparative process.

Key Words

proteoglycans tissue elastance mechanotransduction lipid microdomains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Botto L, Beretta E, Daffara R, Miserocchi G, Palestini P. Biochemical and morphological changes in endothelial cells in response to hypoxic interstitial edema. Respir Res10.1186/1 1465-9921-7-7, 2006.Google Scholar
  2. 2.
    Conforti E, Fenoglio C, Bernocchi G, Bruschi O, Miserocchi G. Morpho-functional analysis of lung tissue in mild interstitial edema. Am J Physiol(Lung Cell Mol Physiol) 282:L766-L774, 2002.Google Scholar
  3. 3.
    Crouch EC, Martin GR, BrodyJS, Laurie GW. Basement membrane. In: The Lung: Scientific Foundations, Ed. By R.G Crystal , J.B. West et al. Philadelphia, PA: Lippincott-Raven, vol.1, p. 769-791, 1997.Google Scholar
  4. 4.
    Daffara R, Botto L, Beretta E , Conforti E, Faini A, Palestini P, Miserocchi G. Endothelial cells as early sensors of pulmonary interstitial edema.J Appl Physiol97: 1575-1583, 2004.CrossRefPubMedGoogle Scholar
  5. 5.
    Eggermont J, Trouet D, Carton I, Nilius B. Cellular function and control of volume –regulated anion channels. Cell Biochem Biophys35: 263-274, 2001.CrossRefPubMedGoogle Scholar
  6. 6.
    Foster LJ, de Hoog CL, Mann M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors PNAS 2003 100: 5813-5818; published online before print April 30 2003, 10.1073/pnas.0631608100.Google Scholar
  7. 7.
    Grimbert FA, Martin D, Parker JC, Taylor AE. Lymph flow during increases in pulmonary blood flow and microvascular pressure in dogs. Am J Physiol (Heart Circ Physiol255 (24): H1149-H1155, 1988.Google Scholar
  8. 8.
    Hansen J, Olsen N, Feldt-Rasmussen B, Kanstrup L, Dechaux M, Dubray C, Richalet J. Albuminuria and overall capillary permeability of albumin in acute altitude hypoxia. J Appl Physiol,76: 1922-1927, 1994.PubMedGoogle Scholar
  9. 9.
    Hardingham T, Fosang AJ. Proteoglycans: many forms and many functions. FASEB J 6: 861-870, 1992.PubMedGoogle Scholar
  10. 10.
    Hascall V, Hascall G. Proteoglycans. In: Cell biology of extracellular matrix, Hay ED, ed. Plenum Press, New York, p. 39-63, 1981.Google Scholar
  11. 11.
    Herren B, Levkau B, Raines EW, Ross R. Cleavage of beta-catenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis: evidence for a role for caspases and metalloproteinases. Mol Biol Cel,9(6):1589-601, 1998.Google Scholar
  12. 12.
    Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Science116: 1397-1408, 2003.CrossRefPubMedGoogle Scholar
  13. 13.
    Mansfield KD, Simon MC, and Keith B. Hypoxic reduction in cellular glutathione levels requires mitochondrial reactive oxygen species (mtROS).J Appl Physiol 97:1358-1366, 2004.CrossRefPubMedGoogle Scholar
  14. 14.
    Miserocchi G, Haxhiu Poskurica B , Del Fabbro M, Crisafulli B. Pulmonary interstitial pressure in premature rabbits. Respir Physiol102: 239-249, 1995.CrossRefPubMedGoogle Scholar
  15. 15.
    Miserocchi G, Haxhiu Poskurica B and Del Fabbro M. Pulmonary interstitial pressure in anesthetized paralyzed newborn rabbits. J Appl Physiol77(5): 2260-2268, 1994.PubMedGoogle Scholar
  16. 16.
    Miserocchi G, Passi A, Negrini D, Del Fabbro M, De Luca G. Pulmonary interstitial pressure and tissue matrix structure in acute hypoxia. Am J Physiol (Lung Cell Mol Physiol)280: L881-L887, 2001.Google Scholar
  17. 17.
    Miserocchi G, Negrini D, Gonano C. Direct measurements of interstitial pulmonary pressure in in-situ lung with intact pleural space. J Appl Physiol69: 2168-2174, 1990.PubMedGoogle Scholar
  18. 18.
    Miserocchi G, Negrini D, Del Fabbro M, Venturoli D. Pulmonary interstitial pressure in intact in situ lung: the transition to interstitial edema. J Appl Physiol74: 1171-1177, 1993.PubMedGoogle Scholar
  19. 19.
    Miserocchi,G, Negrini D, Mukenge S, Turconi P, Del Fabbro M. Liquid drainage through the peritoneal diaphragmatic surface. J Appl Physiol66(4):1579-1585, 1989.CrossRefPubMedGoogle Scholar
  20. 20.
    Miserocchi G, Negrini D, Passi A, De Luca G. Development of lung edema: interstitial fluid dynamics and molecular structure. News Physiol Sci16:66-71, 2001.PubMedGoogle Scholar
  21. 21.
    Mongin AA, Orlov SN. Mechanisms of cell volume regulation and possible nature of the cell volume sensor. Pathophysiology8(2):77-88, 2001.CrossRefPubMedGoogle Scholar
  22. 22.
    Negrini D. Pulmonary microvascular pressure profile during development of hydrostatic edema. Microcirculation2: 173-180, 1995.CrossRefPubMedGoogle Scholar
  23. 23.
    Palestini P, Calvi C, Conforti E, Botto L, Fenoglio C, and Miserocchi G. Composition, biophysical properties and morphometry of plasma membranes in pulmonary interstitial edema. Am J Physiol Lung Cell Mol Physiol282: L1382-L1390, 2002.PubMedGoogle Scholar
  24. 24.
    Parker R, Granger D, Taylor AE. Estimates of isogravimetric capillary pressures during alveolar hypoxia. Am J Physiol(Heart Circ Physiol)241(10): H732-H739, 1981.Google Scholar
  25. 25.
    Roberts CR, Weight TN, Hascall and VC. Proteoglycans. In: The Lung: Scientific Foundations, Ed. By RG Crystal , JB West et al. Philadelphia, PA: Lippincott-Raven, vol.1, p. 757-767, 1997.Google Scholar
  26. 26.
    Sabbadini M, Barisani D, Conforti E, Marozzi A, Ginelli E, Miserocchi G, Meneveri R. Gene expression analysis in interstitial lung edema induced by saline infusion. Bioch Bioph Acta-Mol Basis of Dis1638: 149-156, 2003.Google Scholar
  27. 27.
    Schoene R, Hackett P, Henderson W, Sage E, Chow M, Roach R, Mills W, Martin T. High-altitude pulmonary edema. Characteristics of lung lavage fluid. J Am Med Assoc256: 63-69, 1986.CrossRefGoogle Scholar
  28. 28.
    Semenza Gl. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol881474-80, 2000.Google Scholar
  29. 29.
    Taylor AE, Granger DN. Exchange of macromolecules across the microcirculation. In: Handbook of Physiology. The Cardiovascular System. Microcirculation.Bethesda, MD: Am. Physiol. Soc., sect.2, vol. IV, pt.1, chapt. 11, p.467-520, 1984.Google Scholar
  30. 30.
    Venturoli D, Crisafulli B, Del Fabbro M, Negrini D, Miserocchi G. Estimation of in vivo pulmonary microvascular interstitial geometry using digital image analysis. Microcirc1: 27-40, 1995.CrossRefGoogle Scholar
  31. 31.
    Wagner W, Latham L, Kapen R. Capillary recruitment during airway hypoxia: role of pulmonary artery pressure. J Appl Physiol47: 383-387, 1979.PubMedGoogle Scholar
  32. 32.
    West J, Tsukimoto K, Mathieu-Costello O, Prediletto R. Stress failure in pulmonary capillaries. J Appl Physiol70: 1731-1742, 1991.PubMedGoogle Scholar
  33. 33.
    Yurchenko PD, Schnittny JC. Molecular architecture of basement membrane. FASEB J 4: 1577-1590, 1990.Google Scholar
  34. 34.
    Zoeller RA, Grazia TJ, La Camera P, Park J, Gaposchkin DP, and Farber HW. Increasing plasmalogen levels protects human endothelial cells during hypoxia. Am J Physiol (Heart Cir Physiol)283: H671-H679, 2002.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Giuseppe Miserocchi
    • 1
  1. 1.Department of Experimental Medicine, Unit of Applied Physiology and Sport Medicine, Ospedale San GerardoUniversità Milano-BicoccaMonzaItaly

Personalised recommendations