Advertisement

Epithelial Sodium Channels in the Adult Lung – Important Modulators of Pulmonary Health and Disease

  • Ian C. Davis
  • Sadis Matalon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 618)

Abstract

Absorption of excess fluid from the airways and alveolar lumen requires active vectorial transepithelial transport of sodium ions (Na+) by alveolar type II and possibly type I cells. The rate-limiting step in this process is the activity of the heterotrimeric apical membrane epithelial Na+ channel (ENaC). Pharmacologic inhibitors and genetic manipulations that disrupt Na+ transport result in fluid accumulation within the lung and failure of gas exchange. The importance of Na+ transport in the lung is also demonstrated in conditions such as ARDS, where abnormal absorption of Na+ contributes to the pathophysiology of pulmonary disease. ENaC expression and function is influenced by diverse factors, such as oxygen tension, glucocorticoids, and cytoskeletal proteins. In addition, ENaC dysfunction has been shown to be induced by purinergic nucleotide activation of P2Y receptors (in paramyxoviral bronchiolitis) and reactive species (in acute lung injury). Finally, βadrenergic agonists have been shown experimentally to reverse defects in ENaC function, and improve hypoxemia and pulmonary edema, and may provide a novel therapeutic modality for ARDS, although some viral lung pathogens appear to induce insensitivity to their actions.

Key Words

respiratory virus β-adrenergic agonist P2Y receptor protein kinase C 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abriel H, Loffing J, Rebhun JF, Pratt JH, Schild L, Horisberger JD, Rotin D and Staub O. Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle’s syndrome. J Clin Invest103:667-673, 1999.CrossRefPubMedGoogle Scholar
  2. 2.
    Awayda MS, Ismailov II, Berdiev BK, Fuller CM and Benos DJ. Protein kinase regulation of a cloned epithelial Na+ channel. J Gen Physiol108:49-65, 1996.CrossRefPubMedGoogle Scholar
  3. 3.
    Beckman JS and Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. [Review] [109 refs]. American Journal of Physiology271: C1424-C1437, 1996.PubMedGoogle Scholar
  4. 4.
    Benos DJ. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol242: C131-45, 1982.Google Scholar
  5. 5.
    Berdiev BK, Prat AG, Cantiello HF, Ausiello DA, Fuller CM, Jovov B, Benos DJ and Ismailov II. Regulation of epithelial sodium channels by short actin filaments. J Biol Chem271:17704-17710, 1996.CrossRefPubMedGoogle Scholar
  6. 6.
    Bertorello AM, Ridge KM, Chibalin AV, Katz AI and Sznajder JI. Isoproterenol increases Na+-K+-ATPase activity by membrane insertion of alpha-subunits in lung alveolar cells. American Journal of Physiology276: L20-L27, 1999.PubMedGoogle Scholar
  7. 7.
    Borok Z, Liebler JM, Lubman RL, Foster MJ, Zhou B, Li X, Zabski SM, Kim KJ and Crandall ED. Na transport proteins are expressed by rat alveolar epithelial type I cells. Am J Physiol Lung Cell Mol Physiol282: L599-L608, 2002.PubMedGoogle Scholar
  8. 8.
    Brochard L and Lemaire F. Tidal volume, positive end-expiratory pressure, and mortality in acute respiratory distress syndrome [editorial; comment]. Crit Care Med 27:1661-1663, 1999.CrossRefPubMedGoogle Scholar
  9. 9.
    Buckner CK, Clayton DE, in-Shoka AA, Busse WW, Dick EC and Shult P. Parainfluenza 3 infection blocks the ability of a beta adrenergic receptor agonist to inhibit antigen-induced contraction of guinea pig isolated airway smooth muscle. J Clin Invest67:376-384, 1981.CrossRefPubMedGoogle Scholar
  10. 10.
    Burch LH, Talbot CR, Knowles MR, Canessa CM, Rossier BC and Boucher RC. Relative expression of the human epithelial Na+ channel subunits in normal and cystic fibrosis airways. Am J Physiol269: C511-C518, 1995.PubMedGoogle Scholar
  11. 11.
    Burnstock G and Williams M. P2 purinergic receptors: modulation of cell function and therapeutic potential. J Pharmacol Exp Ther295:862-869, 2000.PubMedGoogle Scholar
  12. 12.
    Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD and Rossier BC. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature367:463-467, 1994.CrossRefPubMedGoogle Scholar
  13. 13.
    Comellas AP, Pesce LM, Azzam Z, Saldias FJ and Sznajder JI. Scorpion venom decreases lung liquid clearance in rats. Am J Respir Crit Care Med167:1064-1067, 2003.CrossRefPubMedGoogle Scholar
  14. 14.
    Compeau CG, Rotstein OD, Tohda H, Marunaka Y, Rafii B, Slutsky AS and O’Brodovich H. Endotoxin-stimulated alveolar macrophages impair lung epithelial Na+ transport by an L-Arg-dependent mechanism. Am J Physiol266: C1330-41, 1994.Google Scholar
  15. 15.
    Dagenais A, Frechette R, Yamagata Y, Yamagata T, Carmel JF, Clermont ME, Brochiero E, Masse C and Berthiaume Y. Downregulation of ENaC Activity and Expression by TNF-alpha In Alveolar Epithelial Cells. Am J Physiol Lung Cell Mol Physiol.: 2003.Google Scholar
  16. 16.
    Davis IC, Lazarowski ER, Hickman-Davis JM, Fortenberry JA, Chen FP, Zhao X, Sorscher E, Graves LM, Sullender WM and Matalon S. Leflunomide prevents alveolar fluid clearance inhibition by respiratory syncytial virus. Am J Respir Crit Care Med173:673-682, 2005.CrossRefPubMedGoogle Scholar
  17. 17.
    Davis IC, Sullender WM, Hickman-Davis JM, Lindsey JR and Matalon S. Nucleotidemediated inhibition of alveolar fluid clearance in BALB/c mice after respiratory syncytial virus infection. Am J Physiol Lung Cell Mol Physiol286: L112-L120, 2004.CrossRefPubMedGoogle Scholar
  18. 18.
    Davis IC, Zajac AJ, Nolte KB, Botten J, Hjelle B and Matalon S. Elevated generation of reactive oxygen/nitrogen species in hantavirus cardiopulmonary syndrome. J Virol 76:8347-8359, 2002.CrossRefPubMedGoogle Scholar
  19. 19.
    Dobbs LG. Isolation and culture of alveolar type II cells. Am J Physiol258: L134-47, 1990.PubMedGoogle Scholar
  20. 20.
    Factor P, Senne C, Dumasius V, Ridge K, Jaffe HA, Uhal B, Gao Z and Sznajder JI. Overexpression of the Na+,K+-ATPase alpha1 subunit increases Na+,K+-ATPase function in A549 cells. Am J Respir Cell Mol Biol18:741-749, 1998.PubMedGoogle Scholar
  21. 21.
    Firsov D, Gautschi I, Merillat AM, Rossier BC and Schild L. The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J17:344-352, 1998.CrossRefPubMedGoogle Scholar
  22. 22.
    Fukuda N, Jayr C, Lazrak A, Wang Y, Lucas R, Matalon S and Matthay MA. Mechanisms of TNF-alpha stimulation of amiloride-sensitive sodium transport across alveolar epithelium. Am J Physiol Lung Cell Mol Physiol280: L1258-L1265, 2001.PubMedGoogle Scholar
  23. 23.
    Galietta LJ, Folli C, Marchetti C, Romano L, Carpani D, Conese M and Zegarra-Moran O. Modification of transepithelial ion transport in human cultured bronchial epithelial cells by interferon-gamma. Am J Physiol Lung Cell Mol Physiol278: L1186-L1194, 2000.PubMedGoogle Scholar
  24. 24.
    Galietta LJ, Pagesy P, Folli C, Caci E, Romio L, Costes B, Nicolis E, Cabrini G, Goossens M, Ravazzolo R and Zegarra-Moran O. IL-4 is a potent modulator of ion transport in the human bronchial epithelium in vitro. J Immunol168:839-845, 2002.PubMedGoogle Scholar
  25. 25.
    Garat C, Rezaiguia S, Meignan M, D’Ortho MP, Harf A, Matthay MA and Jayr C. Alveolar endotoxin increases alveolar liquid clearance in rats. J Appl Physiol79:2021-2028, 1995.PubMedGoogle Scholar
  26. 26.
    Graham A, Steel DM, Wilson R, Cole PJ, Alton EW and Geddes DM. Effects of purified Pseudomonas rhamnolipids on bioelectric properties of sheep tracheal epithelium. Exp Lung Res19:77-89, 1993.CrossRefPubMedGoogle Scholar
  27. 27.
    Grunstein MM, Hakonarson H, Whelan R, Yu Z, Grunstein JS and Chuang S. Rhinovirus elicits proasthmatic changes in airway responsiveness independently of viral infection. J Allergy Clin Immunol108:997-1004, 2001.CrossRefPubMedGoogle Scholar
  28. 28.
    Henry PJ, Rigby PJ, Mackenzie JS and Goldie RG. Effect of respiratory tract viral infection on murine airway beta-adrenoceptor function, distribution and density. Br J Pharmacol104:914-921, 1991.PubMedGoogle Scholar
  29. 29.
    Hochstrasser M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol7:215-223, 1995.CrossRefPubMedGoogle Scholar
  30. 30.
    Homolya L, Steinberg TH and Boucher RC. Cell to cell communication in response to mechanical stress via bilateral release of ATP and UTP in polarized epithelia. J Cell Biol150:1349-1360, 2000.CrossRefPubMedGoogle Scholar
  31. 31.
    Hu P, Ischiropoulos H, Beckman JS and Matalon S. Peroxynitrite inhibition of oxygen consumption and sodium transport in alveolar type II cells. Am J Physiol266: L628-34, 1994.PubMedGoogle Scholar
  32. 32.
    Inglis SK, Collett A, McAlroy HL, Wilson SM and Olver RE. Effect of luminal nucleotides on Cl-secretion and Na+ absorption in distal bronchi. Pflugers Arch438:621-627, 1999.CrossRefPubMedGoogle Scholar
  33. 33.
    Inglis SK, Olver RE and Wilson SM. Differential effects of UTP and ATP on ion transport in porcine tracheal epithelium. Br J Pharmacol130:367-374, 2000.CrossRefPubMedGoogle Scholar
  34. 34.
    Ismailov II, Awayda MS, Jovov B, Berdiev BK, Fuller CM, Dedman JR, Kaetzel M and Benos DJ. Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator. J Biol Chem271:4725-4732, 1996.CrossRefPubMedGoogle Scholar
  35. 35.
    Iwase N, Sasaki T, Shimura S, Yamamoto M, Suzuki S and Shirato K. ATP-induced Cl-secretion with suppressed Na+ absorption in rabbit tracheal epithelium. Respir Physiol107:173-180, 1997.CrossRefPubMedGoogle Scholar
  36. 36.
    Jain L, Chen XJ, Ramosevac S, Brown LA and Eaton DC. Expression of highly selective sodium channels in alveolar type II cells is determined by culture conditions. Am J Physiol Lung Cell Mol Physiol280: L646-L658, 2001.PubMedGoogle Scholar
  37. 37.
    Johnson M. Molecular mechanisms of beta(2)-adrenergic receptor function, response, and regulation. J Allergy Clin Immunol117:18-24, 2006.CrossRefPubMedGoogle Scholar
  38. 38.
    Johnson MD, Widdicombe JH, Allen L, Barbry P and Dobbs LG. Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis. Proc Natl Acad Sci U S A 99:1966-1971, 2002.CrossRefPubMedGoogle Scholar
  39. 39.
    Kerem E, Bistritzer T, Hanukoglu A, Hofmann T, Zhou Z, Bennett W, MacLaughlin E, Barker P, Nash M, Quittell L, Boucher R and Knowles MR. Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N Engl J Med341:156-162, 1999.CrossRefPubMedGoogle Scholar
  40. 40.
    Kishore BK, Ginns SM, Krane CM, Nielsen S and Knepper MA. Cellular localization of P2Y(2) purinoceptor in rat renal inner medulla and lung. Am J Physiol Renal Physiol278: F43-F51, 2000.PubMedGoogle Scholar
  41. 41.
    Knowles MR, Clarke LL and Boucher RC. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N Engl J Med325:533-538, 1991.PubMedCrossRefGoogle Scholar
  42. 42.
    Kunzelmann K, Beesley AH, King NJ, Karupiah G, Young JA and Cook DI. From the cover: influenza virus inhibits amiloride-sensitive Na+ channels in respiratory epithelia. Proc Natl Acad Sci U S A97:10282-10287, 2000.CrossRefPubMedGoogle Scholar
  43. 43.
    Kunzelmann K, Konig J, Sun J, Markovich D, King NJ, Karupiah G, Young JA and Cook DI. Acute effects of parainfluenza virus on epithelial electrolyte transport. J Biol Chem279:48760-48766, 2004.CrossRefPubMedGoogle Scholar
  44. 44.
    Lamb RA, Zebedee SL and Richardson CD. Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell40:627-633, 1985.CrossRefPubMedGoogle Scholar
  45. 45.
    Lambert LC, Trummell HQ, Singh A, Cassell GH and Bridges RJ. Mycoplasma pulmonisinhibits electrogenic ion transport across murine tracheal epithelial cell monolayers. Infect Immun66:272-279, 1998.PubMedGoogle Scholar
  46. 46.
    Lazarowski ER and Boucher RC. UTP as an extracellular signaling molecule. News Physiol Sci16:1-5.:1-5, 2001.PubMedGoogle Scholar
  47. 47.
    Ling BN and Eaton DC. Effects of luminal Na+ on single Na+ channels in A6 cells, a regulatory role for protein kinase C. Am J Physiol256: F1094-F1103, 1989.PubMedGoogle Scholar
  48. 48.
    Malhotra A and Krilov LR. Influenza and respiratory syncytial virus. Update on infection, management, and prevention. Pediatr Clin North Am47:353-vii, 2000.Google Scholar
  49. 49.
    Malik B, Schlanger L, Al Khalili O, Bao HF, Yue G, Price SR, Mitch WE and Eaton DC. Enac degradation in A6 cells by the ubiquitin-proteosome proteolytic pathway. J Biol Chem%20;276:12903-12910, 2001.CrossRefGoogle Scholar
  50. 50.
    Mall M, Wissner A, Gonska T, Calenborn D, Kuehr J, Brandis M and Kunzelmann K. Inhibition of amiloride-sensitive epithelial Na(+) absorption by extracellular nucleotides in human normal and cystic fibrosis airways. Am J Respir Cell Mol Biol 23:755-761, 2000.PubMedGoogle Scholar
  51. 51.
    Matalon S, Benos DJ and Jackson RM. Biophysical and molecular properties of amiloride-inhibitable Na+ channels in alveolar epithelial cells. Am J Physiol271: L1-22, 1996.PubMedGoogle Scholar
  52. 52.
    Matalon S and Davis IC. Vectorial sodium transport across the mammalian alveolar epithelium: it occurs but through which cells? Circ Res92:348-349, 2003.CrossRefPubMedGoogle Scholar
  53. 53.
    Matalon S and O’Brodovich H. Sodium channels in alveolar epithelial cells: molecular characterization, biophysical properties, and physiological significance. Annu Rev Physiol61:627-661, 1999.CrossRefPubMedGoogle Scholar
  54. 54.
    Matthay MA and Wiener-Kronish JP. Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. Am Rev Respir Dis142:1250-1257, 1990.PubMedGoogle Scholar
  55. 55.
    Minakata Y, Suzuki S, Grygorczyk C, Dagenais A and Berthiaume Y. Impact of betaadrenergic agonist on Na+ channel and Na+-K+-ATPase expression in alveolar type II cells. American Journal of Physiology275: L414-L422, 1998.PubMedGoogle Scholar
  56. 56.
    Modelska K, Matthay MA, McElroy MC and Pittet JF. Upregulation of alveolar liquid clearance after fluid resuscitation for hemorrhagic shock in rats. Am J Physiol273: L305-L314, 1997.PubMedGoogle Scholar
  57. 57.
    Moore PE, Cunningham G, Calder MM, Dematteo AD, Jr., Peeples ME, Summar ML and Peebles RS, Jr. Respiratory syncytial virus infection reduces beta 2-adrenergic responses in human airway smooth muscle. Am J Respir Cell Mol Biol35:559-564, 2006.CrossRefPubMedGoogle Scholar
  58. 58.
    Mutlu GM, Koch WJ and Factor P. Alveolar epithelial beta 2-adrenergic receptors: their role in regulation of alveolar active sodium transport. Am J Respir Crit Care Med170:1270-1275, 2004.CrossRefPubMedGoogle Scholar
  59. 59.
    O’Grady SM, Jiang X and Ingbar DH. Cl-channel activation is necessary for stimulation of Na transport in adult alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol278: L239-L244, 2000.PubMedGoogle Scholar
  60. 60.
    Olivier KN, Bennett WD, Hohneker KW, Zeman KL, Edwards LJ, Boucher RC and Knowles MR. Acute safety and effects on mucociliary clearance of aerosolized uridine 5’-triphosphate +/-amiloride in normal human adults. Am J Respir Crit Care Med154:217-223, 1996.PubMedGoogle Scholar
  61. 61.
    Perkins GD, McAuley DF, Thickett DR and Gao F. The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med 173:281-287, 2006.CrossRefPubMedGoogle Scholar
  62. 62.
    Planes C, Blot-Chabaud M, Matthay MA, Couette S, Uchida T and Clerici C. Hypoxia and beta 2-agonists regulate cell surface expression of the epithelial sodium channel in native alveolar epithelial cells. J Biol Chem277:47318-47324, 2002.CrossRefPubMedGoogle Scholar
  63. 63.
    Rezaiguia S, Garat C, Delclaux C, Meignan M, Fleury J, Legrand P, Matthay MA and Jayr C. Acute bacterial pneumonia in rats increases alveolar epithelial fluid clearance by a tumor necrosis factor-alpha-dependent mechanism. J Clin Invest99:325-335, 1997.CrossRefPubMedGoogle Scholar
  64. 64.
    Rotin D, Bar-Sagi D, O’Brodovich H, Merilainen J, Lehto VP, Canessa CM, Rossier BC and Downey GP. An SH3 binding region in the epithelial Na+ channel (alpha rENaC) mediates its localization at the apical membrane. EMBO J13:4440-4450, 1994.PubMedGoogle Scholar
  65. 65.
    Salathe M. Effects of beta-agonists on airway epithelial cells. J Allergy Clin Immunol 110: S275-S281, 2002.CrossRefPubMedGoogle Scholar
  66. 66.
    Sartori C, Allemann Y, Duplain H, Lepori M, Egli M, Lipp E, Hutter D, Turini P, Hugli O, Cook S, Nicod P and Scherrer U. Salmeterol for the prevention of highaltitude pulmonary edema. N Engl J Med346:1631-1636, 2002.CrossRefPubMedGoogle Scholar
  67. 67.
    Shimkets RA, Lifton R and Canessa CM. In vivo phosphorylation of the epithelial sodium channel. Proc Natl Acad Sci U S A95:3301-3305, 1998.CrossRefPubMedGoogle Scholar
  68. 68.
    Snyder PM, Cheng C, Prince LS, Rogers JC and Welsh MJ. Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J Biol Chem273:681-684, 1998.CrossRefPubMedGoogle Scholar
  69. 69.
    Staub O, Abriel H, Plant P, Ishikawa T, Kanelis V, Saleki R, Horisberger JD, Schild L and Rotin D. Regulation of the epithelial Na+ channel by Nedd4 and ubiquitination. Kidney Int57:809-815, 2000.CrossRefPubMedGoogle Scholar
  70. 70.
    Stockand JD, Bao HF, Schenck J, Malik B, Middleton P, Schlanger LE and Eaton DC. Differential effects of protein kinase C on the levels of epithelial Na+ channel subunit proteins [In Process Citation]. J Biol Chem275:25760-25765, 2000.CrossRefPubMedGoogle Scholar
  71. 71.
    Stutts MJ, Schwab JH, Chen MG, Knowles MR and Boucher RC. Effects of Pseudomonas aeruginosa on bronchial epithelial ion transport. Am Rev Respir Dis 134:17-21, 1986.PubMedGoogle Scholar
  72. 72.
    Sznajder JI, Olivera W, Ridge KM, Rutschman DH, Olivera WG and Ridge KM. Mechanisms of lung liquid clearance during hyperoxia in isolated rat lungs. Am J Respir Crit Care Med151:1519-1525, 1995.PubMedGoogle Scholar
  73. 73.
    Venkatesh VC and Katzberg HD. Glucocorticoid regulation of epithelial sodium channel genes in human fetal lung. Am J Physiol273: L227-L233, 1997.PubMedGoogle Scholar
  74. 74.
    Wiener-Kronish JP and Matthay MA. Beta-2-agonist treatment as a potential therapy for acute inhalational lung injury. Crit Care Med34:1841-1842, 2006.CrossRefPubMedGoogle Scholar
  75. 75.
    Yue G and Matalon S. Mechanisms and sequelae of increased alveolar fluid clearance in hyperoxic rats. Am J Physiol272: L407-12, 1997.PubMedGoogle Scholar
  76. 76.
    Yue G, Shoemaker RL and Matalon S. Regulation of low-amiloride-affinity sodium channels in alveolar type II cells. Am J Physiol267: L94-100, 1994.PubMedGoogle Scholar
  77. 77.
    Zhang M, Kim KJ, Iyer D, Lin Y, Belisle J, McEnery K, Crandall ED and Barnes PF. Effects of Mycobacterium tuberculosis on the bioelectric properties of the alveolar epithelium. Infect Immun65:692-698, 1997.PubMedGoogle Scholar
  78. 78.
    Zhu S, Ware LB, Geiser, T, Matthay, MA and Matalon S. Increased levels of nitrate and surfactant protein A nitration in the pulmonary edema fluid of patients with acute lung injury. Am J Crit Care Med163:166-172, 2001.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ian C. Davis
    • 1
  • Sadis Matalon
    • 2
  1. 1.Department of Veterinary BiosciencesThe Ohio State UniversityColumbusUSA
  2. 2.Departments of Anesthesiology&PhysiologyUniversity of AlabamaBirminghamUSA

Personalised recommendations