Synthesis and Commercial Preparation of Food Emulsifiers

  • Gerard L. Hasenhuettl

Food emulsifiers, more correctly referred to as surfactants, are molecules, which contain a nonpolar, and one or more polar regions. In general, nonpolar groups are aliphatic, alicyclic, or aromatic hydrocarbons. Polar functional groups contain heteroatoms such as oxygen, nitrogen, and sulfur. As shown in Fig. 2.1, the polar functionality makes the emulsifier anionic, cationic, amphoteric, or nonionic. Anionic surfactants contain a negative charge on the bulky molecule, associated with a small positive counterion. Cationics have a positively charged molecule with a negative counterion. Amphoteric surfactants contain both positive and negative charges on the same molecule. A nonionic surfactant contains no formal positive or negative charge, but a polar heteroatom produces a dipole with an electron dense and electron-depleted region.

Many synthetic emulsifiers have been used in the food industry without evidence of harmful effects. Their chemistry is derived from over 150 years of chemical manipulation of fats and oils (Polouze and Gelis, 1844). They have been designed to contain naturally occurring molecules or in the case of non-naturally occurring molecules, to pass through the body without being metabolized. For example, cleavage of polyglycerol esters results in a fatty acid, which is metabolized, and a polyglycerol backbone, which passes through the digestive system without being absorbed.


Propylene Glycol Fatty Acid Ester Commercial Preparation Sucrose Ester Direct Esterification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akoh, C. and Swanson, B. G. (1994). Carbohydrate Polyesters as Fat Substitutes. New York: Marcel Dekker.Google Scholar
  2. Allen, R. R. and Campbell, R. L. (1967). Process for the Manufacture of Fatty Acid Esters. U. S. 3, 313, 834, Anderson Clayton & Co.Google Scholar
  3. Anon (1981). Sodium Stearoyl 2-Lactylate. India 148301, Council for Scientific and Industrial Research India: 13.Google Scholar
  4. Aoi, N. (1995). Preparation of Fatty Acid Esters of Fractionated Polyglycerin Esters as Emulsifiers. HCAPLUS 124:185549. Japan 07218560A, Toiyo Kogaku KK.Google Scholar
  5. Aracil Mira, J. A. E. (2000). Producing Fatty Acid Esters of Diacetyltartaric Acid Using Biocatalysis. Spain ES2146162, Universidad Complutense.Google Scholar
  6. Arcos, J. A. et al. (2000). Continuous Enzymatic Esterification of Glycerol With (Poly) Unsaturated Fatty Acids in a Packed Bed Reactor. Biotechnol. Bioeng. 68(5): 563–70.CrossRefGoogle Scholar
  7. Bade, V. (1978). Process for the Manufacture of Citric Acid Esters of Partial Fatty Acid Glycerides. U.S. 4, 071, 544.Google Scholar
  8. Belitz, H. D., Grosch, W., and Schienberle, P. (2004a). Food Chemistry. Berlin: Springer. 178–179.Google Scholar
  9. Belitz, H. D., Grosch, W., and Schienberle, P. (2004b). Food Chemistry. Berlin: Springer. 331–2.Google Scholar
  10. Brumley, W. C. et al. (1985). Characterization of Polysorbates by OH-Negative Ion Chemical Ionization Mass Spectrometry. J. Agric. Food Chem. 33(3): 368, 72.CrossRefGoogle Scholar
  11. Cawley, C. and O’Grady, M. (1969). Preparation of Monoglyceride Phosphoric Acid and Salts Thereof. U.S. 3, 423, 440.Google Scholar
  12. Charlemange, D. and Legoy, M. D. (1995). Enzymic Synthesis of Polyglycerol Fatty Acid Esters in a Solvent-free System. J. Am. Oil Chem. Soc. 72(1): 61–5.CrossRefGoogle Scholar
  13. Charles, G. et al. (2003). Preparation of Diglycerol and Triglycerol via Direct Polymerization of Glycerol with Basic Mesoporous Catalysts. Oleagineux Corps Gras Lipides 19(1): 74–82.Google Scholar
  14. Deger, H. M. et al. (1988). Carbohydrate Fatty Acid Esters, a Method for Their Preparation. HCAPLUS 111:134679. German DE 639878 A1, Hoechst, A. G.Google Scholar
  15. Dong, Q. Q. et al. (1982). Lipids 17(11): 798–802.CrossRefGoogle Scholar
  16. Elsner, A. et al. (1989). Synthesis and Characterization of Sucrose Fatty Acid Polyesters. Nahrung 33(9): 845–51.Google Scholar
  17. Eng, S. (1972). Producing Lactylic Acid Esters of Fatty Acids. U.S. 3, 636, 017, Glyco, Inc.Google Scholar
  18. Esbuis, C. R. V. et al. (1994). Polymerization of Glycerol Using Zeolite Catalysts. PCT Int. Appl. WO 9418256, Unichema Chemie B. V. Neth.Google Scholar
  19. Franzke, C. and Kroll, J. (1980). Nahrung 24(1): 89–90.CrossRefGoogle Scholar
  20. Freund, E. H. (1968). Composition Comprising Succinyl Half Esters. U. S. 3, 370, 958, National Dairy Products Co.Google Scholar
  21. Furuya, N. et al. (1992). Stabilization of Polyoxyethylene Sorbitan Esters. HCAPLUS 117:152184. Japan JP 04108781 A2, Nippon Yushi, K. K.Google Scholar
  22. Garti, N. and Asarin, A. (1983). J. Am. Oil Chemists Soc. 60(6): 1151–4.CrossRefGoogle Scholar
  23. Giacometi, J. et al. (1995). Monitoring the Esterification of Sorbitol and Fatty Acids by Gas Chromatography. J. Chromatogr. A 704(2): 535–9.CrossRefGoogle Scholar
  24. Gladstone, C. (1960). Process of Preparing Esters of Acetyl Tartaric and Citric Acids. U. S. 2, 938, 027, Witco Chemical Co.Google Scholar
  25. Griffin, W. C. (1945). U.S. 2, 380, 166.Google Scholar
  26. Gu, K. (2002). Study on Solvent Fractionation of Soybean Lecithin. Zhongguo Youzhi 27(1): 31–3.Google Scholar
  27. Guillard, V. et al. (2004). Edible Acetylated Monoglycerid E Films: Effect of Film-forming Technique on Moisture Barrier Properties. J. Am. Oil Chem. Soc. 81(11): 1053–8.CrossRefGoogle Scholar
  28. Ha, J. H. et al. (1987). Optimum Conditions to Esterify Alginic Acid. Hanlguk Susan Hakoechi 20(3): 202–7.Google Scholar
  29. Hadeball, K. et al. (1986). Synthesis and Properties of Succinylated Monoglycerides. Nahrung 30(2): 209–11.CrossRefGoogle Scholar
  30. Hari-Krishna, S. and Karanth, N. (2002). Lipase and Lipase-catalyzed Esterification Reactions in Nonaqueous Media. Cat. Rev. 44(4): 499.CrossRefGoogle Scholar
  31. Hasenhuettl, G. L. (1999a). Synthesis and Commercial Preparation of Surfactants for the Food Industry. In F. D. Gunstone (ed.), Lipid Synthesis and Manufacture. Sheffield: Academic Press. p. 391.Google Scholar
  32. Hasenhuettl, G. L. (1999b). Synthesis and commercial preparation of surfactants for the food industry. In F. D. Gunstone (ed.), Lipid Synthesis and Manufacture. p. 392. CRC Press.Google Scholar
  33. Hasenhuettl, G. L. (1999c). Synthesis and commercial preparation of surfactants for the food industry. In F. D. Gunstone (ed.), Lipid Synthesis and Manufacture. p. 394. CRC Press.Google Scholar
  34. Heidt, M. et al. (1996). Studies on the Enantioselectivity in Lipase Synthesis of Monoacylglycerols From the iIopropylidene Glycerol. Biotechnol. Tech. 10(1): 25–30.CrossRefGoogle Scholar
  35. Hibino, H. et al. (1989). Preparation of Lysophosphatidylcholine by Acylation of Glycerophosphocholine. HCAPLUS 112:217462. Japan JP 01311088 A2, Nippon Oil & Fats Co.Google Scholar
  36. Hibino, H. et al. (1991). Hydrolysis of Synthetic Phosphatidycholine with Phospholipase A2. HCAPLUS. Japan JP 03007589 A2, Mippon Oil & Fats Co.Google Scholar
  37. Hoq, M. M. et al. (1985). Some Characteristics of Continuous Glyceride Synthesis by Lipase in a Microporous Hydrophobic Biomembrane Reator. Agric. Biol. Chem. 49(2): 335–42.Google Scholar
  38. Huang, E.-C. et al. (2000). Kinetic Study on the Synthesis of Sucrose Esters. Zhengzhou Gongye Daxue Xuebao 21(4): 4–6.Google Scholar
  39. Israelachvili, J. (1992). Thermodynamic Principles of Self-Assembly. in Intermolecular and Surfaces Forces. London: Academic Press, 341–94.Google Scholar
  40. Jakobson, G. et al. (1989). Preparation of Nonionic Surfactant Comprising Esters of Polyglycerol and Their Use in Emulsions. HCA PLUS 113:99881. German DE 3818293 A1, Deutsche-Solvay-Werke G.M.b.H.Google Scholar
  41. Kasori, Y. et al. (1995). Preparation of Polyglycerin Fatty Acid Esters at Controlled Temperatures. HCAPLUS 123:14329. Japan JP 071451, Mitsubishi Kagaku KK.Google Scholar
  42. Kasori, Y. and Taktabagai, T. (1997). Preparation of Fatty Acid Sucrose Esters for Foods. HCAPLUS 127:176658. Japan JP 09188690 A2, Mitsubishi Chemical Industries Ltd.Google Scholar
  43. Kazyulima, M. I. et al. (1986). Production of Phosphorous Containing Emulsifiers. Maslo-Zhir. Prom-st. 8: 22–3.Google Scholar
  44. Li, Y.-K. et al. (2003). Enzyme-catalyzed Regioselective Synthesis of Sucrose Esters. Yoppp Huaxue 23(8): 770–5.Google Scholar
  45. Lim, S. et al. (2002). Design Issues of Pervaporation Membrane Reactors for Esterification: Membrane Bioreactor Design and Kinetic Model for Reaction Engineering and Simulation: A Review. Chem. Eng. Science 57(22–23): 4943–6.Google Scholar
  46. Marquez-Alvarez, C. et al. (2004). Solid Catalysis for the Synthesis of Esters of Glycerol, Polyglycerols and Sorbitol from Renewable Resources. Top. Catal. 27: 105–17.CrossRefGoogle Scholar
  47. Masashi, S. et al. (2005). Method for Producing Phospholipid. U. S.6, 170, 476A.Google Scholar
  48. McDowell, R. H. (1970). New Reactions of Propylene Glycol Alginate. J. Soc. Cosmet. Chem. 21: 441–57.Google Scholar
  49. McDowell, R. H. (1975). New Developments in the Chemistry of Alginates and Their Use in Foods. Chem. Ind. 9: 391–5.Google Scholar
  50. Meszaros, G. Y. et al. (1989). Synthesis of Esters of Polyols and Fatty Acids with Soap as Emulsifiers. HCA PLUS 111:216308. Europe EP 323670 A2, Unilever N.V, Unilever PLC.Google Scholar
  51. Montiero, J. B. et al. (2003). Lipase-catalyzed Synthesis of Monoacylglycerol in a Homogeneous System. Biotechnol. Letters 25(8): 641–4.CrossRefGoogle Scholar
  52. Morgado, M. A. et al. (1995). Hydrolosis of Lecithin by Phospholipase A2 in Mixed Reversed Micelles. J. Chem. Technol. Biotechnol. 63(2): 181–9.CrossRefGoogle Scholar
  53. Murakama, C. et al. (1989). Shokuhin Easeigaku Zasshi 30(4): 306–13.Google Scholar
  54. Nakamura, T. et al. (1986). Sucrose Fatty Acid Esters—Reaction at Atmospheric Pressure. Inf. Int. 18(37): 8–13.Google Scholar
  55. Nielsen, V. et al. (1971). Propylene Glycol Alginate. German DE 204, 6966.Google Scholar
  56. Noto, V. H. and Pettitt, D. J. (1972). Propylene Glycol Alginate. German DE 2641303, Merck & Company: DE 2641303.Google Scholar
  57. Okumura, H. et al. (2001). Determination of Sucrose Fatty Acid Esters by High Performance Liqyud Chromatography. J. Oleo Sci. 50(4), 249–54.Google Scholar
  58. Palacios, L. E. and Wang, T. (2005). Egg-yolk Lipid Fractionation and Lecithin Characterization. J. Am. Oil Chem. Soc. 82(8): 571–8.CrossRefGoogle Scholar
  59. Paolucci-Jeaniean, D. (2005). Biomolecule Applications for Membrane-based Phase Contacting Systems. Chem. Eng. Res. Des. 83(A3): 302–8.CrossRefGoogle Scholar
  60. Patterson, V. D. E. et al. (1984). Continuous Synthesis of Glycerides by Lipase in a Microporous Membrane Bioreactor. Ann. N.Y. Acad. Sci. 434: 558–68.CrossRefGoogle Scholar
  61. Polouze, J. and Gelis, A. (1844). Ann. Chem. Phys. 10: 434.Google Scholar
  62. Ranny, M. et al. (1989). Manufacture of Phosphorylated Mono- and Diacylglycerols for Use as Food Emulsifiers. HCAPLUS: 111:193383. Czechoslovakia CS 256691 B1, Czechoslovakia.Google Scholar
  63. Reynolds, R. C. and Chappel, C. J. (1998). Sucrose Acetate Isobutyrate (SAIB): Historical Aspects of Its Use in Beverages and a Review of Toxicity Studies Prior to 1988. Food Chem. Toxicol. 36(2): 81–93.CrossRefGoogle Scholar
  64. Sahasrabuddhe, M. (1967). J. Am. Oil Chem. Soc. 44(7): 376–8.CrossRefGoogle Scholar
  65. Sahasrabuddhe, M. R. and Chadha, R. K. (1969). J. Am. Oil Chem. Soc. 46(1): 8–12.CrossRefGoogle Scholar
  66. Santacesaria, E. et al. (1995). Role of Ethylene Oxide Solubility in the Ethoxylation Process. Catalysis in Multiphase Systems: 549th Event of the EFCHE, Lyon, FR, Catal. Today.Google Scholar
  67. Santacesaria, E. (1999). Mass Transfer and Kinetics in Ethoxylation Spray Tower Loop Reactors. Proceedings of the 1999 1st International Symposium on Multifunctional Reactors, Amsterdam, NLD: Chemical Engineering Science.Google Scholar
  68. Sax, N. I. and Lewis, R. J. (1989). Succinic Anhydride. Dangerous Properties of Industrial Materials. New York: Van Nostrand Reinhold. III: 3131–2.Google Scholar
  69. Schuetze, T. (1977). Nahrung 21(5): 405–15.CrossRefGoogle Scholar
  70. Schuyl, P. J. W. and Platerink, V. (1994). Analysis of Sucrose Polyesters with Electrospray Mass Spectrometry. 42nd A.S.M.S. Conference on Mass Spectrometry, Chicago, IL.Google Scholar
  71. Shmidt, A. A. et al. (1976a). Chromatographic Analysis of Succinylated and Lactylated Monoglycerides as Food Surfactants. Khimicheskava Promyshlennost 8: 598–600.Google Scholar
  72. Shmidt, A. A. et al. (1976b). Synthesis of Lactylated Monoglycerides. Masolzhironyaya Promyshlennost 10: 19–20.Google Scholar
  73. Shmidt, A. A. et al. (1979). Determination of the Tartaric Acid Content of Diacetyltartaric Acid Esters of Monoglycerides and Mono-and Diglycerides. Lebensmittelindustrie 26(4): 172–3.Google Scholar
  74. Sietze, F. G. (1982). Seifen Oele Fette Wachse 108(20): 637–9.Google Scholar
  75. Sigfried, P. and Eckhard, W. (2005). Process for the Transrsterification of Fat and/or Oil by Means of Alcoholysis. U. S 5, 933, 398 B2.Google Scholar
  76. Sim, J. S. (1994). New Extraction and Fractionation Method for Lecithin and Neutral Oil from Egg Yolk. Egg Use and Processing Technology, Wallingford, UK: CAB International.Google Scholar
  77. Stockburger, G. J. (1981). Process for Preparing Sorbitan Esters. U.S. 4, 297, 290, ICI Americas, Inc.Google Scholar
  78. Strong, C. H. (1976). Alkylene Glycol Alginates. German DE 2529086, Uniroyal, Ltd.Google Scholar
  79. Swanson, S. and Swanson, B. G. (1999). Alkyl and Acyl Sugars. In F. D. Gunstone (ed.), Lipid Synthesis and Manufacture pp. 347–70. Sheffield: Academic Press/CRC Press.Google Scholar
  80. Szabo, I. et al. (1977). Investigations on the New Preparation Possibilities of Span 80 and Tween 80. Conference on Applied Chemistry, Budapest, Magy. Kem. Egyesulete.Google Scholar
  81. Szuhaj, B. F. (2005). Lecithins. In F. Shahidi (ed.), Bailey’s Industrial Oil and Fat Products. (vol 3, pp. 361–456). New York: John Wiley and Sons.Google Scholar
  82. Tamura, T. and Suginuma, T. (1991). Preparation of Higher Fatty Acid Monoglycerides as Emulsifiers and Moisturizers. HCA PLUS. Japan JP 03200744 A2, Daisan Kasei Co., Ltd.Google Scholar
  83. Udajari, S. (1996a). Ethylene Oxide. The Merck Index. Whitehouse Station N.J.: Merck & Co., Inc. 647.Google Scholar
  84. Udajari, S. (1996b). “Propylene Oxide.” The Merck Index, White House Station, Merck & co., p. 1349.Google Scholar
  85. Van Nispen, J. G. M. and Olivier, A. P. C. (1989). Preparation of Sugars of Non-reducing Sugars and One or More Fatty Acids by Transesterification Using a High Shear Mixing Device. HCAPLUS 111:134688. Europe EP 315265 A!, Cooperative Vereninging Suiker Unie U. A.Google Scholar
  86. Wagner, F. W. et al. (1990). Preparation of Sugar Fatty Acid Esters Having a Degree of Polymerization up to 2. U.S. 4, 927, 920, Nebraska Dept. of Economic Development.Google Scholar
  87. Waldinger, C. and Schneider, M. (1996). Enzyme Esterification of Glycerol IIIL Lipase-catalyzed Synthesis of Regiomerically Pure 1, 3-sn-Diacylglycerols and 1, 3-rac-Monoacylglycerols Derivrd from Unsaturated Fatty Acids. J. Am. Oil Chem. Soc. 73(11): 1513–19.CrossRefGoogle Scholar
  88. Wang, X. G. et al. (1997). Synthesis of Phosphatidylglycerol from Soybean Lecithin with Immobilized Phospholipase D. J. Am. Oil Chem. Soc. 74: 87–91.CrossRefGoogle Scholar
  89. Wilson, D. C. (1999). Continuous Process for the Synthesis of Sucrose Fatty Acid Esters. U. S 5, 872, 245, Optima Technologies Group.Google Scholar
  90. Woods, G. E. (1961). U.S. 3, 012, 047.Google Scholar
  91. Yamane, T. et al. (1984). Continuous Synthesis of Glycerides by Lipase in a Microporous Membrane Bioreactor. Ann. N. Y. Acad. Sci. 434: 558–68.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gerard L. Hasenhuettl
    • 1
  1. 1.Port Saint LucieUSA

Personalised recommendations